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a b s t r a c t 

Surgical instrument segmentation plays a promising role in robot-assisted surgery. However, illumination 

issues often appear in surgical scenes, altering the color and texture of surgical instruments. Changes 

in visual features make surgical instrument segmentation difficult. To address illumination issues, the 

SurgiNet is proposed to learn pyramid attention features. The double attention module is designed to 

capture the semantic dependencies between locations and channels. Based on semantic dependencies, 

the semantic features in the disturbed area can be inferred for addressing illumination issues. Pyramid 

attention is aggregated to capture multi-scale features and make predictions more accurate. To perform 

model compression, class-wise self-distillation is proposed to enhance the representation learning of the 

network, which performs feature distillation within the class to eliminate interference from other classes. 

Top-down and multi-stage knowledge distillation is designed to distill class probability maps. By inter- 

layer supervision, high-level probability maps are applied to calibrate the probability distribution of low- 

level probability maps. Since class-wise distillation enhances the self-learning of the network, the net- 

work can get excellent performance with a lightweight backbone. The proposed network achieves the 

state-of-the-art performance of 89.14% mIoU on CataIS with only 1.66 GFlops and 2.05 M parameters. It 

also takes first place on EndoVis 2017 with 66.30% mIoU. 

© 2021 Published by Elsevier B.V. 
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. Introduction 

In recent years, intelligent perception has been promising in 

inimally invasive robotic surgery and computer-assisted micro- 

urgery. Semantic segmentation of surgical instruments, whose 

oal is to segment instruments and identify corresponding cate- 

ories, plays an essential role in assisted surgery ( Sarikaya et al., 

017 ). The information, extracted from surgical instrument seg- 

entation, can be used to navigate and control surgical robots. It 

lso can be applied to provide real-time warnings for unnecessary 

nd unsafe manipulation during surgery to improve surgical safety. 

urthermore, semantic segmentation of surgical instruments offers 

umerous automated solutions for post-surgery work, such as ob- 

ective assessment of surgical skills, surgical report generation, and 
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urgical workflow optimization ( Sarikaya et al., 2017 ). These appli- 

ations can significantly reduce the workload of doctors. 

Semantic segmentation of surgical instruments faces various 

hallenges due to the complicated surgical scene. Intense light con- 

ition is essential for getting good visibility during surgery. How- 

ver, it results in severe specular reflection which makes the ap- 

earance of the surgical instrument tend to be white. Besides, 

ue to light angle change and biological tissue occlusion, there 

re shadows in several areas. The surgical instruments tend to be 

lack in the shaded area, making it difficult to distinguish the sur- 

ical instruments from the background. The above problems can 

e summarized as illumination issues. These issues make surgi- 

al instrument segmentation challenging. Furthermore, to imple- 

ent deployment on surgical robots, the network needs to be 

ightweight and occupy very few computing resources. However, a 

ightweight network is often difficult to obtain high-precision seg- 

entation results. Neural networks often need to be deeper and 

omplex to improve segmentation accuracy, which inevitably in- 

https://doi.org/10.1016/j.media.2021.102310
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Fig. 1. Illumination issues in surgical instrument segmenation. The color and tex- 

ture of instruments will change under different lighting. As we can see, the surgical 

instruments turns white under strong light but tends to be black under dark light. 
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reases computational costs. How to design a lightweight model 

o achieve high segmentation accuracy is still a very challenging 

opic. 

Recently, several methods have been proposed for the semantic 

egmentation of surgical instruments. MF-TAPNet ( Jin et al., 2019a ) 

tilized optical flow as temporal clues to infer a prior indicating 

he location and shape of the instrument and improve the seg- 

entation performance. ToolNet-C ( Qin et al., 2019 ) combined the 

inematic pose information to get the accurate silhouette mask. 

T-MTL ( Islam et al., 2021 ) enhanced the long-short term mem- 

ry (LSTM) module to capture better long-term spatio-temporal 

ependencies for the surgical instrument segmentation and task- 

riented saliency detection. A general embeddable approach ( Qin 

t al., 2020 ) introduced the multi-angle feature aggregation (MAFA) 

ethod to adapt to instrument orientation variation and utilized 

he auxiliary contour supervision to make the contour more ac- 

urate. These methods introduce different prior knowledge and 

echanisms to improve performance. However, they do not focus 

n illumination issues and do not consider the impact of high com- 

utational costs on deployment. 

To deal with the illumination issue, the double attention mod- 

le is designed to capture long-range semantic dependencies. The 

llumination issue changes the visual features of surgical instru- 

ents, including color and texture. Therefore, it is difficult for 

he network to identify surgical instruments based on these vi- 

ual features directly. Considering that the visual features are spa- 

ially continuous, the features in the disturbed area can be in- 

erred based on semantic dependencies. Specifically, the double at- 

ention module consists of two critical blocks: position attention 

lock and channel attention block. The position attention block is 

ased on low-rank bilinear pooling to model semantic dependen- 

ies between locations. The channel attention block encodes the 

emantic dependencies between channels by squeezing global in- 

ormation into an attention vector. The outputs of these two blocks 

re fused to generate attention features. Then, the attention fea- 

ures are calibrated to improve feature representation. The atten- 

ion features model semantic dependencies between locations and 

hannels. Thus, they can be used to infer semantic features in dis- 

urbed areas from adjacent pixels, dealing with illumination issues. 

urthermore, the pyramid attention features are aggregated for fi- 

al prediction. Local details in large-scale feature maps and overall 

hape features in small-scale feature maps can be captured, mak- 

ng predictions more accurate. 

To compress the model while maintaining good performance, 

 class-wise self-distillation is proposed to enhance representa- 

ion learning of the network. It is based on the class probability 
2 
ap generated by double attention features for knowledge trans- 

er. The attention features can highlight the target area, so as to 

chieve a better distillation effect. Besides, the channel number 

f the distillation features is consistent with the total number of 

egmentation categories. Each channel reflects the feature distri- 

ution of a particular category. Thus, the feature distribution of 

ach category can be learned separately by supervising specific 

hannel features. In this way, students can better learn the feature 

istribution within the class without being disturbed by the fea- 

ure distribution of other classes, helping to improve feature rep- 

esentation. Since high-level features contain richer semantic in- 

ormation, high-level probability maps are used as distillation tar- 

ets and low-level probability maps are regarded as input. The in- 

ut is encouraged to mimic the target by supervision. To adapt to 

he semantic segmentation task, the distillation operation is de- 

igned in the decoder, which helps to obtain more accurate high- 

esolution predictions. The class-wise self-distillation can signifi- 

antly improve the learning ability of the network. Therefore, we 

an adopt a lightweight backbone while obtaining high accuracy. 

According to the above analysis, the SurgiNet is proposed, 

hich is based on the double attention module and class-wise self- 

istillation. The contributions of this work can be concluded as fol- 

ows: 

• The double attention module is designed to capture semantic 

dependencies between locations and channels. It can infer se- 

mantic features in the area disturbed by light, addressing illu- 

mination issues. 
• Class-wise self-distillation is proposed to distill knowledge 

based on class probability maps, which can enhance the rep- 

resentation learning of the network. The network can adopt a 

lightweight backbone while obtaining high accuracy. 
• The proposed SurgiNet achieves the state-of-the-art perfor- 

mance of 89.14% mIoU on CataIS with only 1.66 GFlops and 2.05 

M parameters. It also takes first place on EndoVis 2017 with 

66.30% mIoU. 

. Related Work 

.1. Surgical Instrument Segmentation 

Recently, a series of methods have been proposed for the se- 

antic segmentation of surgical instruments. Some work improved 

egmentation accuracy by capturing shape priors. For example, 

oolNet-C combined with the kinematic pose information to get 

he accurate silhouette mask ( Qin et al., 2019 ). MF-TAPNet ( Jin 

t al., 2019b ) adopted optical flow as temporal prior to provide a 

eliable indication of the instrument’s location and shape for ac- 

urate segmentation. A general embeddable approach ( Qin et al., 

020 ) utilized the auxiliary contour supervision to make the con- 

our more accurate. Other work introduced various modules to im- 

rove feature representation. For instance, RAUNet ( Ni et al., 2019 ) 

esigned an attention module to fuse multi-level feature maps and 

mphasize the target region. A hybrid CNN-RNN method ( Attia 

t al., 2017 ) adopted Recurrent Neural Network to expand the re- 

eptive fields, which also helps to capture global contexts. How- 

ver, most of the methods have not focused on illumination issues, 

hich limits their performance. 

.2. Attention Used in Semantic Segmentation 

In recent years, the attention mechanism has been widely ap- 

lied in semantic segmentation tasks. It helps to capture the 

lobal context and improve the feature representation. The atten- 

ion mechanism can be divided into two categories according to 

he principle, namely position attention and channel attention. The 
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osition attention is to model the semantic relationships between 

ixels, such as non-local block ( Wang et al., 2018 ), A 

2 -Net ( Chen

t al., 2018b ), and GCNet ( Cao et al., 2019 ). Non-local calculated

mbedded Gaussian of features to capture long-range dependen- 

ies. Pairwise Self-Attention Module ( Wang et al., 2020a ) applied 

ubtraction to model the similarity of local features and used 

he Hadamard product to weight the similarity to the input fea- 

ures. The channel attention is to model the semantic dependen- 

ies between channels, which helps to emphasize target seman- 

ic features and improve feature representation. The squeeze-and- 

xcitation network ( Hu et al., 2018 ) is a typical representative. It 

queezed global contexts into vector representation for modeling 

emantic dependencies between channels. Luminance-aware Pyra- 

id Network ( Li et al., 2020 ) proposed a multi-scale contrast fea- 

ure block that used channel shuffle and channel scaling to cap- 

ure the dependence between multi-scale feature channels. PAN 

 Li et al., 2018 ) captured the channel relationship in high-level fea- 

ures to guide low-level features and merged two-level features, 

hich was based on the squeeze-and-excitation network ( Hu et al., 

018 ). The above methods only capture one of spatial or chan- 

el attention. However, our double attention module captures both 

patial and channel attention, which can better improve feature 

epresentation. 

Besides, some work combines these two attention mechanisms 

or better performance, including dual attention network ( Fu et al., 

019 ) and progressive attention guidance module ( Zhang et al., 

018 ). DANet ( Fu et al., 2019 ) adopted matrix multiplication to cal-

ulate the similarity of spatial and channel features respectively. 

nd the attention features were projected back to the original fea- 

ure space by matrix multiplication. Due to the matrix multiplica- 

ion, their computational complexity is very high. Since the sample 

ize of surgical instrument data sets is often small, DANet is prone 

o overfitting, resulting in poor generalization performance. Our 

ouble attention module uses low-rank bilinear pooling to approx- 

mate bilinear pooling, which uses the Hadamard product instead 

f matrix multiplication. Besides, global average pooling is used to 

apture dependencies between channels, which is also lightweight. 

hus, the computational complexity of DAM is low, and it is not 

asy to produce over-fitting and more suitable for surgical instru- 

ent segmentation. 

.3. Distillation 

Knowledge distillation is a key technology for model compres- 

ion. It was proposed to transfer knowledge from a large model 

o a small model ( Hou et al., 2019 ). Self-distillation aims to distill

nowledge from the network itself, which is widely used in com- 

uter vision tasks. A self attention distillation ( Hou et al., 2019 ) 

as proposed for lane detection, which distilled knowledge based 

n the attention map generated by different levels of features. 

elf-distillation was also applied to enhance tiny tissue segmen- 

ation ( Zhou et al., 2020 ). Faster ReID ( Wang et al., 2020b ) adopted

robability distillation to transfer knowledge from long codes to 

hort codes within a network and utilized similarity distillation to 

ransfer knowledge from a large model to a small model. ( Yun 

t al., 2020 ) learned class-wise knowledge by distilling two batches 

f samples with the same label. It only distilled the classification 

esults and does not distill the features between layers. Therefore, 

t has no way to realize the knowledge transfer between layers. 

 Wang et al., 2020c ) proposed a knowledge distillation to transfer 

he knowledge from the large model to the small model. However, 

ue to the small surgical scene data set, too large a model will 

ause over-fitting. Therefore, we design a class-wise self-distillation 

ethod to realize the transfer of knowledge from deep to shallow, 

hich does not require training a large teacher model. ( Zhang and 

abuncu, 2020 ) provided evidence that diversity in teacher pre- 
3 
ictions was correlated with the performance of self-distillation, 

nd proposed an instance-specific regularization method to pro- 

ote predictive diversity. The main contribution of this work is to 

ropose a new regularization method to improve classification ac- 

uracy. However, it does not propose innovative distillation forms 

nd does not improve the selection of distillation features. ( Zhang 

t al., 2019 ) distilled the hidden layer features and fully connected 

ayer from deep to shallow for classification tasks. Different from 

he above methods, our method distills the class probability map 

enerated by double attention features. The double attention fea- 

ures can highlight the target area, helping to achieve a better 

istillation effect. Besides, our class-wise self-distillation performs 

eature distillation within the class to eliminate interference from 

ther classes. And to adapt to the segmentation task, distillation is 

et in the decoder to obtain a more accurate high-resolution mask. 

. Methodology 

.1. Overview of Network Architecture 

The SurgiNet is proposed for surgical instrument segmentation, 

hich consists of pyramid attention aggregation and class-wise 

elf-distillation. To address illumination issues, the double atten- 

ion module (DAM) is proposed to capture both semantic depen- 

encies between locations and channels. Based on the semantic 

ependence, it can infer the semantic features in the disturbed ar- 

as. Besides, to compress the model while maintaining good per- 

ormance, class-wise self-distillation (CSD) is proposed to enhance 

he representation learning of the network. It performs feature 

istillation within the class to eliminate interference from other 

lasses. 

The architecture of the proposed SurgiNet is shown in Fig. 2 . 

he MobileNetV2 ( Sandler et al., 2018 ) is adopted as the backbone. 

yramid attention features are aggregated for the final prediction, 

elping to capture multi-scale features. The aggregated attention 

eatures are 1/4 of the input size, which helps to reduce the com- 

utational cost. They are upsampled four times to obtain a high- 

esolution mask. 

.2. Double Attention Module 

The double attention module contains two attention blocks: po- 

ition attention block and channel attention block. They capture 

emantic dependencies between locations and channels, respec- 

ively. The output of these two blocks is fused and calibrated. The 

rchitecture of the double attention module is shown in Fig. 3 . 

.2.1. Position Attention Block 

Due to illumination issues such as specular reflections or shad- 

ws, the color and texture of surgical instruments are changed. 

herefore, it is difficult for the network to locate surgical instru- 

ents based on these features. To deal with this issue, we design 

he position attention block which is based on low-rank bilinear 

ooling to capture semantic dependencies between pixels. 

A series of work uses bilinear pooling to capture attention fea- 

ures ( Chen et al., 2018b; Kim et al., 2018 ). The low-rank bilinear

ooling uses matrix decomposition and Hadamard product to ap- 

roximate the bilinear pooling ( Kim et al., 2016; Yu et al., 2017 ).

ilinear pooling can capture second-order statistics and encode 

ore complex semantic dependencies. The low-rank bilinear pool- 

ng retains the ability to model complex semantic dependencies. 

esides, it avoids matrix multiplication to reduce computational 

osts. Specifically, it is described in Eq. (1) . 

 = P T ( U 

T x � V 

T y ) + b (1) 

here x ∈ R N and y ∈ R M refer to the input vector. z ∈ R C refers

o the output vector. � denotes Hadamard product. U ∈ R N×k and 
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Fig. 2. The architecture of the SurgiNet. Double attention module (DAM) captures semantic dependencies between locations and channels to infer semantic features in 

disturbed areas. Besides, class-wise self-distillation (CSD) distills knowledge from multi-level class probability maps to enhance the representation learning of the network. 

Due to the enhancement of self-learning, the network can get high performance with little computational cost, which facilitates the deployment. 

Fig. 3. The architecture of the double attention module. It contains the position attention block and the channel attention block. Their outputs are fused and calibrated, 

generating attention features. � represents the Hadamard product, and � denotes the addition. 
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 ∈ R M×k are linear projections. P ∈ R k ×C is used to control the di- 

ensions of the output. b ∈ R C is the bias. 

The position attention block is designed based on a variant of 

ow-rank bilinear pooling, which is described in Eq. (2) . 1 ×1 con- 

olutions are adopted to replace matrices U and V for linear pro- 

ection. Non-linear activations help to improve feature represen- 

ation ( Kim et al., 2016 ). Thus, we adopt ReLU to add non-linear

ctivations. Besides, softmax is adopted to normalize the feature 

ap. Sum pooling corresponds to the matrix P in Eq. (1) , which is

tilized to adjust the dimension of the output. Finally, 1 ×1 convo- 

ution is applied to transform the position-attention map and im- 

rove feature representation. 

The architecture of the position attention block is shown in 

ig. 3 . In addition to linear projection, 1 ×1 convolutions are also 

sed to reduce the dimension of input feature maps for reducing 

omputational costs. The dimension is reduced to C/r, where C is 

he original dimension. In this paper, r is set to 2. The input fea- 

ure maps are x ∈ R C×H×W and y ∈ R C×H×W , where H and W refer 

o the height and the width of the input respectively. The position- 

ttention map is represented as A p ∈ R H×W . 

 p = g[ δ(Ux ) � σ [ δ(V y )]] + b (2) 

here � denotes Hadamard product. U and V denote 1 ×1 convo- 

utions. δ denotes ReLU function. σ refers to softmax function and 

represents the sum pooling. 

Sum pooling and Hadamard products both contribute to reduc- 

ng the computational cost. Thus, the position attention block is 

ightweight, which helps its deployment on surgical robots. 
4 
.2.2. Channel Attention Block 

The feature representation of the convolution operation is lo- 

al. The network cannot capture long-range semantic dependen- 

ies, which results in a poor semantic understanding. Besides, dif- 

erent semantic features have different responses in various chan- 

els. Thus, target semantic features can be highlighted based on 

he semantic dependencies between channels. According to the 

bove analysis, we design the channel attention block to capture 

lobal contexts and model semantic dependencies between chan- 

els. 

Channel attention block adopts the global average pooling to 

apture attention features. The global average pooling squeezes in- 

ut feature maps into an attention vector. This vector encodes the 

emantic dependencies between channels. Furthermore, each el- 

ment of the attention vector aggregates global contexts, which 

elps to capture long-range semantic dependencies. The global av- 

rage pooling is shown in Eq. (3) . 

 k = ϕ( x k ) = 

1 

H × W 

H ∑ 

i =1 

W ∑ 

j=1 

x k (i, j) (3) 

here ϕ represents the global average pooling. x k ∈ R H×W refers to 

nput feature maps. k = 1 , 2 , ..., C. The channel-attention vector is

epresented as A c = [ a 1 , a 2 , ..., a C ] . 

Finally, two 1 ×1 convolutions with batch normalization are 

sed to transform the channel-attention vector, helping to refine 

he semantic relationships. 
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.2.3. Fusion of Attention Features 

The position-attention map and channel-attention vector are 

used before calibration. Specifically, we perform the broadcast 

adamard product on the position-attention map and channel- 

ttention vector. The fused result has the same size as the input 

eature map. 

 s (k, h, w ) = A p (h, w ) � A c (k ) (4) 

here A s represents the spatial attention map. k = 1 , 2 , ..., C, h =
 , 2 , ..., H and w = 1 , 2 , ..., W . � denotes broadcast Hadamard prod-

ct. 

.2.4. Recalibration 

We calibrate the spatial attention map A s to further improve the 

eature representation. The calibration consists of semantic feature 

alibration and nonlinear transformation. First, we utilize the se- 

antic information in transformed input features to calibrate A s , 

s shown in Eq. (5) . 1 ×1 convolution with Batch Normalization 

nd ReLU is applied to adjust input features. The parameters of the 

onvolution will be continuously updated to adapt to the distribu- 

ion of the data by training. Thus the semantic information in input 

eatures is continuously optimized and calibrated. Besides, Batch 

ormalization is applied after convolution to normalize input fea- 

ures. ReLU is used to make features greater than 0 and increase 

on-linearity. These operations can improve feature representation 

nd help calibrate attention features. 

̂ 

 s = A s � δ( f ( x, θ ) ) (5) 

here � denotes Hadamard product. x represents the input feature 

ap. f refers to the 1 ×1 convolution. θ represents parameters of 

onvolution. δ denotes ReLU function. 

Then, we perform 1 ×1 convolution with Batch Normalization 

nd ReLU to transform the spatial attention map. These operations 

elp to calibrate attention features. It is worth noting that calibra- 

ion is crucial. It can significantly improve performance in the ex- 

eriment. 

.3. Class-wise Self-Distillation 

To compress the model while maintaining good performance, 

he class-wise self-distillation (CSD) is proposed to reinforce repre- 

entation learning of the network. Its goal is to perform top-down 

nd multi-stage class probability distribution distillation. Class- 

ise self-distillation is based on the class probability map gener- 

ted by double attention features for knowledge transfer. The at- 

ention features can highlight the target area, helping to achieve a 

etter distillation effect. Besides, the channel number of the dis- 

illation features is consistent with the number of segmentation 

ategories. Each channel reflects the feature distribution of a par- 

icular category. Thus, the feature distribution of each category can 

e learned separately by supervising specific channel features. In 

his way, students can better learn the feature distribution within 

he class without being disturbed by the feature distribution of 

ther categories, improving the segmentation accuracy. To adapt to 

he semantic segmentation task, the distillation operation is de- 

igned in the decoder, which helps to obtain more accurate high- 

esolution predictions. 

Specifically, class probability maps used for distillation are gen- 

rated from double attention features. 1 ×1 convolution is applied 

o adjust the number of channels for attention features to the 

umber of segmentation classes. After that, softmax is utilized 

o generate class-wise probability maps. Each channel reflects the 

robability distribution of a specific category. By supervising spe- 

ific channel features, the feature distribution of the corresponding 
5 
ategory is spread within the category. 

( A n ) = σ

(
f ( A n , θ ) 

T 

)
(6) 

here A n represents the features of the n − th layer for distiila- 

ion. f refers to 1 × 1 convolution for probability map generation. 

represents the parameters of convolution. T is a temperature 

yperparameter, which is set to 1 empirically. σ is the softmax 

unction. 

Since high-level features contain richer semantic information, 

igh-level probability maps are used as distillation targets and 

ow-level probability maps are regarded as inputs. The input is en- 

ouraged to mimic the targets by supervision. To ensure that the 

ize of the target is consistent with the input, pooling is performed 

n the high-level probability map. Thus, the target generation can 

e expressed as the following equation. 

( A n ) = σ

(
β( f ( A n , θ ) ) 

T 

)
(7) 

here β(. ) refers to pooling operation. T is also set to 1. 

L 2 loss is utilized to evaluate the similarity of the probability 

ap. 

 distill = 

N−1 ∑ 

n =1 

L 2 (�( A n ) , �( A n +1 )) (8) 

here the �( A n +1 ) is the target of the distillation loss. N is the 

umber of layers. As shown in Fig. 2 , N = 4 . 

The total loss consists of segmentation loss and distillation loss, 

hich is shown in Eq. (9) . Focal loss ( Lin et al., 2017b ) is adopted

s segmentation loss, which helps to deal with the class imbalance 

ssue. 

 = L seg (p, g) + αL distill (9) 

here L seg indicates the focal loss. p refers to prediction and g

efers to ground truth. α is used to balance the weight of segmen- 

ation loss and distillation loss. 

CSD is only adopted during the training phase. In the test- 

ng phase, the distillation branch will be removed from SurgiNet, 

hich includes convolution and softmax used to generate the class 

robability map. Thus, CSD brings no computational cost in the de- 

loyment. And it does not require any additional labels. 

. Experiments And Results 

The proposed SurgiNet is evaluated on the CataIS and the En- 

oVis 2017. It achieves the state-of-the-art performance of 89.14% 

IoU on CataIS with only 1.66 GFlops and 2.05 M parameters and 

akes first place on EndoVis 2017 with 66.30% mIoU. 

.1. Dataset 

.1.1. CataIS 

CataIS is a cataract surgical instrument dataset for semantic 

egmentation. It is extended from the Cata7 dataset ( Ni et al., 

019 ) constructed by us. Two video sequences with darker light- 

ng are added, and a new category is labeled. The CataIS contains 

 videos with a total of 2671 images. 850 images (video 7,8,9) are 

sed for the test and 1821 images (video 1,2,3,4,5,6) are utilized 

or training. The resolution of images is 1920 ×1080. To speed up 

raining and testing, each image in CataIS is resized to 640 ×384 

ixels. There are 11 types of surgical instruments in this dataset. 

he quantity of each surgical instrument is shown in Table 1 . 
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Table 1 

The description for the CataIS dataset. CataIS contains a total of 11 surgical instru- 

ments. There are a total of 2671 frames, of which 1821 are used for training and 

850 are used for test. 

Instrument Train Test Total 

Primary Incision Knife (I1) 35 21 56 

Secondary Incision Knife (I2) 42 25 67 

Viscoelastic Cannula (I3) 277 148 425 

Capsulorhexis Forceps (I4) 213 116 329 

Micromanipulator (I5) 525 169 694 

Lens Hook (I6) 388 71 459 

Aspiration Handpiece (I7) 414 224 638 

Implant Injector (I8) 57 45 102 

Phacoemulsifier Handpiece (I9) 534 197 731 

Bonn Forceps (I10) 238 171 409 

Eyelid Retractors (I11) 1807 850 2657 

Total 4530 2037 6567 

Number of Frames 1821 850 2671 
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Fig. 4. Performance comparison for different channel settings of the pyramid atten- 

tion features. 

Table 2 

Ablation study for DAM on CataIS. The baseline represents SurgiNet without DAM 

and CSD. It can be observed that applying DAM can significantly increase accuracy. 

And, the performance of DAM is better than other attention modules. 

Method Attention mDice(%) mIoU(%) mPA(%) 

Baseline None 88.19 82.39 92.95 

Baseline PSAM 88.26 82.82 92.00 

Baseline Non-Local 90.97 86.00 96.00 

Baseline GCBlock 90.93 85.65 95.70 

Baseline PAB 89.73 85.46 95.89 

Baseline CAB 90.64 85.97 94.95 

Baseline DAM 91.89 87.44 96.54 

Table 3 

Ablation study for DAM and CSD on CataIS. The baseline represents SurgiNet with- 

out DAM and CSD. 

Method DAM CSD mDice(%) mIoU(%) mPA(%) 

Baseline × × 88.19 82.39 92.95 

Baseline × � 92.10 87.49 95.07 

Baseline � × 91.89 87.44 96.54 

Baseline � � 93.23 89.14 97.13 
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.1.2. EndoVis 2017 

EndoVis 2017 is from the MICCAI Endovis Challenge 2017 ( Allan 

t al., 2019 ), which is based on endoscopic surgery. This dataset is 

cquired from a DaVinci Xi robot. It contains 30 0 0 images with a 

esolution of 1920 ×1080, including 1800 images for training and 

200 images for the test. The test set contains 10 video sequences, 

nd each sequence is used as a sub-dataset. We follow the train- 

ng rules of EndoVis2017. When evaluating one of the first 8 test 

equences, we use training data except the corresponding training 

equences for training. When evaluating the last 2 test sequences, 

e use all the training data for training. There are 7 types of sur- 

ical instruments in EndoVis 2017. 

.2. Experimental Details 

Our network is implemented in PyTorch. Adam is used as an 

ptimizer. Transfer learning is adopted in our work. MobileNetV2 

sed in the encoder is pre-trained on the ImageNet, which speeds 

p network convergence and improves segmentation accuracy. To 

revent overfitting, a strategy of changing learning rates is used in 

raining. The learning rate is multiplied by 0.8 every 30 iterations. 

he initial learning rate is 3 × 10 −5 on CataIS and 1 × 10 −5 on En- 

oVis 2017. The batch sizes used on CataIS and EndoVis2017 are 8 

nd 16, respectively. We apply data augmentation methods such as 

andom flip and rotation when training on EndoVis2017. 

The prediction procedure of the target object is end-to-end. The 

nput is the surgical image, and the output is the segmentation 

ask. At testing time, SurgiNet removes the branch of distillation 

nd retains the backbone, attention decoder, and pyramid feature 

ggregation. 

After experimental comparison, γ in focal loss is set to 4 for 

he best performance. The α in Eq. (9) is set to 1. All comparison 

ethods are trained with the focal loss for fair comparison. 

The Intersection-over-Union (IoU), standard Dice similarity co- 

fficient (Dice), and pixel accuracy (PA) are selected as evaluation 

etrics. The mean values of these three metrics are represented as 

IoU, mDice, and mPA. 

ice = 

2 | p ∩ g | 
| p | + | g | , IoU = 

| p ∩ g | 
| p ∪ g | , PA = 

| p ∩ g | 
| p | (10) 

.3. Results on CataIS 

.3.1. Select the number of channels for the Pyramid Attention 

eatures 

The pyramid attention features are aggregated together for the 

nal prediction, which helps adapt to scale variation. Their channel 

umbers will directly affect the final output result. Thus, a set of 

xperiments is set to select the appropriate number of channels. 
6 
e test the settings of 24, 32, 48, and 64 channels, respectively. 

he experimental results are displayed in Fig. 4 . It can be found 

hat the best results are obtained when the number of channels is 

8. Therefore, in the following experiments, the channel numbers 

f pyramid attention features are set to 48. 

.3.2. Ablation Study for Double Attention Module 

Double attention module (DAM) models semantic dependencies 

etween locations and channels to infer semantic features in dis- 

urbed areas, addressing illumination issues. To evaluate its perfor- 

ance, a series of experiments are set up. The experimental results 

re shown in Table 2 and Table 3 . 

In Table 2 , the baseline is SurgiNet without DAM and CSD, 

hich achieves 88.19% mDice and 82.39% mIoU. The baseline with 

AM gets 91.89% mDice and 87.44% mIoU. By applying the DAM, 

he mDice increases by 3.70% and the mIoU increases by 5.05 % . In 

able 3 , the baseline with CSD obtains 92.10% mDice and 87.49% 

IoU. Compared with it, the mDice and mIoU of the baseline 

ith both DAM and CSD have increased by 1.13% and 1.65%, re- 

pectively. Moreover, pairwise self-attention module (PSAM) ( Wang 

t al., 2020a ), non-local ( Wang et al., 2018 ) and the GC block ( Cao

t al., 2019 ) are tested. The performance of DAM exceeds that of 

on-local by 0.92% mDice and 1.44% mIoU and exceeds that of GC 

lock by 0.96% mDice and 1.79% mIoU. The accuracy of our DAM is 

ignificantly higher than PSAM, surpassing it by 3.63% mDice and 

.62% mIoU. Based on the above results, it can be found that the 

AM can significantly improve segmentation accuracy. 
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Fig. 5. Visualization of class probability map. The original images, class probability 

map without CSD and with CSD, as well as ground truth are shown. When applying 

CSD, the probability map more focuses on the surgical instrument and is close to 

the ground truth. 
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To verify the rationality of double attention, the position at- 

ention block (PAB) and the channel attention block (CAB) are 

ested separately. As shown in Table 2 , the network only using PAB 

chieves 89.73% mDice and 85.46% mIoU. Compared with the base- 

ine, the mDice and mIoU increase by 1.54% and 3.07%, respectively. 

esides, the network only using CAB gets 90.64% mDice and 85.97% 

IoU, which outperforms the baseline by 2.45% mDice and 3.58% 

IoU. The above results indicate that both PAB and CAB contribute 

o improving the segmentation performance. Besides, the perfor- 

ance of the DAM is better than that of PAB and CAB. These re-

ults prove that double attention is better than a single attention 

lock. 

.3.3. Ablation Study for Class-wise Self-Distillation 

The class-wise self-distillation module (CSD) is introduced to 

nhance representation learning by distilling knowledge from 

ulti-level class probability maps. Experiments are performed to 

onfirm its effectiveness, which is shown in Table 3 . 

The baseline is the SurgiNet without CSD and DAM. When not 

sing DAM, the network with CSD achieves 92.10% mDice and 

7.49% mIoU. Compared with the baseline, the mDice and mIoU 

ncrease by 3.91% and 5.10%, respectively. The baseline with DAM 

ets 91.89% mDice and 87.44% mIoU. Applying CSD achieves 1.34% 

Dice and 1.70% mIoU gain. These results show that CSD can sig- 

ificantly improve feature representation. 

To further analyze the effect of class-wise self-distillation, the 

robability maps of the network with CSD and without CSD are 

isualized, which is shown in Fig. 5 . When CSD is not applied, the

robability map is inaccurate, and it focuses on many irrelevant 

reas. When applying CSD, the probability map focuses on the sur- 

ical instrument and is close to the ground truth. The comparison 

hows that class-wise self-distillation can effectively enhance the 

epresentation learning of the network and calibrate the probabil- 

ty distribution. 

.3.4. Comparison with State-of-the-arts 

SurgiNet and some state-of-the-arts methods are evaluated on 

ataIS. The results are shown in Table 4 . It can be found that

urgiNet achieves the best performance and get 93.23% mDice and 
7 
9.14% mIoU. BARNet ( Ni et al., 2020b ) takes the second place and

ets 91.46% mDice and 87.36% mIoU. SurgiNet outperforms BAR- 

et by 1.77% mDice and 1.78% mIoU. DeepLabV3+ ( Chen et al., 

018a ) gets 89.69% mDice and 85.48% mIoU, which is inferior to 

urginNet by 3.54% mDice and 3.66% mIoU. Besides, to prove the 

ffectiveness of our improvement, PAANet ( Ni et al., 2020a ) is 

ested, which gets 88.42% mDice and 83.21% mIoU. Compared with 

AANet, the performance of SurgiNet has been significantly im- 

roved. The mDice and mIoU are increased by 4.81% and 5.93%, 

espectively. SurgiNet also surpasses DANet ( Fu et al., 2019 ) by 

.24% mDice and 3.68% mIoU, and exceeds PAN ( Li et al., 2018 ) by

.99% mDice and 4.28% mIoU. The gap between other methods and 

urgiNet is more significant. The above experimental results sug- 

est that SurgiNet achieves state-of-the-art performance on CataIS. 

Flops is calculated to evaluate the computational cost of mod- 

ls. The parameter quantity reflects the size of the model. The pro- 

osed SurgiNet only has 2.05 M parameters and its Flops is 1.66 

. The model size of PAANet ( Ni et al., 2020a ) is 22.26 M, which

s 10.86 times that of SurgiNet. The Flops of PAANet is 26.61 G, 

hich is 16.03 times that of SurgiNet. Besides, DeepLabV3+ has 

2.44 M parameters and its Flops is 29.70 G, which are 10.95 times 

nd 17.89 times that of SurgiNet, respectively. The above results 

how that the SurgiNet can achieve advanced performance with 

ery little computational cost. These also prove that class-wise 

elf-distillation can enhance the representation learning of the net- 

ork and significantly improve segmentation performance. 

To further evaluate the segmentation performance of the pro- 

osed method for each type of surgical instrument, the mIoU 

nd mDice for each category are calculated, which are shown in 

able 5 . It can be found that SurgiNet achieves excellent perfor- 

ance in every type of instrument. It takes first place in five cat- 

gories (I1, I2, I8, I9, I10) and takes second place in two cate- 

ories (I3, I7). Among all categories, primary incision knife (I1) is 

he most difficult category to be segmented. The primary incision 

nife is used for a short time in surgery. Thus, it has few samples, 

hich leads to the under-fitting of the network. Since class-wise 

elf-distillation can effectively enhance the representation learning 

f the network, the results of the SurgiNet in I1 are significantly 

etter than other networks. Besides, some parts of the implant in- 

ector (I8) are transparent. So it is greatly affected by illumination 

ssues. Most networks achieve poor segmentation performance in 

his category. Our method can capture long-range semantic depen- 

encies to infer semantic features in disturbed areas. Thus, our 

ethod outperforms other methods by a significant margin in the 

mplant injector (I8). These results show that SurgiNet can effec- 

ively address illumination issues and class-wise self-distillation 

an significantly enhance the network performance. 

To give an intuitive display, the visualization results of SurgiNet 

nd other methods are shown in Fig. 6 . In images 2 and 4, var-

ous degrees of reflection are shown, which changes the surgical 

nstruments to silvery white. In images 3, 4, 5, and 6, the illumi- 

ation condition in the image is significantly darker, which makes 

t difficult to distinguish surgical instruments from the background. 

evertheless, SurgiNet still segments the surgical instruments very 

ell. The masks of SurgiNet are more complete and closer to the 

round truth. 

.3.5. Performance Comparison under Different Illumination 

onditions 

To verify the adaptability of SurgiNet to different illumination 

onditions, we evaluated it under different illumination conditions 

ased on CataIS. Video 7 in the CataIS test set is the bright scene, 

nd videos 8 and 9 are the dark scene. The experimental results 

re shown in Table 6 . 

It can be found that DeepLabV3+ ( Chen et al., 2018a ), Re- 

neNet ( Lin et al., 2017a ) and UNet ( Ronneberger et al., 2015 )
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Table 4 

Performance comparison of various methods on CataIS. The proposed SurgiNet achieves the best performance 89.69% mDice and 89.14% 

mIoU with only 1.66 GFlops and 2.05 M parameters. 

Method mDice(%) mIoU(%) mPA(%) Flops(G) Parameter(M) 

U-Net Ronneberger et al. (2015) 67.93 56.00 70.93 49.97 7.85 

RefineNet Lin et al. (2017a) 80.03 71.68 79.69 215.39 71.38 

LinkNet Chaurasia and Culurciello (2017) 81.02 73.06 82.2 19.08 21.77 

PAN Li et al. (2018) 89.24 84.86 90.42 28.02 21.48 

DANet Fu et al. (2019) 89.99 85.46 94.26 28.88 22.79 

BARNet Ni et al. (2020b) 91.46 87.36 95.25 25.26 21.87 

DeepLabV3 + Chen et al. (2018a) 89.69 85.48 90.96 29.70 22.44 

PAANet Ni et al. (2020a) 88.42 83.21 88.80 26.61 22.26 

SurgiNet(Ours) 93.23 89.14 97.13 1.66 2.05 

Table 5 

Performance comparison of different methods in all categories on CataIS. The proposed SurgiNet takes the first place in five categories and achieves the second place in two 

categories. 

Method Metric I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 

U-Net IoU(%) 4.64 67.57 57.27 45.47 76.99 24.32 79.16 80.12 40.91 49.23 90.28 

Dice(%) 8.87 80.64 72.83 62.52 87.00 39.12 88.37 88.96 58.07 65.98 94.89 

RefineNet IoU(%) 13.00 85.67 71.17 81.58 80.94 29.31 97.65 61.62 91.41 77.67 98.51 

Dice(%) 23.01 92.28 83.16 89.85 89.46 45.34 98.81 76.25 95.51 87.43 99.25 

LinkNet IoU(%) 5.96 78.56 79.51 70.80 92.04 51.71 90.07 63.00 96.22 76.17 99.60 

Dice(%) 11.25 87.99 88.58 82.90 95.85 68.17 94.77 77.30 98.07 86.47 99.80 

BARNet IoU(%) 26.28 83.99 96.40 93.89 99.32 73.79 99.38 96.10 97.06 95.39 99.35 

Dice(%) 41.62 91.30 98.17 96.85 99.66 84.92 99.69 98.01 98.51 97.64 99.67 

DeepLabV3 + IoU(%) 15.26 80.40 92.42 93.64 98.22 85.66 98.81 93.29 94.84 89.01 98.69 

Dice(%) 26.49 89.14 96.06 96.71 99.10 92.27 99.40 96.53 97.35 94.19 99.34 

PAANet IoU(%) 15.92 85.15 92.08 86.70 96.90 72.41 97.63 81.94 92.15 94.85 99.61 

Dice(%) 27.47 91.98 95.87 92.88 98.43 84.00 98.80 90.07 95.92 97.36 99.80 

SurgiNet IoU(%) 55.87 98.36 93.20 93.53 93.13 50.52 99.13 98.68 99.59 99.08 99.44 

Dice(%) 71.69 99.17 96.48 96.66 96.44 67.12 99.57 99.33 99.79 99.54 99.72 

Fig. 6. Segmentation results of various methods on CataIS. It can be found that the prediction of SurgiNet is more complete and has fewer recognition errors than that of 

other methods. 

Table 6 

Performance comparison under different illumination conditions based on CataIS. 

Method 

Bright Scene Dark Scene 

mIoU(%) mDice(%) mIoU(%) mDice(%) 

Unet 65.80 75.76 35.84 42.55 

LinkNet 72.18 79.38 67.40 75.42 

RefineNet 75.92 82.87 35.84 42.55 

DeepLabV3 + 89.40 93.12 80.05 84.83 

BARNet 90.28 94.43 84.04 87.58 

SurgiNet(Ours) 92.02 95.58 84.50 89.21 
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ave poor performance in dark scenes. Different from them, our 

urgiNet achieves excellent results in both bright and dark scenes. 

ompared with DeepLabV3+, the performance of SurgiNet in- 
8 
reases by 2.46% mDice and 2.62% mIoU in bright scenes and in- 

reases by 4.38% mDice and 4.45% mIoU in dark scenes. Besides, 

he SurgiNet also surpasses BARNet by 1.15% mDice and 1.74% mIoU 

n bright scenes, and it also exceeds BARNet by 1.63% mDice and 

.46% mIoU in dark scenes. 

.4. Results on EndoVis 2017 

To further verify the performance of the proposed network, it is 

lso evaluated on the EndoVis 2017 dataset ( Allan et al., 2019 ). The

xperimental results on the test set of EndoVis 2017 are shown 

n Table 7 . The proposed SurgiNet achieves 66.30% mIoU, outper- 

orming existing methods by a large margin. PAANet ( Ni et al., 

020a ) only achieves 64.20% mIoU, which is inferior to SurgiNet 

y 2.10% mIoU. Compared with DeepLabV3+ ( Chen et al., 2018a ), 
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Table 7 

Performance comparison of SurgiNet and various methods on EndoVis 2017. 

Method BiForcep ProForcep Driver Sealer Retractor Scissor mIoU Flops(G) Para.(M) 

Unet 68.6 52.3 84.4 19.3 0.0 51.8 46.1 66.63 7.85 

TernausNet 66.4 65.0 91.6 42.5 0.0 72.8 56.4 137.42 25.36 

LinkNet 77.5 55.0 93.3 42.4 0.0 67.9 56.0 25.44 21.77 

PAN 78.7 65.9 97.7 65.3 0.0 77.1 64.1 37.36 21.48 

PAANet 77.5 69.2 98.5 64.9 0.0 75.0 64.2 35.47 22.26 

DANet 74.4 63.8 96.6 66.3 0.0 77.3 63.1 38.51 22.79 

DeepLabV3 + 74.6 70.9 97.3 65.7 0.0 76.7 64.2 7.65 4.38 

SurgiNet(Ours) 80.4 71.6 98.2 70.4 0.0 77.4 66.3 2.21 2.05 

Table 8 

Ablation study for DAM and CSD on EndoVis 2017. The 

baseline represents SurgiNet without DAM and CSD. 

Method DAM CSD mIoU(%) 

Baseline × × 56.6 

Baseline × � 59.1 

Baseline � × 63.4 

Baseline � � 66.3 
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Fig. 7. Visualization for segmentation results of SurgiNet on EndoVis 2017. 
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he mIoU of our network has increased by 2.10%, which is a sig- 

ificant margin. Besides, the winner of the challenge that year, 

ernausNet ( Iglovikov and Shvets, 2018 ), achieves 56.40% mIoU. 

urgiNet outperforms it by 9.90% mIoU. The performance of other 

ethods is much poorer than our SurgiNet. Besides, to evaluate 

he performance of SurgiNet in different categories, the mIoU in 

ach category is also shown in Table 7 . It can be found that our

urgiNet achieves first place in four categories. In other categories, 

ur SurgiNet also achieves relatively high accuracy. Based on the 

bove results, we can prove that our network gets state-of-the-art 

erformance on this dataset. 

To evaluate the computational cost of models, we calculate the 

lops of different models. The amount of parameters is also calcu- 

ated, which reflects the size of the model. The proposed SurgiNet 

nly has 2.05 M parameters and its Flops is 2.21 G. The Flops of 

AANet is 35.47 G, far exceeding that of SurgiNet. Besides, the Ter- 

ausNet has 25.36 M parameters and its Flops is 137.42 G, which 

re 12.37 times and 62.18 times that of SurgiNet, respectively. The 

bove results show that the computational cost of our SurgiNet is 

ery small. 

To further verify the effectiveness of DAM and CSD on En- 

oVis2017, a series of ablation experiments are performed and the 

esults are displayed in Table 8 . The baseline is the SurgiNet with- 

ut CSD and DAM. The baseline achieves 56.60% mIoU. By applying 

AM, the mIoU increased by 6.80%. Applying CSD achieves a 2.50% 

IoU gain. When using both DAM and CSD, the mIoU increased 

y 9.70%. These results prove the effectiveness of DAM and CSD on 

ndoVis 2017. 

To give a more intuitive display, the segmentation results of 

urgiNet are visualized in Fig. 7 . There are serious specular reflec- 

ions in images 1 and 5. And there are many shadows in images 

, 3, and 4. Nevertheless, the SurgiNet can still segment all sur- 

ical instruments well. The segmentation result of our network is 

ery close to the ground truth. The shape details in the tip of the 

urgical instrument are also very accurate. This fully proves that 

he double attention module can effectively solve the illumination 

ssue. 

. Discussion 

Based on the above quantitative and qualitative results, it can 

e found that SurgiNet achieves state-of-the-art performance with 

 small computational cost and model size. This is because class- 

ise self-distillation performs knowledge distillation based on 
9 
robability maps among multiple layers, which enhances the rep- 

esentation learning of the network. Because the learning ability of 

he network is enhanced, we can use a more lightweight backbone 

o achieve higher performance, which facilitates its deployment on 

urgical robots. The class-wise self-distillation is also easy to apply 

o other networks for model compression. 

The double attention module captures semantic dependencies 

etween both locations and channels. It can infer the semantic fea- 

ures in the disturbed area based on semantic dependence. Exper- 

ments show that it can significantly improve the performance of 

he network. Moreover, as shown in Table 2 , double attention is 

etter than any single attention. These results prove the rational- 

ty of the double attention module. Besides, surgical instruments 

re constantly moving during the surgery, their size and shape 

ill be changed drastically. The aggregation of pyramid attention 

eatures contributes to the segmentation of objects with different 

cales. The network can capture local details from large-scale fea- 

ure maps while capturing overall shape from small-scale feature 

aps, improving the feature representation. In this way, the shape 

nd size features of surgical instruments at different scales can be 

earned to recognize them correctly. Note that the segmentation 

erformance is sensitive to the number of channels for the atten- 

ion features, which is demonstrated in Fig. 4 . Lightweight net- 

ork, MobileNetV2 ( Sandler et al., 2018 ), is adopted as the back- 

one of our SurgiNet, and the number of channels is set to 48 for 
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he best performance. When the backbone is replaced, the chan- 

el number of the attention feature should also be re-selected to 

dapt to the backbone. 

. Conclusion 

In this paper, the SurgiNet is proposed to learn pyramid atten- 

ion and distill knowledge from itself for surgical instrument seg- 

entation. The double attention module is designed to capture se- 

antic dependencies between locations and channels. It can infer 

emantic features in the areas affected by illumination variation, 

ddressing the illumination issue. Pyramid attention features are 

ggregated for final prediction, which helps to adapt to scale varia- 

ion. Besides, class-wise self-distillation makes the network extract 

nowledge from itself based on class probability map, enhancing 

he representation learning ability of the network. Experiments 

ave proved their effectiveness. The proposed network achieves 

tate-of-the-art performance on both CataIS and EndoVis 2017. 
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