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ABSTRACT
Due to the ability to preserve semantic similarity in Ham-
ming space, supervised hashing has been extensively studied
recently. Most existing approaches encourage two dissimilar
samples to have maximum Hamming distance. This may
lead to an unexpected consequence that two unnecessarily
similar samples would have the same code if they are both
dissimilar with another sample. Besides, in existing method-
s, all labeled pairs are treated with equal importance with-
out considering the semantic gap, which is not conducive to
thoroughly leverage the supervised information. We present
a general framework for supervised hashing to address the
above two limitations. We do not toughly require a dissim-
ilar pair to have maximum Hamming distance. Instead, a
soft constraint which can be viewed as a regularization to
avoid over-fitting is utilized. Moreover, we impose differen-
t weights to different training pairs, and these weights can
be automatically adjusted in the learning process. Experi-
ments on two benchmarks show that the proposed method
can easily outperform other state-of-the-art methods.

Categories and Subject Descriptors
H.3.3 [Information Systems]: Information Search and Re-
trieval
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1. INTRODUCTION
Hashing based approximate nearest neighbor (ANN) search

methods have attracted much attention recently. Hashing
methods map the two nearby points in the original space
to close binary codes in a compact Hamming space. This
enables very fast searching since Hamming distance can be
efficiently calculated with XOR operation in modern CPU.
According to whether supervised information is utilized or
not in the training process, hashing methods can be divided
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Figure 1: Paradox in traditional supervised Hashing
methods. Two unnecessarily similar data x2 and x3

will have the same code.

into unsupervised and supervised categories. In the unsu-
pervised setting, hashing methods such as Locality Sensitive
Hashing (LSH) [1] and Iterative Quantization (ITQ) [2] at-
tempt to preserve the data similarity defined in Euclidean
space, e.g., l2 distance. However, this is not sufficient for
various practical applications such as image retrieval, where
semantically similar neighbors are preferred.

In order to construct efficient hash functions that pre-
serve the semantic similarity, supervised hashing methods
[3, 6, 5, 4, 7] have been extensively studied. The super-
vised information here is typically based on some pairwise
constraints, i.e., “A and B is similar” or “A and B is dis-
similar”, which is analogous to the “must link” and “cannot
link” constraints in metric learning [8]. Some representative
supervised hashing methods include Binary Reconstruction
Embedding (BRE) [3], Kernel Supervised Hashing (KSH) [5]
and Two Step Hashing (TSH) [4]. These supervised meth-
ods can be formally formulated with following objective [4]:

min
Φ

∑
(xi,xj)∈L

L (Φ(xi),Φ(xj); yij) (1)

where Φ(x) ∈ {−1, 1}r is the r bits code of x. L(·) is a loss
function that measures how well the codes match the ground
truth yij . Different algorithms corresponds to different loss
functions, for example, l2 loss for BRE and KSH. Although
promising performance has been shown from these methods,
some limitations exist in them.

Inspired by metric learning, all these supervised meth-
ods attempt to learn codes whose Hamming distances are
minimized on similar pairs and simultaneously maximized
on dissimilar pairs. This principle is widely used in metric
learning and proved to be effective. However, metric learn-
ing executes in continuous real number space while hashing
executes in discrete Hamming space. Importantly, although
it makes sense in metric learning, we argue that maximiz-
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Figure 2: Difference between real space and Ham-
ming space. (a) The circle is the “boundary” of a
continuous real space. Maximizing the distance to
x1, point x2 and x3 can be anywhere on this circle.
(b) However, in 2d discrete Hamming space, x2 and
x3 will collide in one corner.

ing Hamming distance on dissimilar pairs, namely hard con-
straints, will lead to over-fitting in hashing. Fig.1 gives an
illustration about our observation. In this example, point x1

is labeled to be dissimilar with x2 and x3 separately, while
the relationship between x2 and x3 is unknown. Under the
hard constraints, both x2 and x3 would have optimized code
that is completely opposite with x1. As a result, x2 and x3

will have the same code. This is apparently unreasonable
because x2 and x3 are not necessarily similar. This para-
dox derives from the difference between the continuous s-
pace and discrete space (Fig.2). In fact, all the supervised
hashing methods with hard constraints contain an implicit
assumption, namely, if both ‘B’ and ‘C’ are dissimilar with
‘A’, then ‘B’ and ‘C’ are similar. However, this assumption
typically does not hold and leads to over-fitting.
In addition, existing methods treat all labeled pairs equal-

ly. If each labeled pair is taken as one constraint in hashing,
some of them are easy to satisfy while some others not. This
is because the gap between the feature space and semantic
space. Sometimes two semantically similar points are al-
so close in the feature space. These two points are easy
to be embedded to similar codes even without supervised
information. Meanwhile, other labeled pairs may be with
larger semantic gap, and need more attention in the learn-
ing process. Therefore, treating different pairs with different
importance is necessary.
In this paper, a general framework is presented to ad-

dress the above two limitations. We propose to apply soft
constraints to the dissimilar pairs. Specifically, instead of
toughly requiring a dissimilar pair to have maximum Ham-
ming distance in the objective, we just request them to be
far enough in the Hamming space. This can be viewed as
a regularization to avoid over-fitting in supervised hashing.
Furthermore, we impose different weights to different train-
ing pairs, and these weights can be automatically adjusted
with boosting technique in a batch-wise learning process.
Experiments on two benchmarks show that the proposed
method can significantly outperform other state-of-the-art
supervised hashing methods.

2. THE PROPOSED APPROACH
First of all, some notations are defined as follows: LetX =

[x1, x2, · · · , xn] denote a set of n data points, where xi ∈ Rd

is the i-th data point. For each xi, its binary hashing code is
denoted as Φ(xi) = [h1(xi), h2(xi), · · · , hr(xi)] ∈ {−1, 1}r,

where r is the code length and Φ = [h1(·), h2(·), · · · , hr(·)]
is a set of r hash functions. L denotes the set of labeled
data pairs. Two categories of label information, S and D,
are available. (xi, xj) ∈ S represents a similar-pair in which
xi and xj are similar in semantic space, e.g., share the same
labels. Similarly, (xi, xj) ∈ D is called a dissimilar-pair if
two samples are far away in semantic space.

Without loss of generality, we establish our model based
on Hamming affinity [5] in this paper. Specifically, Hamming
affinity is defined as:

Sij =
Φ(xi)

TΦ(xj)

r
(2)

Obviously, Φ(xi)
TΦ(xj) ∈ [−r, r] and Sij ∈ [−1, 1]. In this

case, the ground truth affinity in Eq.(1) is defined as:

yij =

{
1, if (xi, xj) ∈ S
−1, if (xi, xj) ∈ D

Following [5], by adopting Euclidean loss function, the ob-
jective function in Eq.(1) can be written as:

min
Φ

∑
(xi,xj)∈L

(
Φ(xi)

TΦ(xj)

r
− yij

)2

(3)

2.1 Soft Constraint and Weighted Loss
In Eq.(3) and the objectives of other supervised methods

[3, 5], two dissimilar points are encouraged to have com-
pletely different codes so that the corresponding Hamming
affinity will be -1 (i.e. maximal Hamming distance). This
idea comes from metric learning and works very well in con-
tinuous real space [8]. However, as illustrated in Fig.1 and
Fig.2, hashing executes in discrete Hamming space and the
hard constraints will result in entirely opposite codes of a
dissimilar pair, which brings over-fitting, e.g. two unneces-
sarily similar samples would have the same code.

With the target of hashing based ANN search, we only
need to require the codes of a dissimilar pair to be far away
enough but not necessarily entirely opposite. Considering an
example that, if the difference between two data points in
a pair (xi, xj) ∈ D is 90% of the total bits, their Hamming
distance will be 0.9 × r and the corresponding Hamming
affinity will be -0.8, and this is typically enough to separate
the two samples in Hamming space. That is to say, there is
no need to restrict the Hamming affinity of a dissimilar pair
to be -1. To this end, we modify the objective function in
Eq.(3) to be:

min
Φ

∑
(xi,xj)∈L

(
Φ(xi)

TΦ(xj)

r
− λijyij

)2

(4)

and λij is defined as:

λij =

{
1, if (xi, xj) ∈ S

0 < p < 1, if (xi, xj) ∈ D (5)

where p ∈ (0, 1) is a parameter in our method.
For any dissimilar pair (xi, xj) ∈ D, λijyij = −p ∈ (−1, 0).

In other words, we relax the original hard labels into a soft
range for the dissimilar pairs. Hence, the optimized codes
will have 1+p

2
× r bits to be different. In this paper, we call

this kind of constraint as soft constraint. Obviously, under
such soft constraints, the codes of x2 and x3 are not necessar-
ily identical like in Fig.1. It is worth noting that for a similar
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pair (xi, xj) ∈ S, λij = 1, we do not change the constraints
on similar pairs, and keep to encourage similar samples in
semantic space to have the same codes in Hamming space.
Multiplying yij with λij can be viewed as a kind of regu-
larization to avoid over-fitting in supervised hashing. As we
will find in the following experiments, this little change can
greatly improve the quality of learned codes.
Eq.(4) treats each labeled pair as equally important, which

fails to take the semantic gap into account. Regarding each
labeled pair in L as a constraint, some of them are easy
to satisfy while some others not. For the sake of max-
imally leveraging the supervised information, we need to
treat different pairs with different importance. This can be
implemented by giving a different weight wij to each pair
(xi, xj) ∈ L, and we arrive at:

min
Φ

∑
(xi,xj)∈L

wij

(
Φ(xi)

TΦ(xj)

r
− λijyij

)2

(6)

While it can be intuitively understood, an important ques-
tion arises: how to determine the weight of each labeled
pair? In the next section, we present a batch-wise learning
approach to automatically determine the adaptive weights
for different labeled pairs in the learning process.

2.2 Learn one batch at a time
Most of methods solve the optimized code by a single-

shot optimization to the objective, i.e., learn all bits in a
single run of the algorithm. However, for any a piece of
binary code, it can be regarded as a concatenation of many
pieces of shorter codes. As an example, one piece of 32-
bits code can be considered as the result of concatenating
two pieces of 16-bits codes, or four pieces of 8-bits codes.
The Hamming affinity evaluated with the long code is the
mean of those evaluated with the short ones. From this
point of view, hashing can be understood as an ensemble
learning process if we repeatedly generate short codes and
then concatenate them. The weight of each labeled pair
can be adjusted automatically with boosting trick in this
process.
Specifically, in the first run, all labeled pairs are treated

with equal importance, and we only generate a piece of short
code Φ1 of t bits (e.g. 4 bits) for each sample. In the second
and following runs, the weight of each pair will be updated
by considering the deviation of the Hamming affinity eval-
uated with the previous code to the ground truth. Higher
weights will be imposed to the pairs with bigger deviation.
In detail, in the k-th run, the weight can be defined as:

w
(k)
ij =

 1− Φ(xi)
TΦ(xj)

(k−1)×t
, if (xi, xj) ∈ S

max(
Φ(xi)

TΦ(xj)

(k−1)×t
+ p, 0), if (xi, xj) ∈ D

(7)

where Φ(x) = [Φ1(x); Φ2(x); · · · ; Φk−1(x)] is the (k − 1)× t
bits code of x by concatenating the previous k − 1 pieces of
short codes Φi(x)|k−1

i=1 .

Obviously,
Φ(xi)

TΦ(xj)

(k−1)×t
is the Hamming affinity evaluated

with the previous code. For the similar pairs, 1− Φ(xi)
TΦ(xj)

(k−1)×t

is the deviation to the ground truth affinity. The pairs with
bigger deviation are associated with higher weights in the
next iteration. Note that for the dissimilar pairs, a hinge-
like function is used to measure the bias. This is to be
consistent with the soft constraints we have used. For any

dissimilar pair whose Hamming affinity is smaller than −p,
the deviation is set to be zero. After K iterations, we can
get a piece of K × t bits code for each training data.

2.3 Optimization
A remaining problem is optimizing Eq.(6) to learn one

piece of t bits code for each training data. Here we follow the
block coordinate descent (BCD) method which was also used
in [5, 4]. In particular, BCD picks one bit to be optimized
every time with other t− 1 bits fixed. The optimization for
the m-th bit can be written as:

min
z(m)∈{−1,1}n

∑
(xi,xj)∈L

wij lm(zi,m, zj,m) (8)

where z(m) is the binary codes of the m-th bit. lm is the loss
function defined on the m-th bit, i.e.

lm(zi,m, zj,m) = L(zi,m, zj,m, z̄i, z̄j ;λijyij) (9)

Here L is the loss function defined in Eq.(4). zi,m is the
binary code of the i-th sample and the m-th bit. z̄i is the
binary codes of the i-th sample excluding the m-th bit.

When optimizing the m-th bit, as indicated in TSH [4],
there are only two possible cases for the code of any pair,
namely, same or different. We denote the loss of appointing

the same code to xi and xj as l
(+)
m,i,j , and l

(−)
m,i,j for appointing

different code. By taking advantage of the Proposition 1 in
[4], the optimization of Eq.(8) can be rewritten as:

min
z(m)∈{−1,1}n

∑
(xi,xj)∈L

wij(l
(+)
m,i,j − l

(−)
m,i,j)zi,mzj,m (10)

Because wij , l
(+)
m,i,j and l

(−)
m,i,j are constants, the optimization

can be written in a matrix form:

min
z(m)∈{−1,1}n

zT(m)Az(m) (11)

where the element of matrix A is aij = wij(l
(+)
m,i,j − l

(−)
m,i,j).

The optimization of Eq. (11) have been well studied. To be
specific, by dropping the binary constraints, the optimiza-
tion becomes:

min
z(m)

zT(m)Az(m) s.t. ||z(m)||22 = n (12)

The optimum solution is the eigenvector corresponding to
the minimum eigenvalue of A. Subsequently, the obtained
solution will be quantized to {−1, 1}t with the sign function.

Until now, we have only optimized the binary codes for
training data, which is not enough because hashing has to
handle the out-of-sample extension problem, i.e., generating
codes for new samples that are unseen before. Inspired by
TSH [4], for every bit we regard the binary value zi,m as
the pseudo label of training data xi. Therefore the given
training set has already been“labelled”by the above learning
process, and we can learn a binary classifier f (m) based on it
for every bit. The resulting binary classifiers f (m)|tm=1 are
taken as the hash function. In the experiments, we choose
SVM with Gaussian kernel as classifier, which is widely used
and of good performance.

3. EXPERIMENTS
We compare our method with several state-of-the-art ap-

proaches, including four supervised methods: BRE [3], ML-
H [6], KSH [5], TSH [4], and two representative unsuper-
vised methods: LSH [1], ITQ [2]. Comparison experiments
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Table 1: Hamming ranking performance of different algorithms with different code lengthes on MNSIT and
CIFAR-10. Mean Average Precision (MAP) is reported. The best results are highlighted in bold.

Methods
MNIST CIFAR-10

16-bits 24-bits 32-bits 64-bits 16-bits 24-bits 32-bits 64-bits

LSH 0.2343 0.2319 0.2536 0.3335 0.1282 0.1382 0.1398 0.1532
ITQ 0.4188 0.4375 0.4444 0.4629 0.1670 0.1707 0.1756 0.1798
BRE 0.5350 0.5592 0.5914 0.6010 0.1588 0.1637 0.1668 0.1760
MLH 0.7062 0.7433 0.7672 0.8011 0.1911 0.2072 0.2174 0.2462
KSH 0.7776 0.8008 0.8180 0.8268 0.2202 0.2379 0.2492 0.2683
TSH 0.5870 0.7978 0.8533 0.8793 0.2377 0.2685 0.2874 0.3117

SCH uw 0.7314 0.8445 0.8650 0.8808 0.2666 0.2958 0.3102 0.3286
SCH 0.8532 0.8663 0.8733 0.8875 0.2885 0.3154 0.3193 0.3385
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Figure 3: Precision curves of different methods with
24 bits on MNIST and CIFAR-10

are conducted on two widely used benchmarks: MNIST1

and CIFAR-102. MNIST consists of 784 dimensional 70,000
samples associated with digits from ‘0’ to ‘9’. CIFAR-10 is a
labeled subset of the Tiny Images dataset. 512 dimensional
GIST descriptor is extracted to represent each image. For
both datasets, we randomly select 1,000 samples to be the
query set and the remainders as database. 1,000 samples in
the database are used to randomly generate training pairs.
Specifically, we suppose that for each sample in the train-
ing set, only the relationship to 500 other samples in this set
are known. Thus, about 500,000 training pairs are available.
We adopt the Hamming Ranking commonly used in the lit-
erature. All points in the database are ranked according to
their Hamming distance to the query. The ground truth is
defined as semantic neighbors based on label agreement.
To give a comprehensive validation of the proposed ap-

proach, we present two versions of our method. In the first
version, denoted as SCH uw, we only apply soft constraints
to the learning process and ignore the weights of different
pairs. The second version, denoted as SCH, considers both
the soft constraints and weighted loss. In this version, the
learning process optimizes 4 bits at each run and then ad-
justs the weight of each pair. We empirically set the param-
eter p in Eq.(5) as p = 0.6.
MAP scores: The MAP scores of SCH, SCH uw and

other baselines are shown in Table 1. By leveraging side-
information, the supervised methods like KSH and TSH can
achieve significant improvement on the unsupervised meth-
ods like ITQ. The proposed SCH achieves the highest search
accuracy on both two datasets. The optimization of our
method is similar to that in TSH and KSH, but it is easy
to find that SCH outperforms them with a large margin,
especially on the CIFAR-10 dataset. More notably, even

1http://yann.lecun.com/exdb/mnist/
2http://www.cs.toronto.edu/~kriz/cifar.html

ignoring the weights of pairs, SCH uw achieves the best re-
sults except SCH in most of settings. This confirms that the
proposed soft constraints can effectively avoid over-fitting in
the supervised hashing. By considering the weights of dif-
ferent pairs, SCH achieves further improvement on SCH uw,
which demonstrates that treating different pairs with differ-
ent importance is beneficial to take full advantage of the
supervised information.

Precision Curves: Fig.3 shows the precision curves of d-
ifferent methods with 24 bits on two datasets. Similar to the
trends in Table 1, SCH works better than SCH uw, which is
the second best in all competitors. In Fig.3(a), the precision
decreases in all hashing methods as the number of retrieved
points increases, but our methods decrease more slowly and
achieve a very high precision on MNIST even when 5,000
samples are returned. These results clearly show the supe-
riority of the proposed methods over other state-of-the-art
methods.

4. CONCLUSION
In this paper, we proposed a general framework for su-

pervised hashing with soft constraints and weighted loss.
Experiments on two benchmarks demonstrated the effective-
ness of the proposed method.
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