IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 28, NO. 2, FEBRUARY 2022

1363

Parallel Computation of 3D Clipped
Voronoi Diagrams

Xiaohan Liu, Lei Ma"™, Jianwei Guo*’, and Dong-Ming Yan

Abstract—Computing the Voronoi diagram of a given set of points in a restricted domain (e.g., inside a 2D polygon, on a 3D surface,
or within a volume) has many applications. Although existing algorithms can compute 2D and surface Voronoi diagrams in parallel on
graphics hardware, computing clipped Voronoi diagrams within volumes remains a challenge. This article proposes an efficient GPU
algorithm to tackle this problem. A preprocessing step discretizes the input volume into a tetrahedral mesh. Then, unlike existing
approaches which use the bisecting planes of the Voronoi cells to clip the tetrahedra, we use the four planes of each tetrahedron to clip
the Voronoi cells. This strategy drastically simplifies the computation, and as a result, it outperforms state-of-the-art CPU methods up to

an order of magnitude.

Index Terms—Parallel algorithm, Voronoi diagram, clipping

1 INTRODUCTION

ORONOI diagrams of a given set of points (also called sites
Vor generators) commonly appear in natural environments
and man-made structures, and are widely applied in many
fields such as engineering, architecture, urban planning, and
geography. In past decades, Voronoi diagrams have been
extensively used in computer graphics. Since ordinary Voro-
noi diagrams have unbounded cells corresponding to the
generators on the convex hull of its dual Delaunay triangula-
tion [1], one always needs to restrict the Voronoi diagram to
a finite domain in practice [2], i.e., to clip the ordinary Voro-
noi diagram by the domain boundary [3], [4]. Fig. 1 shows
several examples of clipped Voronoi diagrams in 2D poly-
gons and 3D surfaces and volumes.

In detail: given a set of Voronoi sites in a compact domain
in R?, the Voronoi cell for a site contains the space in R?
closer to that site than to any other site. Voronoi cells of sites
on the convex hull are unbounded, and some interior cells
may be partly outside the domain. In practice, such cells
always need further treatment because only the parts of Vor-
onoi cells inside the given domain are useful. Therefore, we
refer to the restriction of the Voronoi diagram to the given

e Xiaohan Liu and Jianwei Guo are with the National Laboratory of Pattern
Recognition (NLPR), Institute of Automation, Chinese Academy of Scien-
ces (CASIA), Beijing 100190, China, and also with the School of Artificial
Intelligence, University of Chinese Academy of Sciences, Beijing 100049,
China. E-mail: liuxiaohan2017@ia.ac.cn, jianwei.guo@nlpr.ia.ac.cn.

o Lei Ma is with the National Engineering Laboratory for Video Technology,
Peking University, Beijing 100000, China. E-mail: malei@outlook.com.

e Dong-Ming is with the National Laboratory of Pattern Recognition
(NLPR), Institute of Automation, Chinese Academy of Sciences (CASIA),
Beijing 100190, China, with the School of Artificial Intelligence, Univer-
sity of Chinese Academy of Sciences, Beijing 100049, China and also with
the State Key Laboratory of Hydroscience and Engineering, Tsinghua
University, Beijing 100084, China. E-mail: yandongming@gmail.com.

Manuscript received 4 Mar. 2020; revised 22 July 2020, accepted 24 July 2020.
Date of publication 28 July 2020; date of current version 31 Dec. 2021.
(Corresponding author: Dong-Ming Yan.)

Recommended for acceptance by K. Hormann.

Digital Object Identifier no. 10.1109/TVCG.2020.3012288

domain as the clipped Voronoi diagram,; it is the intersection
of the Voronoi diagram and the input domain.

There are efficient algorithms for computing unrestricted
Voronoi diagrams [5], and moreover, GPU implementations
also exist [6], [7]. However, computing clipped Voronoi dia-
grams in 3D is time consuming, because it requires fre-
quently computing the intersection between Voronoi cells
and the domain. Therefore, many works have targeted
improving the computational efficiency of clipped Voronoi
diagrams in 3D and related applications. Rong et al. [8] com-
pute surface Voronoi diagrams via geometry image parame-
terization, and use the jump flooding algorithm [6] for the 2D
Voronoi diagram computation. Han et al. [9] compute
restricted Voronoi diagrams on surface meshes by perform-
ing polygon clipping on the GPU. Leung et al. [10] compute
approximate restricted Voronoi diagrams by discretizing the
input surface into voxels and computing an exact euclidean
distance transform on the GPU. Ray et al. [7] compute large
scale Voronoi diagrams on the GPU by storing the dual form
of a Voronoi cell using a simple triangle mesh, which can be
easily updated and computed in each cell in parallel. How-
ever, this method can only compute 3D Voronoi diagrams
without handling the domain boundary, which is the bottle-
neck in computing clipped Voronoi diagrams.

This study investigates new methods for improving the
efficiency of computing 3D clipped Voronoi diagrams. Our
approach uses a preprocessing step which discretizes the
input volume into a tetrahedral mesh, and is based on two
key observations. First, in various practical applications, the
tetrahedra (fets for short) and Voronoi cells have a high corre-
lation in local space, especially when |7 (i.e., the number of
tets) is close to |X| (i.e., the number of Voronoi sites). This
observation can be used to advantage in a k-nearest neighbors
(k-NN) search strategy [11]. Second, the intersection of a tet
with a Voronoi cell can be calculated independently of other
tets and cells. Unlike the approaches in [2] and [12] that use
bisecting planes of Voronoi cells to clip tets, in our approach,
each precomputed cell is clipped by the four planes of each of

1077-2626 © 2020 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on January 17,2022 at 12:28:43 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-6024-3854
https://orcid.org/0000-0001-6024-3854
https://orcid.org/0000-0001-6024-3854
https://orcid.org/0000-0001-6024-3854
https://orcid.org/0000-0001-6024-3854
https://orcid.org/0000-0002-3376-1725
https://orcid.org/0000-0002-3376-1725
https://orcid.org/0000-0002-3376-1725
https://orcid.org/0000-0002-3376-1725
https://orcid.org/0000-0002-3376-1725
https://orcid.org/0000-0003-2209-2404
https://orcid.org/0000-0003-2209-2404
https://orcid.org/0000-0003-2209-2404
https://orcid.org/0000-0003-2209-2404
https://orcid.org/0000-0003-2209-2404
mailto:liuxiaohan2017@ia.ac.cn
mailto:jianwei.guo@nlpr.ia.ac.cn
mailto:malei@outlook.com
mailto:yandongming@gmail.com

1364

Fig. 1. Left to right: Clipped Voronoi diagrams in 2D polygons, on 3D sur-
faces and in volumes in natural environments (top) and man-made struc-
tures and designs (bottom).

its neighboring tets. This approach reduces the computational
cost significantly. Based on these observations, we present a
practical algorithm making best use of the multicore, parallel
computing capabilities of modern GPUs. Our parallel GPU
implementation is approximately an order of magnitude
faster than state-of-the-art implementations. The main contri-
butions of this study are thus:

e an efficient tet-Voronoi cell nearest pairing algorithm
based on an independent and efficient tet-Voronoi cell
clipping technique, significantly reducing computa-
tional cost,

e alinear multi-barycenter update mechanism based on
the atomicAdd operation, allowing our completely par-
allel algorithm to make full use of modern GPUs, and

e a heuristic strategy to chose k in k-nearest search,
demonstrated to be robust in examples of construct-
ing clipped Voronoi cells.

2 RELATED WORK

Various efficient algorithms for computing Voronoi dia-
grams and Delaunay triangulations have been developed
over past decades. Several robust industrial-quality libraries
are widely used, such as CGAL [13], Qhull [14], and Geo-
gram [15]. We refer the readers to [1], [5], [16] for a survey
of Voronoi diagrams and their applications. This section
focuses on work related to efficient computation of Voronoi
diagrams in restricted domains.

2.1 Restricted Voronoi Diagrams on Surfaces

In various applications, if the number of sites is sufficient, the
restricted Voronoi diagram (RVD) [17] under euclidean dis-
tance is a good approximation to the geodesic Voronoi diagram
(GVD) [18]; the RVD is defined as the intersection of the 3D
Voronoi diagram and the mesh surface. Yan ef al. [2] propose
an efficient method for exact computation of the RVD, which
requires building the 3D Voronoi diagram and a kd-tree for
efficient neighbor search. Later, Lévy and Bonneel [19]
improved existing RVD algorithms by removing the require-
ment for 3D Voronoi diagrams, and only a kd-tree is used to
dynamically construct Voronoi cells by nearest neighbor
propagation. Yan et al. [20] further improved the robustness
of RVD algorithms by computing a localized version of
restricted Voronoi diagrams (LRVDs), which does not
require the kd-tree construction. To make RVD algorithms

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 28, NO. 2, FEBRUARY 2022

faster for real-time applications, several GPU implementa-
tions have been proposed [8], [9], [21].

2.2 Clipped Voronoi Diagram in Volumes

If the input domain is a closed volume, the Voronoi diagram
confined to the volume is called a clipped Voronoi diagram
[22]. The clipped Voronoi diagram is the intersection of the
3D Voronoi diagram and the input domain. Yan et al. [4]
first proposed an efficient algorithm to compute the clipped
Voronoi diagram of a given set of sites with respect to a
compact 2D region or volume. It first tessellates the volume
into a tetrahedral mesh. Then, clipped Voronoi cells are
computed for those sites whose Voronoi cells intersect the
domain boundary. The cells inside the domain do not need
to be recomputed, as they are the same as the original Voro-
noi cells. Because of the robustness of this algorithm, it has
been implemented in Geogram [15] as a standard open
source tool. Simultaneously, Lévy and Liu [3] proposed
another algorithm based on explicitly constructing walls of
boundary cells. However, such approaches lack robustness
in degenerate cases. Moreover, the above methods are still
CPU-based and fail to fully exploit the parallel nature of
cell-tet intersection. Here, we propose the first GPU parallel
algorithm to tackle this problem.

To fully exploit the computational power of modern
graphics hardware, various fundamental geometric algo-
rithms have been devised for GPUs, such as building kd-
trees [23], and computing convex hulls [24], Delaunay trian-
gulations [25], and Voronoi diagrams [6], [26]. Rong et al. [8]
propose a GPU algorithm to compute surface Voronoi dia-
grams in parametric space using geometry images. In partic-
ular, they extend the centroidal Voronoi tessellation (CVT)
energy function from euclidean space to spherical and
hyperbolic spaces in [27], and propose a parallel version in
[28]. Ray et al. [7] present an algorithm for computing large
scale Voronoi diagrams on GPUs. The key idea is to store the
dual form of a Voronoi cell using a simple triangle mesh,
which can be easily updated and computed in each cell in
parallel. We utilize this algorithm for Voronoi cell construc-
tion as the first step of our method. We also extend our previ-
ous abstract [29] and propose algorithms for cell clipping
and a heuristic strategy for choosing % in the k&-NN search, a
key parameter of the proposed algorithm.

3 PRELIMINARIES

We first briefly review basic definitions of the Voronoi dia-
gram, the clipped Voronoi diagram, and the CVT.

3.1 Voronoi Diagrams

Given a set of sites X = {x;};_, in 3D, the Voronoi diagram
Q(X) is a collection of Voronoi cells Q(X;) (€); for short), i.e.,
Q(X) = {Q;}_,. The Voronoi cell of x; is defined by

i = {x e R*|d(x,x;) < d(x,x;),¥j}, M
where d(-, -) denotes euclidean distance.
3.2 Clipped Voronoi Diagrams

Given a connected compact domain M in 3D, the clipped
Voronoi diagram for the sites X with respect to M is defined

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on January 17,2022 at 12:28:43 UTC from IEEE Xplore. Restrictions apply.

LIU ET AL.: PARALLEL COMPUTATION OF 3D CLIPPED VORONOI DIAGRAMS

as the intersection between the ordinary Voronoi diagram
Q(X) and the domain M. It is denoted Q|,, = {Q] \,}i;,
where

Qt‘./\/l = {X € M|d(X,Xi) S d(X,Xj),Vj}. (2)
In the above definition, €);|,, is a clipped Voronoi cell with

respect to M, and is the intersection of the Voronoi cell €;
and the domain M: Q;],, = ; N M.

33 CVT

If the site of each Voronoi cell coincides with its centroid, then
the resulting Voronoi diagram is called a centroidal Voronoi tes-
sellation. Starting with an initial set of sites, the CVT can be
obtained by minimizing the following energy function [30]:

0= [sl ®

where p(x) > 0 is a user-defined density function over the
input domain. In particular, the CVT is uniform when p is a
constant.

4 ALGORITHM OVERVIEW

We now present an efficient algorithm to compute the
clipped Voronoi diagram with respect to the input 3D
domain M. To simplify the computation, we first discretize
the input volumetric domain into a tetrahedral mesh.

Our algorithm takes a set of sites X and a tetrahedral
mesh M = {V, 7} as input, where V = {v;}!’; is the set of
mesh vertices and 7 = {t;};", is the set of tetrahedral ele-
ments. Each tet t; is represented by four ordered vertices,
with indices 0, 1, 2, and 3. Any combination of three vertices
forms a triangular face of the tet; its index is that of the ver-
tex opposite the face. The algorithm consists of the follow-
ing two steps, discussed in detail in the next two sections:

e Compute the indices of the k nearest sites to each site

and tet.

e Compute intersections between Voronoi cells and

the input tetrahedral mesh.

We consider and compare two alternative strategies to
obtain the intersection volume in the second step: (i) first,
compute ordinary Voronoi cells, then clip each cell by the
half-spaces defined by the faces of tets so that the part of the
cell inside each tet can be obtained, or (ii), following previ-
ous approaches, tets are used as initial volumes, and are
clipped by half-spaces bounded by the bisectors of a site
and its k nearest sites.

5 k-NN

Our approach is based on k-nearest-neighbor search. Several
efficient CPU and GPU implementations are available. To
avoid frequent data transmission between the CPU and GPU,
we prefer to perform all computations on the GPU. As our
data are in 3D, a grid-based strategy [31] is normally used for
computing the k-NN of each site. However, this strategy
does not work well for a small number of sites (i.e., fewer
than about 14k) and is unable to handle queries from points
not in the input point set. Therefore, for fewer than than 14k

1365

sites, we use a simple brute-force strategy [11], [32] instead.
Thanks to the highly parallel architecture of GPUs, this brute
force strategy can achieve comparable performance to the
grid-based strategy in the context of our algorithm.

5.1 Brute-Force Strategy

Given a set of reference points R = {r;}~, in a d-dimen-
sional space and a set of query points Q = {¢;}_; in the
same space, the k nearest reference points to some g € Q can
be computed as follows:

1) Compute the distance d; = d(¢,7;),1 < i < m.
2) Sort the distances {d;}!", in ascending order.
3) Output the indices of the k points in R with the %
lowest distances.
Note that each step above is highly parallelizable, so suit-
able for GPU implementation.

5.2 Grid-Based Strategy

The grid-based strategy takes a set of 3D points X = {x;}!",
as input and produces the indices of the k nearest points to
each x € X as output. The input points are first embedded in
a 3D grid consisting of several cells by rounding their coor-
dinates, so that each cell contains approximately five points
on average. The points are sorted in ascending order of the
indices of cells so that all points inside a given cell can be
quickly retrieved.

Having built the grid structure, we can find concentric cell
rings to visit neighbors contained in the cells for each query
point. As we do so, a binary max-heap is maintained to store
the k candidates. If the distance between the query point and
the current neighbor is less than the maximum distance
in the heap, the maximum element is replaced by the neigh-
bor and the heap is adjusted. Successive rings of the query
point are visited until k£ elements are present in the heap and
the maximum distance is less than the minimum distance to
the next ring.

6 COMPUTING CLIPPED VORONOI DIAGRAMS

To compute the intersection between Voronoi cells and the
tetrahedral mesh, we consider two alternative strategies,
namely, cell-tet and tet-cell strategies, illustrated in Fig. 2 and
3. The Sutherland-Hodgman algorithm [33] is applied to clip
a cell by a plane.

6.1 Cell-Tet Strategy

The first step in the cell-tet strategy is to compute the ordi-
nary Voronoi diagram. Subsequently, this is clipped by
each tet of the tetrahedral mesh to obtain the intersection
volume. Details of these two steps are now discussed.

6.1.1 Voronoi Cell Construction

The Voronoi cell of a site is the subset of R® consisting of all
points closer to this site than any other site. Thus, the Voro-
noi cell); of x; is the intersection of a set of half-spaces: {}; =
N;zI1" (i, j), where IT" (i, j) is the half-space bounded by the
bisector of (x;,x;) that contains the site x;. However, a cell
need not to be clipped by all half-spaces because some dis-
tant sites do not contribute to the cell. Consider a bounding

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on January 17,2022 at 12:28:43 UTC from IEEE Xplore. Restrictions apply.

1366 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 28, NO. 2, FEBRUARY 2022

@ (b) (©) ©

Fig. 2. 2D explanation of cell-tet strategy: (a) the Voronoi cell of x; computed by using Algorithm 1, (b) the precomputed Voronoi cell of x;, (c) a face
(i.e., tet in 3D) of which x; is one of the k nearest sites, (d—f) the cell clipped by the half-spaces defined by edges 1-3 (i.e., face in 3D), (g) the part of

the Voronoi cell inside the face (i.e., tet in 3D).

(a) (b)

X X,
) e
.
X l: ;
Q
% X;

Fig. 3. 2D explanation of the tet-cell strategy: (a) the part initialized by a face (i.e., tet in 3D) of which x; is one of the k nearest sites, (b—f) the part
clipped by the half-spaces bounded by the bisectors of x; and its k;;. nearest neighbors from near to far, (g) the part of the Voronoi cell inside the face

(i.e., tetin 3D).

ball with radius R for the cell computed so far, centered on x;.
A clipping plane will not touch the ball if d(x;,x;) > 2R. The
radius R is called the radius of security [19]. See Fig. 4. Let
Xi,...,Xip be the 10 nearest neighbors of site x;, sorted in
ascending order of distance to x;. Each bisector contributing
to the cell clips a half-space and forms a Voronoi edge. Sites
X7,...,Xp are further away from x; than 2R, so do not contrib-
ute to the cell, so clipping can stop after reaching the radius
of security.

Each Voronoi cell can be constructed independently and
in parallel using its nearest neighbors. The maximum num-
ber of neighbors used for clipping is denoted k.. Algo-
rithm 1 is used for constructing Voronoi cells, which are
stored in global GPU memory for further computation.

Algorithm 1. Compute Voronoi Cells

Input : sites X
Output : Voronoi cells Q(X) = {Q;},

1: find k. nearest sites of each site on the GPU;
2: for each site x; € X in parallel do
3: Q; « BoundingBox(X);
4. forp < 1 to k. do
5: x, < pth nearest site of x;;
6: if SecurityRadiusReached(Q;,x,) then
7 break;
8: end if
9: P, < BisectorPlane(X;, X,);
10: Q; — ClipByPlane(;, Py);
11: end for
12: store (); in the global memory of the GPU;
13: end for

6.1.2 Clipped Voronoi Cell Construction

After computing the ordinary Voronoi diagram, forming
tet-cell pairs and obtaining their intersections become the
key issues. The centroid ¢; of each tet t; is computed, and
the k nearest sites of the centroid are queried. Subsequently,
for each neighbor site x;, the tet t; and the Voronoi cell {}; of

x; form a tet-cell pair (t;, ;). One thread is created for each
tet-cell pair to calculate the part of the cell inside the tet,
which is definitely a convex polyhedron. A thread first
loads the precomputed cell from global memory to its
shared memory, and the cell is clipped by four half-spaces
defined by the four faces of the tet. Suppose that {v;, vs, v3}
are three vertices of a face, with normal direction n =
(ng, ny,n.) pointing into the tet by the right-hand rule. The
half-space equation P can be defined by one vertex, e.g., v,
and the normal n

n— (VZ —Vl) X (V3 — Vl), (4)
P:ingz+nyy+n.z—vy-n > 0. (5)

Fig. 5 illustrates the clipping process; pseudo-code is given in
Algorithm 2. If the intersection between the tet and the Voro-
noi cell is not empty, the total volume and barycenter of the
clipped Voronoi cell ;],, are updated using Algorithm 3
with the help of an atomicAdd operation. Note that all of the
above calculations are implemented on the GPU to avoid
time-consuming CPU-GPU data transmission.

Strategy for Choosing k. Determining the number of neigh-
boring cells which must be clipped by a tet is a key parame-
ter for the proposed algorithm. Assuming that the sampled
sites can be regarded as a roughly uniform distribution, a

Fig. 4. Voronoi cell (green) of x; is the intersection of half-spaces
bounded by the bisectors of x; and its ;. nearest neighbors. Gray sites
further from x; than twice the radius of the bounding ball (blue) do not
contribute to the cell.

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on January 17,2022 at 12:28:43 UTC from IEEE Xplore. Restrictions apply.

LIU ETAL.: PARALLEL COMPUTATION OF 3D CLIPPED VORONOI DIAGRAMS

(>

—>‘ \ > —

1367

Fig. 5. Clipping a Voronoi cell (pink) by a tet (blue). An ordinary Voronoi cell is clipped by the four faces of the tet in succession. The final part (right) is

a subset composed of the faces of the Voronoi cell and tet.

value for k can be determined based on the ratio of the
number of sites to the number of tets. To help to apply our
algorithm, we give a formula to calculate a default value
of kin Eq. (6). However, users can also tune the parameter
k manually to adjust the trade-off between efficiency and
accuracy.

L X], if [X] < A
) max(a- [B-logo(y- % +1)],\), otherwise

(6)

Here, we set A = 20, « = 10, 8 =8, and y = 7 based on our
experiments; these value worked well for all of the exam-
ples. The coefficient A is used to control the minimum value
of k; d k must be a multiple of coefficient «. For convenience
of computation and statistical analysis, « is set to 10. In
addition, a scale control coefficient 8 and a smoothness con-
trol coefficient y are introduced to further adjust growth of
k with |X|/|7|—see the plot of k£ when |X| > X in Fig. 6. As
the advantage of the GPU may be weakened and accuracy
may be reduced if k is extremely small, the minimum value
of k is set to 20 unless the number of sites is insufficient.

Algorithm 2. Compute Clipped Voronoi Diagrams

Input: sites X, tetrahedral mesh M = {V, T}
Output: the barycenter {C;};_, and volume {V;};, of clipped
Voronoi cells Q| ,, = {Q] iy
1: Compute the Voronoi cells Q(X) = {Q,};_, by Algorithm 1;
2: bary_sum[l.n][z,y, 2] — 0; {V;}[_, < O;
3: for each tet t; € 7 in parallel do

4: ¢; « ComputeCentroid(t;);
5: find k nearest sites N; of ¢;;
6: for each site x; € N; in parallel do
7 Qjl, — Qj; > load €); from global memory
8: forp — 1 to 4do
9: fp < pth face of t;;
10: P, «— FacePlane(f,);
11: Qjly, < ClipByPlane(Syl,,, Py);
12: if [, = ¢ then
13: break;
14: end if
15: end for
16: if Qf, # ¢ then
17: UpdateCell Atomically(j, letl); > Algorithm 3
18: end if
19: end for
20: end for

21: fori < 1 to nin parallel do
22 Ci[z,y, 2] < bary_suml[i][z,y, 2]/ V;;
23: end for

Algorithm 3. Update the Clipped Voronoi Cell Atomically

Input: clipped Voronoi cell’s index j, a convex polyhedron P
Output: new barycenter C; and volume V}
1: Tp <« DecomposelntoTet(P);
2: bary_sum_Plz,y, z] < 0; vol_sum_P — 0;
3: foreach tett; € 7p do
4: ¢; — ComputeCentroid(t;);
5. W, « ComputeVolume(t;)
6: bary_sum_Px,y,2] < bary_sum_Pz,y,2] + ¢; - Vy;
7
8
9
10

vol_sum_P « vol_sum_P + V;;
: end for
s atomicAdd(C;, bary_sum_P);
¢ atomicAdd(V;, vol_sum_P);

6.2 Tet-Cell Strategy

Note that the cell-tet strategy requires Voronoi cells to be
stored in GPU global memory and then loaded them into
shared memory. Generally, shared memory is much faster
than global memory. Therefore, we propose the alternative
tet-cell strategy to compute clipped Voronoi diagrams
directly. See Algorithm 4 and Fig. 3.

The same tet-cell nearest pairing algorithm is used as in
the cell-tet strategy, the only difference being that each part
of the Voronoi cell is initialized by the corresponding tet and
clipped by half-spaces bounded by the bisectors directly.
Intuitively, this strategy leads to additional clipping when
the number of sites is large. The time trade-off between clip-
ping and data transmission is discussed in Section 7.3.

7 EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the proposed
algorithm for different numbers of sites and tets and com-
pare it to the state-of-the-art approaches in the open-source
library Geogram [15] and hierarchical CVT [34] (HCVT).

120
100
80
60
40
20

0 1 2 3 4
IX|/IT]

Fig. 6. Stepwise variation of £ with |X|/|7|.

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on January 17,2022 at 12:28:43 UTC from IEEE Xplore. Restrictions apply.

1368

20 20
—>=—Ours (tet-cell)
—©S—Ours (cell-tet)

——Ours (tet-cell)
—©S— Ours (cell-tet)

15 r|—=—Geogram 1.7.4 n 15 1 |—8— Geogram 1.7.4
. —+—HevT // . —+—HCVT /
K23)
@ o}
E 10 ’/‘ £ 10
= _ =
5 5
0 1 2 3 0 1 2 3
The number of sites x10* The number of sites x10*
20 20
—>=—OQurs (tet-cell) ——Ours (tet-cell)
—©— Ours (cell-tet) ’/ —©—Ours (cell-tet)
15 1 |—=— Geogram 1.7.4 - 15 | |—=— Geogram 1.7.4
—+—HCVT —+—HCVT

Time(s)
Time(s)

0 1 2 3

x10% The number of sites x10*

The number of sites

Fig. 7. Comparison between the proposed algorithm, Geogram 1.7.4 [15],
and HCVT [34] on the Torus (top-left, 8k tets), Bunny (top-right, 10k tets),
Fandisk (bottom-left, 26k tets), and Joint (bottom-right, 31k tets) models
for varying numbers of sites. Volume errors are < 0.22, 0.13, 0.05, and
0.05 percent, respectively.

The proposed algorithm is also applied to Lloyd’s algorithm
for computing the CVT. Comparisons are made between the
tet-cell and the cell-tet strategies in terms of run time and
number of clipping operations performed.

Algorithm 4. Compute Clipped Voronoi Diagrams (Tet-
Cell)

Input : sites X, tetrahedral mesh M = {V, 7T}
Output : the barycenter {C;}]_, and volume {V;};_, of clipped
Voronoi cells Q| ,, = {Q] iy

1: find k. nearest sites of each site on the GPU;

2: bary-sum[l.n][z,y, z] — 0; {V;}]_, < 0;

3: for each tett; € 7 in parallel do

4: ¢; — ComputeCentroid(t;);

5. find k nearest sites N; of ¢;;

6: for each site x; € N; in parallel do

7

8

Qjl, — t;
forp — 1 to kg, do
9: x, < pth nearest site of x;;
10: if SecurityRadiusReached (€}, ,x,) then
11: break; '
12: end if
13: P, < BisectorPlane(x;,X,);
14: Qjly, — ClipByPlane(Ql;., Py);
15: if Q[= ¢ then
16: break;
17: end if
18: end for
19: if (|, # ¢ then
20: UpdateCell Atomically(j, €1,); > Algorithm 3
21: end if
22: end for
23: end for

24: fori «— 1 to nin parallel do
25: Ci [1:7 Y, Z} = b’”y—sum[i] [l‘, Y, Z}/Vz/
26: end for

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 28, NO. 2, FEBRUARY 2022

8 ﬂ‘/;ﬁ”*"’)f"*’*r*/ﬁ\f% T 8 44—?"*/%\ T
6 6
@)
@ 9]
E 4 ——Qurs (tet-cell) E 4 —=—Ours (tet-cell)
——©S— Ours (cell-tet) —©S—Ours (cell-tet)
—&— Geogram 1.7.4 ——&—Geogram 1.7.4
2 ——+—HCVT 2 —+—HCVT
oL olLem—e—eeoso—o=s
0 2 4 6 8 10 0 2 4 6 8 10
The number of tets ~ x 104 The number of tets ~ »10*
A / —
g + A — T sl " + - o
6 6 1
@ 2
9] [}
E 4 —<—Qurs (tet-cell) E 4 —<—OQurs (tet-cell) | -
—©— Ours (cell-tet) —©—Ours (cell-tet)
—&— Geogram 1.7.4 —&—Geogram 1.7.4
2 —+—HCVT 2 —+—HevT I
0—" 0 =
0 2 4 6 8 10 0 2 4 6 8 10

The number of tets ~ x10* The number of tets ~ x10%

Fig. 8. Comparison between the proposed algorithm, Geogram 1.7.4, and
HCVT on the Torus (top-left), Bunny (top-right), Fandisk (bottom-left), and
Joint (bottom-right) models, for a fixed number of sites (15k) with varying
mesh resolution. Volume errors are < 0.09, 0.08, 0.09, and 0.06 percent,
respectively.

The proposed algorithm was implemented in C++. All
results were computed on a Ubuntu 16.04 server with a
2.60 GHz Intel Xeon E5-2690 CPU with 256 GB memory,
and an NVIDIA TITAN RTX GPU with 24 GB memory,
using CUDA version 10.1. In our experiments, the maxi-
mum number of neighbors used to clip a Voronoi cell is set
to 90, which is sufficient for randomly distributed sites in
most situations. Another important parameter of our algo-
rithm is the number % of neighboring cells to be clipped by a
tet, which strongly influences the performance, as does the
number of tets. The parameter £ is set according to Eq. (6)
unless specified otherwise.

7.1 Performance

The efficiency of our algorithm is first demonstrated. Given
an input domain represented by a tetrahedral mesh and a set
of sites generated randomly inside the domain, we evaluated
the time to construct clipped Voronoi diagrams. Each test
was repeated 10 times and results were averaged (see Fig. 7).
The superior speed of the proposed algorithm is increasingly
evident as the number of sampled sites increases from 1k to
31k. We also observe that tet-cell and cell-tet strategies both
achieve similar performance. The reason for the small drop
in performance between 13k and 15k sites is that grid-based
k-NN search does not work well if the number of sites is too
small. Thus, we use the brute-force strategy when the num-
ber of sites is fewer than 14k.

Results in Fig. 8 are given for a fixed number of sites
with varying input mesh size, from 10k to 100k elements.
The time taken by our algorithm is almost constant. As the
ratio of the number of sites to the number of tets decreases,
the default value of £ decreases simultaneously to reduce
the computational cost, while not affecting accuracy in
most situations. Note that the HCVT method uses a sur-
face mesh rather than a tetrahedral mesh as input, so its
performance is also independent of the number of tets.

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on January 17,2022 at 12:28:43 UTC from IEEE Xplore. Restrictions apply.

LIU ET AL.: PARALLEL COMPUTATION OF 3D CLIPPED VORONOI DIAGRAMS 1369

TABLE 1

Results for Computing Clipped Voronoi Diagrams for Various Models
Ours

Model v X| Geogram(s) HCVT (s) Tet-Cell Cell-Tet

vol k kNN (s) : -

Clip(s) Total(s) Clip(s) Total (s)

Torus 8k 5k 1.48 2.83 0.03% 60 0.14 0.04 0.18 0.03 0.17
Bunny 10k 10k 2.62 5.30 0.05% 60 0.25 0.06 0.31 0.03 0.28
Fandisk 26k 15k 4.39 8.50 0.04% 50 0.20 0.12 0.32 0.07 0.27
Joint 31k 35k 9.31 17.91 0.02% 70 0.57 0.22 0.79 0.12 0.69
Homer 41k 30k 8.88 16.30 0.05% 50 0.41 0.21 0.62 0.11 0.52
Gargoyle 199k 10k 6.16 8.70 0.14% 20 0.44 0.20 0.64 0.19 0.63

|T'| = number of tets, |X| = number of sites, and E = relative volume error.

However, it generally takes longer than Geogram and our
algorithm.

Further results for other models are given in Table 1; they
show that our approach can be up to an order of magnitude
faster than state-of-the-art CPU methods. We also break
down the total running time of our algorithm into its two
main components, the time for k-NN search and the time for
clipping Voronoi cells. The first component is unchanged for
both clipping strategies.

To evaluate the accuracy of the proposed algorithm,
we determined the relative volume error Fy, = |Vovp —
Vul/Vm, where Veyp and V), are the total volume of the
clipped Voronoi diagram and the input mesh respectively

(we express Iy as a percentage). Specifically, we find that
both CPU methods result in low volume error. Thus, we
use the cell volume computed by Geogram 1.7.4 as ground
truth and visualize the volume error for each individual
Voronoi cell (see Fig. 10). The main causes of volume
error are:

k too small. If too few neighbors are considered in nearest
neighbor search, and the sites are distributed in an uneven
manner or slivers exist in the input mesh, some Voronoi
cells that intersect a given tet may be missed, reducing the
volume of the clipped Voronoi cell.

Unbounded Boundary Cells. Unclipped Voronoi cells
whose sites lie on the convex hull are unbounded. As shown

Fig. 9. Results of Lloyd iterations for the Torus (8k tets), Bunny (10k tets), Joint (31k tets), and Gargoyle (199k tets) models, using the proposed
method. From left to right: input tetrahedral mesh, clipped Voronoi diagram for 3k sampled sites, results after 5, 20, and, 120 iterations. The total
volume errors are < 0.05, 0.04, 0.04, and 0.20 percent, respectively. The volume error for each cell is visualized in the figure. The 120 iterations take
10.51s, 9.50s, 10.43s, and 32.65s in total, about an order of magnitude faster than a CPU algorithm.

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on January 17,2022 at 12:28:43 UTC from IEEE Xplore. Restrictions apply.

5.43%

Fig. 10. Volume error for individual Voronoi cells. Volume error generally
decreases as the distribution of sites becomes more uniform. (|7] = 10k,
[X| = 3k, k = 40).

in Fig. 11, the unbounded part of the cell may have undesir-
able intersections with other parts of the input domain. If &
is too large or concave parts of the input domain are very
close, the clipped Voronoi cell may be too large as a result.
To illustrate this kind of error, we set &k = 160, four times the
default value, to produce the result in Fig. 11.

To determine the influence of the parameter £, different
values of k were tested in the range 10-120, and computa-
tion times and volume errors recorded. As shown in Fig. 12,
the computation time for both clipping strategies increases
almost linearly with &, while volume errors decrease expo-
nentially. Clearly, & should not be taken too small, to avoid
large errors, but taking £ too large just expends time for little
additional accuracy. In Fig. 12, we set default values of & to
100 and 90 for the Torus model and the Bunny model,
respectively, which works well in most situations. Given
that each part computed by both strategies is the same theo-
retically, the difference between the volume errors of the
tet-cell and cell-tet strategies is minimal.

7.2 Applicationto CVT

The centroidal Voronoi tessellation [30] is a particular type of
Voronoi tessellation in which each site coincides with the
centroid of its Voronoi cell. The CVT has numerous applica-
tions in computer graphics, e.g., to meshing, sampling, and
stippling. The prevailing method used to compute the CVT
is Lloyd’s algorithm. It computes the clipped Voronoi dia-
gram of a given set of sites, and then moves each site toward
the centroid of its Voronoi cell, iterating these two steps until
convergence. Computation of the clipped Voronoi diagrams
takes most of the time in this process. Our proposed GPU-
based algorithm can thus significantly speed it up while
maintaining the volume error within an acceptable range.
Fig. 9 shows the results of applying Lloyd’s algorithm using

_ 2468.34%

Voronoi
cell

Fig. 11. Left: 2D example showing volume error caused by intersection
between the input domain and the unbounded part of the Voronoi cell
(red). Center: Part of the bunny’s ear is added to the clipped Voronoi cell
due to excessive k. Right: Volume error (|7| = 10k, |X| = 3k, k£ = 160).

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 28, NO. 2, FEBRUARY 2022

0.6 15
—>—Qurs (tet-cell)
—©— Ours (cell-tet)
__ 04 —~ 10
» S
g =
= S
0.2 5
0 0
0 50 100 0 50 100
k k
0.6 15
—>—Qurs (tet-cell)
—©O— Ours (cell-tet)
__ 04 —~ 10
©o S
o 3
= S
0.2 5
0 0
0 50 100 0 50 100
k k

Fig. 12. Influence of & on computation time (left) and volume error (right),
for k from 10 to 120, using Torus (top, 8k tets) and Bunny (bottom, 10k
tets) models, with 15k sites.

a random set of sites inside various input domains. The dis-
tribution of sites gradually becomes uniform as iteration
proceeds.

7.3 Tet-Cell Versus Cell-Tet
We now compare the strengths and weaknesses of the two
clipping strategies, again using Lloyd’s algorithm, by consid-
ering running time and the number of clipping operations
performed. Fig. 13(left) shows the results of this experiment.
The number of clipping operations performed by the tet-cell
strategy drops drastically during the first five iterations,
whereas the number for the cell-tet strategy remains almost
unchanged. The radius of security is reached earlier as the
distribution of sites becomes more uniform, which benefits
the tet-cell strategy.

Indeed, even though the tet-cell strategy performs more
clipping operations than the cell-tet strategy, the former is
faster when the number of sites is small (Fig. 13(top)).

x108 02
8) 7.5 Ours (tet-cell)
2 5 Ours (tet-cell) Ours (cell-tet)
[} Ours (cell-tet)
2
565 % 0.15
> 6 £
o =
E 55
2
o 5 0.1
£
45
0 10 20 30 0 10 20 30
Iterations Iterations
<107 0.7
®» 25 Ours (tet-cell)
E’) Ours (tet-cell) Ours (cell-tet)
o Ours (cell-tet)
% 06 -
"
5 15 ‘GET
5 =
=
2 1 05 1
2
o 05
£
0 0.4
0 10 20 30 0 10 20 30

Iterations Iterations

Fig. 13. Comparison of tet-cell and cell-tet strategies on the Homer (41k
tets) model with 1k (top) and 30k (bottom) sites, using k& = 50.

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on January 17,2022 at 12:28:43 UTC from IEEE Xplore. Restrictions apply.

LIU ETAL.: PARALLEL COMPUTATION OF 3D CLIPPED VORONOI DIAGRAMS
éz:ﬁ
© o
Fig. 14. Sliver and its 10 nearest sites.

Fig. 13(bottom) shows that the computation time of the tet-
cell strategy increases and becomes comparable to that of
the cell-tet strategy as the number of sites increases. The
cell-tet strategy needs to load precomputed Voronoi cells
from global memory into shared memory, which is a time-
consuming operation. Moreover, the cost of data transmis-
sion between global and shared memory accounts for a
large proportion of the time when the number of sites is rel-
atively small, and vice versa. Therefore, the tet-cell strategy
is to be preferred for cases with a small number of sites,
whereas the cell-tet strategy should be used when the num-
ber is large.

8 CONCLUSION

This study proposes an efficient GPU-based algorithm using
a tetrahedral mesh to compute 3D clipped Voronoi diagrams.
It can be implemented using either a tet-cell or a cell-tet strat-
egy. Both implementations are fast and can be directly used
in applications such as CVT. To enhance the usability of the
proposed algorithm, a heuristic is given to determine the
number of neighboring cells which should be considered
when clipping by a tet. Experimental results show that the
proposed method can compute 3D clipped Voronoi diagrams
effectively, and it is approximately an order of magnitude
faster than state-of-the-art CPU methods.

Limitations and Future Work. However, as the proposed
algorithm is based on A-NN search, it works well only if the
input sites are evenly distributed and the number of slivers
in the input tetrahedral mesh is manageable (see Fig. 14).
Otherwise, parts of cells may be lost as the nearest pairing
algorithm cannot cope with such situations well. We would
like to further improve the robustness of our algorithm and
explore more applications in the future. Moreover, comput-
ing 3D power diagrams on the GPU is a feasible extension
of our work.

ACKNOWLEDGMENTS

The authors would like to thank the reviewers for their valu-
able comments which greatly improved the article. This work
was supported by the National Natural Science Foundation
of China (61772523 and 61802406), the Beijing Natural Science
Foundation (L182059), the CCF-Tencent Open Research Fund
(RAGR20190105), the Open Research Fund Program of State
key Laboratory of Hydroscience and Engineering, Tsinghua
University (sklhse-2020-D-07), the Open Project Program of
State Key Laboratory of Virtual Reality Technology and Sys-
tems, Beihang University (VRLAB2019B02), and the PKU-
Baidu Fund (2019BD001).

REFERENCES

[1] F. Aurenhammer, “Voronoi diagrams - A survey of a fundamental
geometric data structure,” ACM Comput. Surv., vol. 23, no. 3,
pp- 345405, 1991.

[2]

[3]

[4]

[5]

[6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

1371

D.-M. Yan, B. Lévy, Y. Liu, F. Sun, and W. Wang, “Isotropic remesh-
ing with fast and exact computation of restricted Voronoi diagram,”
Comput. Graph. Forum, vol. 28, no. 5, pp. 1445-1454, 2009.

B. Lévy and Y. Liu, “L, centroidal Voronoi tesselation and its
applications,” ACM Trans. Graph., vol. 29, no. 4, pp. 119:1-119:11,
2010.

D.-M. Yan, W. Wang, B. Lévy, and Y. Liu, “Efficient computation
of 3D clipped Voronoi diagram,” in Proc. Int. Conf. Geometric
Model. Process., 2010, pp. 269-282.

A. Okabe, B. Boots, K. Sugihara, and S. N. Chiu, Spatial Tessella-
tions: Concepts and Applications of Voronoi Diagrams, vol. 501. Hobo-
ken, NJ, USA: Wiley, 2009.

G. Rong and T. S. Tan, “Jump flooding in GPU with applications
to Voronoi diagram and distance transform,” in Proc. Symp. Inter-
active 3D Graph. Games, 2006, pp. 109-116.

N. Ray, D. Sokolov, S. Lefebvre, and B. Lévy, “Meshless Voronoi on
the GPU,” ACM Trans. Graph., vol. 37, no. 6, pp. 265:1-265:12, 2018.
G. Rong, Y. Liu, W. Wang, X. Yin, X. Gu, and X. Guo, “GPU-
assisted computation of centroidal Voronoi tessellation,” IEEE
Trans. Vis. Comput. Graphics, vol. 17, no. 3, pp. 345-356, Mar.
2011.

J. Han, D.-M. Yan, L. Wang, and Q. Zhao, “Computing restricted
Voronoi diagram on graphics hardware,” in Proc. 25th Pacific Conf.
Comput. Graph. Appl., 2017, pp. 23-26.

Y.-S. Leung, X. Wang, Y. He, Y.-J. Liu, and C. C.-L. Wang, “A uni-
fied framework for isotropic meshing based on narrowband
Euclidean distance transformation,” Comput. Vis. Media, vol. 1,
pp- 239-251, 2015.

V. Garcia, E. Debreuve, F. Nielsen, and M. Barlaud, “K-nearest
neighbor search: Fast GPU-based implementations and applica-
tion to high-dimensional feature matching,” in Proc. IEEE Int.
Conf. Image Process., 2010, pp. 3757-3760.

D.-M. Yan, W. Wang, B. Lévy, and Y. Liu, “Efficient computation
of clipped Voronoi diagram for mesh generation,” Comput.-Aided
Des., vol. 45, no. 4, pp. 843-852, 2013.

CGAL User and Reference Manual, 4.14.3 ed., 2019. [Online].
Available: https://doc.cgal.org/4.14.3/Manual/packages.html

C. B. Barber, D. P. Dobkin, D. P. Dobkin, and H. Huhdanpaa, “The
quickhull algorithm for convex hulls,” ACM Trans. Math. Softw.,
vol. 22, no. 4, pp. 469483, 1996.

Geogram: A programming library of geometric algorithms, 2019.
[Online]. Available: http://alice.loria.fr/software/geogram/
doc/html/index.html

F. Aurenhammer, R. Klein, and D.-T. Lee, Voronoi Diagrams and
Delaunay Triangulations. Singapore: World Scientific Publishing
Company, 2013.

H. Edelsbrunner and N. R. Shah, “Triangulating topological
spaces,” Int.]. Comput. Geometry Appl., vol.7,no. 4, pp. 365-378,1997.
Q. Du, M. D. Gunzburger, and L. Ju, “Constrained centroidal Vor-
onoi tesselations for surfaces,” SIAM J. Sci. Comput., vol. 24, no. 5,
pp. 1488-1506, 2003.

B. Lévy and N. Bonneel, “Variational anisotropic surface meshing
with Voronoi parallel linear enumeration,” in Proc. 21st Int. Mesh-
ing Roundtable, 2012, pp. 349-366.

D.-M. Yan, G. Bao, X. Zhang, and P. Wonka, “Low-resolution
remeshing using the localized restricted Voronoi diagram,” IEEE
Trans. Vis. Comput. Graphics, vol. 20, no. 10, pp. 418-1427, Oct. 2014.
L.Ma, J. Guo, D.-M. Yan, H. Sun, and Y. Chen, “Instant stippling on
3D scenes,” Comput. Graph. Forum, vol. 37, no. 7, pp. 255266, 2018.
T. M. Chan, J. Snoeyink, and C. Yap, “Output-sensitive construc-
tion of polytopes in four dimensions and clipped Voronoi dia-
grams in three,” in Proc. 6th Annu. ACM-SIAM Symp. Discrete
Algorithms, 1995, pp. 282-291.

K. Zhou, Q. Hou, R. Wang, and B. Guo, “Real-time KD-tree con-
struction on graphics hardware,” ACM Trans. Graph., vol. 27, no. 5,
2008, Art.no. 126.

M. Gao, T.-T. Cao, A. Nanjappa, T.-S. Tan, and Z. Huang, “gHull:
A GPU algorithm for 3D convex hull,” ACM Trans. Math. Softw.,
vol. 40, no. 1, pp. 3:1-3:19, 2013.

T.-T. Cao, A. Nanjappa, M. Gao, and T.-S. Tan, “A GPU accelerated
algorithm for 3D Delaunay triangulation,” in Proc. 18th Meeting
ACM SIGGRAPH Symp. Interactive 3D Graph. Games, 2014, pp. 47-54.
H.-H. Hsieh and W.-K. Tai, “A simple GPU-based approach for
3D Voronoi diagram construction and visualization,” Simul.
Modelling Pract. Theory, vol. 13, no. 8, pp. 681-692, 2005.

G. Rong, M. Jin, L. Shuai, and X. Guo, “Centroidal Voronoi tessel-
lation in universal covering space of manifold surfaces,” Comput.
Aided Geometric Des., vol. 28, no. 8, pp. 475-496, 2011.

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on January 17,2022 at 12:28:43 UTC from IEEE Xplore. Restrictions apply.

https://doc.cgal.org/4.14.3/Manual/packages.html
http://alice.loria.fr/software/geogram/doc/html/index.html
http://alice.loria.fr/software/geogram/doc/html/index.html

1372 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 28, NO. 2, FEBRUARY 2022

[28] L. Shuai, X. Guo, and M. Jin, “GPU-based computation of discrete
periodic centroidal Voronoi tessellation in hyperbolic space,”
Comput.-Aided Des., vol. 45, no. 2, pp. 463-472, 2013.

[29] X.Liu and D.-M. Yan, “Computing 3D clipped Voronoi diagrams
on GPU,” in Proc. SIGGRAPH Asia 2019 Posters, 2019, pp. 9:1-9:2.

[30] Q. Du, V. Faber, and M. Gunzburger, “Centroidal Voronoi tessel-
lations: Applications and algorithms,” SIAM Rev., vol. 41, no. 4,
pp- 637-676, 1999.

[31] R. Hoetzlein, “Fast fixed-radius nearest neighbors: Interactive
million-particle fluids,” in Proc. GPU Technol. Conf., vol. 18,2014, p. 2.

[32] V. Garcia, E. Debreuve, and M. Barlaud, “Fast k nearest neighbor
search using GPU,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis.
Pattern Recognit. Workshops, 2008, pp. 1-6.

[33] I. E. Sutherland and G. W. Hodgman, “Reentrant polygon
clipping,” Commun. ACM, vol. 17, no. 1, pp. 32-42, 1974.

[34] L.Wang, F. Hétroy-Wheeler, and E. Boyer, “A hierarchical approach
for regular centroidal Voronoi tessellations,” Comput. Graph. Forum,
vol. 35, no. 1, pp. 152-165, 2016.

Xiaohan Liu received the BS degree in software
engineering from the Nanjing University of Aero-
nautics and Astronautics, China, in 2017. He is
currently working toward the MS degree at the
National Laboratory of Pattern Recognition, Insti-
tute of Automation, Chinese Academy of Sciences
and the University of Chinese Academy of Scien-
ces, China. His supervisor is Prof. Dong-Ming Yan.
His research interests include computer graphics,
geometry processing and computer vision.

Lei Ma received the BS degree from Zhejiang Uni-
versity, China, the MS degree from Digital ART
(Augmented Reality Tech) Laboratory of Shanghai
Jiao Tong University, China, and the PhD degree
from the State Key Laboratory of Computer Sci-
ence, Chinese Academy of Sciences, China. He is
currently an associate researcher of computer sci-
ence at Peking University, China, also working for
the National Engineering Lab for Video technology
of China. During 2010-2012, he worked for Auto-
desk China Research and Development Center as
a graphic engineer. He was also a co-founder of an AR start-up. His
research interests include realistic image synthesis, geometry processing,
rendering of complex scenes, virtual reality, and artificial intelligence.

Jianwei Guo received the bachelor’s degree from
Shandong University, China, in 2011, and the PhD
degree in computer science from CASIA, in 2016.
He is currently an associate professor with the
National Laboratory of Pattern Recognition, Insti-
tute of Automation, Chinese Academy of Scien-
ces, China. His research interests include
computer graphics, geometry processing and 3D
shape analysis.

Dong-Ming Yan received the bachelor's and mas-
ter's degrees from Tsinghua University, China, in
2002 and 2005, respectively, and the PhD degree
from Hong Kong University, Hong Kong, in 2010.
He is currently a professor with the National Labo-
ratory of Pattern Recogpnition, Institute of Automa-
tion, Chinese Academy of Sciences, China. His
research interests include computer graphics, 3D
vision, and geometric processing.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on January 17,2022 at 12:28:43 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

