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ABSTRACT

In this paper, we propose a novel multi-resolution background sub-
traction method. We adopt coarse to fine strategy, which is the
essence the multi-resolution scheme, to obtain the foreground mask.
The rough mask is first gained relied on the Single Gaussian Model,
which holds minor computation cost. Then, the slightly accuracy
mask is calculated by the Saliency-based Extraction Model, which
contains high accuracy and stability. Finally, Contour-based Refin-
ing Model is used to refine the mask edge. Our algorithm is evaluated
against several video sequences, and experimental results show that
the proposed method is suitable for various scenes and is appealing
with respect to robustness.

Index Terms— multi-resolution, background subtraction, Sin-
gle Gaussian Model, Saliency-based Extraction Model, Contour-
based Refining Model

1. INTRODUCTION

Background subtraction is a convenient and effective method for de-
tecting foreground objects from a stationary camera. Its mainly de-
pends on the background modeling module. The central idea behind
this module is to utilize the visual properties of the scene for build-
ing an appropriate representation, that can then be used to classify a
new observation as foreground or background.

Existing methods for background modeling can be classified as
predictive and statistical. The predictive methods model the scene
as a time series and develop a dynamical model to recover the current
input based on past observations [1, 2], while the statistical methods
neglect the order of the input observations and roughly build a prob-
abilistic representation of the observations [3, 4, 5, 6, 7, 8, 9]. A pop-
ular statistical method is to model each background pixel with a sin-
gle Gaussian distribution [3]. However, This method does not work
well in the case of dynamic natural environments including repeti-
tive motions, i.e. waving vegetation, rippling water, and camera jit-
ter. In [4], the mixture of Gaussians(MoG) approach is proposed to
solve these complex, non-static backgrounds. Unfortunately, back-
ground with fast variations can not be accurately modeled by just a
few Gaussians. To overcome the limitations of parametric methods,
i.e. single Gaussian in [3], MoG in [4], a nonparametric technique
is developed in [5]. This utilizes a general nonparametric kernel
density estimation technique for building a statistical representation
of the scene background. [6] uses a codebook to construct a com-
pressed background model. However, both the parametric method
[4] and nonparametric method [5, 6] may fail when foreground ob-
jects have similar color to background, or even when the illumination
variations occur due to sunlight changing outdoor and light switch-
ing indoor. The main reason is that, these methods only use the pixel
color or intensity information to detect foreground objects. To deal
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with this weak description, [7] use a novel and powerful approach
based on discriminative texture features represented by LBP [10] to
capture background statistics. In this paper, each pixel is modeled as
a group of adaptive LBP histograms that are calculated over a cir-
cular region around the pixel. The main limitation of this method is
that both memories and computation costs increase greatly with the
increasing of the images resolution.

In this paper, we propose a novel multi-resolution, coarse to fine
strategy, background subtraction method, which compromises the
computation cost with the algorithm robustness. In low-resolution
module, we adopt the Single Gaussian Model to gain the rough
mask. The motivation of using this model relies on the low compu-
tation cost. In middle-resolution module, we apply Saliency-based
Extraction Model to calculate the slightly accurate mask. The mo-
tivation of using this model dues to the accuracy of the calculation
as well as the scalability of the algorithm. In this paper, we utilize
three types of saliency: i.e. intensity saliency, shadow saliency, and
contour saliency, which cover contour and texture information. In
high-resolution module, we use the Contour-based Refining Model
to refine the mask edge.

2. MULTI-RESOLUTION BACKGROUND SUBTRACTION

As illustrated in Fig.1, a Gaussian pyramid G (Gi is the i-th level) is
first constructed for each input frame I by using the low-pass down-
sampling operation

Gi =↓ 2[Gi−1 ⊗ g] (1)

where ↓ 2[.] is the down-sampling operation, ⊗ is the convolution
operation, g is the two dimensional Gaussian kernel, and G0 = I,
the original input frame. In this paper, we construct three Gaus-
sian levels specially, which are the low-resolution gray-level layer
Gl = G2, the middle-resolution color layer Gm = G1, and the high-
resolution gray-level layer Gh = G0. Single Gaussian Model is
applied on Gl to generate the low-resolution mask Ml. Then, the

initial middle-resolution mask M̂m is constructed from Ml by us-
ing the nearest up-sampling operation,

M̂m =↑ 2[Ml] (2)

where ↑ 2[.] is the up-sampling operation. Based on Gm and M̂m,
Saliency-based Extraction Model is performed to obtain the middle-

resolution mask Mm. Same as the calculation of M̂m, the initial
high-resolution mask M̂h is gained from Mm by using the nearest
up-sampling operation. Finally, Contour-based Refining Model is
utilized to calculate the high resolution mask Mh, which equals to
the final output mask M.

2.1. Single Gaussian Model

It is often difficult or infeasible to get a sufficiently long video clip
without any foreground objects appearing in the scene. To overcome
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Fig. 1. Overview of the novel background subtraction algorithm.

this problem, we capture first N frames as the learning frames, and
create the median image Gl

med. Since the objects present in these
frames, the statistical background model is created by calculating
the weighted single Gaussian model, as follow

μl =

∑N
i=1 ωl

i · Gl
i∑N

i=1 ωl
i

σl =

∑N
i=1 ωl

i · (Gl
i − μl)2

N−1
N

∑N
i=1 ωl

i

(3)

where the weight ωl
i is used to minimize the effect of outliers (values

far from the median frame Gl
med). The weights are computed from

a Gaussian distribution centered at Gl
med

ωl
i = exp

(
− (Gl

i − Gl
med)2

2σ̂2

)
(4)

where σ̂ is the user-settable parameter. Once the statistical model has
been constructed, the foreground mask of the new frame is gained by
using mean squared Mahakanobis distance, given by

Ml =

{
1

∣∣ (Gl−μl)

σl

∣∣ > τ l

0 otherwise
(5)

where τ l is the user-settable threshold.

2.2. Saliency-based Extraction Model

The up-sampled M̂m is first analyzed by extracting all the connected
components as regions-of-interest (ROIs). Each ROI is examined
individually in an attempt to extract the foreground mask, which is
calculated by combining some types of saliency. In this paper, we
use three types of saliency as follows, the intensity saliency Sm

I , the
shadow saliency Sm

S , and the contour saliency Sm
C . Note that, other

types of saliency can also be added to this model.
Same as the Single Gaussian Model, the mean and variance of

three color channel μm
r,g,b, σm

r,g,b are obtained based on the first N
learning frames. The intensity saliency Sm

I of the current middle-
resolution color frame Gm

r,g,b is calculated by using the composed
mean squared Mahakanobis distance, given by

Sm
I =

∑
i∈{r,g,b}

∣∣∣∣Gm
i − μm

i

σi

∣∣∣∣ (6)

The shadow saliency Sm
S is represented by the chromatic distortion

[11], given by

α = arg min
α

∑
i∈{r,g,b}

∥∥Gm
i − α · μm

i

∥∥
Sm

S =
∑

i∈{r,g,b}

∥∥Gm
i − α · μm

i

∥∥ (7)

The contour saliency Sm
C is represented by the minimum of the nor-

malized current gradient magnitudes and the normalized current-
background gradient-difference magnitudes [12],

Sm
C = min

(‖〈Gm
x ,Gm

y 〉‖
MAX

,
‖〈(Gm

x − μm
x ), (Gm

y − μm
y )〉‖

MAX

)
(8)

where Gm
x,y , μm

x,y are the x, y gradient magnitudes of the current
gray-level middle-resolution frame and gray-level background. And
the normalization factors are the respective maximum magnitudes
of the input gradients and the input-background gradient-differences
(denoted by MAX uniformly). The proposed three types of saliency
are normalized respectively before the further processing.

Correspondingly, four criterions are proposed to determine a
given middle-resolution mask Mm as follows: 1. mask Mm should

similar to the up-sampled mask M̂m; 2. sum of masked Sm
I by Mm

should as large as possible; 3. sum of masked Sm
S by Mm should

as small as possible; 4. mask edge Mm
E should close to Sm

C . Mm
E

is calculated by the sum of x, y gradient magnitudes, given by

Mm
E =

∣∣fx ⊗Mm
∣∣ +

∣∣fy ⊗Mm
∣∣ (9)

where fx, fy are the two differential-filters along x, y directions.

The first criterion is represented by ‖Mm −M̂m‖. The second

one is represented by ‖S̃m
I ‖, where S̃m

I,i,j = Sm
I,i,j · Mm

i,j (Note
that 1 � i � h, 1 � j � w, where h, w are the height and
width of the matrix). Same as the second criterion, the third one
is represented by ‖S̃m

S ‖. The fourth one is represented by ‖S̃m
C ‖,

where S̃m
C,i,j = Sm

C,i,j · Mm
E,i,j . In order to facilitate the calcu-

lation, mask matrixes Mm, M̂m are stacked into column vectors
Vm, V̂m, saliency matrixes SI,S,C, differential-filters hx,y are ar-
ranged into sparse matrixes HI,S,C, Hx,y , and convolution opera-
tion is translated into linear operation (detail information are illus-
trated in Appendix). Accordingly, we transform the four criterions as

‖Vm−V̂m‖, ‖HIVm‖, ‖HSVm‖, and ‖HCHxVm
E ‖+‖HCHyVm

E ‖,
respectively. By combining the above criterions, we can get that,

Vm = arg min
Vm

F (Vm)

= arg min
Vm

νN · ∥∥Vm − V̂m
∥∥ − νI ·

∥∥HIVm
∥∥ + νS ·

∥∥HSVm
∥∥

− νC ·
(∥∥HCHxVm

E
∥∥ +

∥∥HCHyVm
E

∥∥)
(10)

where νN, νI, νC, and νS are the four weighting constants. Thereby,
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Vm can be calculated from ∂F
∂Vm = 0, that is,

Vm =

(
J − νI

νN
HT

I HI +
νS

νN
HT

SHS

−νC

νN
HT

C

(
HT

xHx + HT
yHy

)
HC

)−1

V̂m
(11)

where J is the identity matrix. The middle-resolution mask Mm is
obtained by reshaping the vector Vm into the matrix.

2.3. Contour-based Refining Model

Same as the Saliency-based Extraction Model, contour saliency
Sh

C is calculated from the current frame Gh and the mean frame
μh, which is gained from the first N learning frames. The con-
tour saliency Sh

C is further smoothen with Gaussian gh
C , that is

Sh
C = Sh

C ⊗gh
C . The high-resolution mask Mh is thereby calculated

by refining the edge of initial up-sampled mask M̂h based on the
smoothed contour saliency Sh

C , given by

Mh = M̂h
i + M̂h

o (12)

where M̂h
i , M̂h

o are the inner and outer masks calculated as follows,

M̂h
i = M̂h � B

M̂h
o =

(
Sh

C > τh
)

&
(
M̂h ⊕ B − M̂h � B

)
(13)

where �, ⊕ are the erosion and dilation operation, B is the corre-
sponding 3 × 3 square block, and parameter τ l is the user-settable

threshold. From the Eqn.13 we can get that, M̂h
i represents the inner

part of the initial up-sampled mask M̂h, while M̂h
o is the thresh-

olded edge of the M̂h (thresholding by the contour saliency).

3. EXPERIMENTS AND RESULTS

For our method, all the parameters are empirical set as follows: learn
frames size N = 48, variance σ̂ = 10, threshold τ l = 6, weighting
constants νN = 0.01, νI = νC = νS = 1, and threshold τh = 0.05.
In order to evaluate the effectiveness as well as the robustness of our
method, we perform some experiments from three aspects: 1. the
detail output of each module; 2. the comparison with the ground
truth and the state-of-the-art.

Fig.2 presents the output masks of each module in detail. As
shown in this figure, the low-resolution masks only provide the
rough position of the moving object, while the middle ones interpret
the edge information well, especially shadows are removed. In the
high-resolution, the edges are further refined more accurate. The
three types of saliency proposed in Saliency-based Extraction Model
are detailed in Fig.3.

Table 1. Overview of the comparison of all methods (F-score).

Algorithm GMM Codebook LBP Ours

Bootstrap 0.452 0.665 0.611 0.800

Camouflage 0.979 0.976 0.897 0.982

Time of Day 0.918 0.909 0.760 0.924

Waving Trees 0.893 0.938 0.738 0.945

We compare our approach with the ground truth and state-of-
the-arts, such as the GMM [4], the Codebook [6] and the LBP [7].

Scenes Low Middle High-resolution Mask

Fig. 2. The overview of output masks of each module. From left to
right are the original frame, low-resolution mask, middle-resolution
mask, and high-resolution mask.

Intensity Shadow Contour

Fig. 3. The overview of three types of saliency: i.e. the intensity
saliency, shadow saliency, and contour saliency.

The video sequences are download from the website1. The results
are illustrated in Fig.4. The main challenges of these sequences arise
from two aspects, such as the illumination variations and the obvious
shadow. As shown in this figure, all the foregrounds can be correctly
extracted by our approach. We further use F-score to measure the
results. The F-score measures the segmentation accuracy by consid-
ering both the recall and the precision, which is defined as

F =
2 · TP

2 · TP + FN + FP
(14)

where TP, FP, and FN are the true positives (true foreground pixels),
false positives (the number of background pixels marked as fore-
ground pixels), and false negatives (the number of foreground pixels
that are missed), respectively. Tab.1 gives the numerical compari-
son of the proposed method with others. We also use another video
sequence2 to evaluate our method. The result is shown in Fig.5.

4. CONCLUSIONS AND FUTURE WORKS

A effective multi-resolution background subtraction algorithm is
proposed in this paper. The main contributions of this work are
from two-folds. First, the proposed multi-resolution scheme, coarse
to fine strategy, excellently compromise the computation cost with
the algorithm effectiveness. Second, the utilized middle-resolution
model, that is Saliency-Based Extraction Model, provides accuracy
of the calculation as well as the scalability of the algorithm. Some
future works should be taken into consideration, such as adding
other saliency models into the Saliency-Based Extraction Model to
make the background subtraction results better.

5. APPENDIX

The appendix interprets how to stack the mask matrix into a vector
and how to arrange the saliency matrix and filter into the sparse ma-

1research.microsoft.com/en-us/um/people/jckrumm/wallflower/testimages.htm
2http://cvrr.ucsd.edu/aton/shadow/data/intelligentroom.AVI
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Fig. 4. The comparisons of our method with ground truth and state-of-the-arts, such as the GMM [4], the Codebook [6] and the LBP [7].

Fig. 5. Comparison results of our method with the traditional meth-
ods. The test image sequence exists the obvious shadow where per-
son walking (see the video sequence).

trix. For a mask matrix M = {Mi,j |1 � i � h, 1 � j � w},
(h, w are the height and width of the mask matrix), the vector V (the
size of vector V is hw) is calculated as follow

Vij = Mi,j (15)

For a saliency matrix S = {Si,j |1 � i � h, 1 � j � w}, the sparse
matrix H is calculated based on two steps: 1. stacking saliency ma-
trix into a vector V , that is Vij = Si,j ; 2. arranging vector V into
the sparse diagonal matrix H = {Hi,j |1 � i � hw, 1 � j � hw}
(the size of sparse matrix H is hw × hw), given by

Hi,j =

{ Vi i = j
0 otherwise

(16)

For the filter fx =
[
1 −1

]
, the sparse matrix Hx = {Hx,i,j |1 �

i � hw, 1 � j � hw} (the size of sparse matrix Hx is hw × hw)
is calculated as follow

Hx,i,j =

⎧⎨⎩ 1 i = j
−1 i = j + 1 & i % w 
= 0
0 otherwise

(17)

where % is the modulo operation. For the filter fy =
[
1 −1

]T
, the

sparse matrix Hy is calculated as follow

Hy,i,j =

⎧⎨⎩ 1 i = j
−1 j = i + w
0 otherwise

(18)

The convolution operation ⊗ is translated into linear operation ac-
cording to the above two translations, given by

HxV � fx ⊗M HyV � fy ⊗M (19)
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