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   Abstract—Data with missing values, or incomplete information,
brings some challenges to the development of classification, as the
incompleteness  may  significantly  affect  the  performance  of
classifiers.  In  this  paper,  we  handle  missing  values  in  both
training and test sets with uncertainty and imprecision reasoning
by proposing a new belief combination of classifier (BCC) method
based on the evidence theory. The proposed BCC method aims to
improve  the  classification  performance  of  incomplete  data  by
characterizing  the  uncertainty  and  imprecision  brought  by
incompleteness.  In  BCC,  different  attributes  are  regarded  as
independent  sources,  and  the  collection  of  each  attribute  is
considered as a subset. Then, multiple classifiers are trained with
each  subset  independently  and  allow  each  observed  attribute  to
provide  a  sub-classification  result  for  the  query  pattern.  Finally,
these sub-classification results with different weights (discounting
factors) are used to provide supplementary information to jointly
determine the final classes of query patterns. The weights consist
of two aspects:  global and local.  The global weight calculated by
an optimization function is employed to represent the reliability of
each classifier, and the local weight obtained by mining attribute
distribution characteristics  is  used to  quantify  the  importance  of
observed  attributes  to  the  pattern  classification.  Abundant
comparative  experiments  including  seven  methods  on  twelve
datasets  are  executed,  demonstrating  the  out-performance  of

BCC  over  all  baseline  methods  in  terms  of  accuracy,  precision,
recall, F1 measure, with pertinent computational costs.
    Index Terms—Classifier  fusion,  classification,  evidence  theory,
incomplete data, missing values.
  

I.  Introduction

C LASSIFICATION is  a  traditional  and prevalent  problem
in  data  analysis,  aiming  to  identify  objects  to  the

categories  they  belong  to.  Incompleteness  problem in  data  is
one of critical challenges in classification applications, caused
by various  data  collection  or  access  mechanisms.  Incomplete
data, also called incomplete patterns or missing data, refers to
the  data  with  missing  values,  attributes,  or  contents1.  This
phenomenon  has  affected  classification  applications  with
unsatisfactory results [1]–[3]. The incompleteness of data is a
critical issue in risk-sensitive fields, such as industrial systems
[4],  [5],  health  management  [6]  and  financial  market  [7].
Many  methods  have  emerged  to  resolve  the  incompleteness
issues around three types of missing mechanism [4], [8]–[10]:
such as missing completely at random, missing at random, not
missing at random. These methods can be roughly categorized
into four groups:

1)  Deletion  methods.  The  pattern  with  missing  values  is
simply  discarded.  The  deletion  method  is  only  applicable  to
cases where the number of incomplete patterns accounts for a
small proportion (less than 5%) of the whole dataset [8], [11].
It  inevitably leads to  a  waste  of  patterns  that  are  difficult  (or
costly) to obtain sometimes.

2)  Model-based  methods.  The  missing  values  are  imputed
based on statistical assumptions of joint distribution, then the
fulfilled patterns are classified by conventional classifiers. For
example,  a  (supervised)  logistic  regression  algorithm  is
proposed  in  [12]  to  deal  with  incomplete  datasets,  where  the
missing values are modeled by performing analytic integration
with an estimated conditional density function (conditioned on
the  observed  data)  based  on  the  Gaussian  mixture  model
(GMM) [13]. However, the approximated model is not robust
enough, bringing over-fitting or under-fitting problems.

3)  Machine  learning  methods.  Incomplete  patterns  are
directly  used  to  train  some  specific  classifiers.  For  decision
trees,  in  algorithm  C4.5  [14],  missing  values  are  simply
ignored in gain and entropy calculations, while C5.0 [15] and
CART  neural  network  [16]  employ  imputative  frameworks
[17].  In  Hybrid  neural  networks  [18],  missing  values  are
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1 To  avoid  ambiguity,  we  apply  the  term incomplete  data  for  a  dataset  with
missing values, and incomplete pattern for a pattern with missing values.
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imputed  by  two  FCM  (fuzzy c-meams)  based  methods.  In  a
support  vector  solution  [19],  the  modified  support  vector
machine  generalizes  the  approach  of  mean  imputation  in  the
linear  case  by  taking  into  account  the  uncertainty  of  the
predicted  outputs.  In  word  embedding  models  [20],  the
missing  attributes  are  usually  valued  as  0,  which  can  be
regarded as  imputation.  When most  of  the  attributes  are  lost,
however,  the  classification  performance  of  these  methods  is
often unsatisfactory.

4)  Estimation  methods.  This  is  the  most  widely  used
methods for dealing with incomplete data. The missing value
is  replaced  (imputed)  with  an  estimation  [3],  and  then  the
pattern  with  estimations  is  classified  by  conventional
classifiers  (e.g.,  Bayes  classifier  [21]).  We  will  review  some
estimation-based methods separately.

There  are  some  popular  and  representative  methods  for
estimating  missing  values.  The  simplest  method  is  the  mean
imputation [22], where the missing values are imputed by the
mean of the observed values of the corresponding attribute. K-
nearest  neighbor  imputation  (KNNI)  [23]  is  another  simple
idea,  in  which  various  weights  depending  on  the  distances
between  the  neighbors  and  the  incomplete  pattern  are
designed  to  model  the  different  effects  of  neighbors  on  the
missing  values.  In  [24],  fuzzy c-means  imputation  (FCMI),
the  missing  values  are  imputed  according  to  the  clustering
centers  generated  by  FCM  and  the  distances  between  one
object  and  all  the  centers.  There  are  also  other  effective
methods  for  dealing  with  incomplete  data,  such  as  the  self-
organizing  maps  (SOM)  imputation  [9],  and  the  regression
imputation  [8],  [12].  In  particular,  a  fuzzy-based  information
decomposition  (FID)  method  [25]  was  proposed  recently  to
address  the  class  imbalance  and  missing  values  problem
simultaneously. In FID, the incomplete pattern is imputed and
used  to  create  synthetic  patterns  for  the  minority  class  to  re-
balance  the  training  data.  In  [26],  it  is  assumed  that  two
batches extracted randomly in the same dataset have the same
distribution. Then optimal transport distances are leveraged to
quantify that criterion and turn it into a loss function to impute
missing data  values.  Besides,  practical  methods are  proposed
to  minimize  these  losses  using  end-to-end  learning  that  can
exploit parametric assumptions on the underlying distributions
of  values.  Moreover,  some  works  [27]–[31]  are  devoted  to
multiple  imputations  for  missing  values  to  model  the
uncertainty  of  the  incomplete  pattern  caused  by  the  lack  of
information.  For  example,  in  [29],  a  novel  method,  based  on
the  generative  adversarial  network  (GAN)  framework  [32],
attempts  to  model  the  data  distribution  and  then  performs
multiple  imputations  by  drawing  numerous  times  to  capture
the  uncertainty  of  the  interpolated  values.  These  estimation-
based  methods  assume  reasonable  correlations  between
missing and observed values, which are not always reliable.

In addition to the issues mentioned above in each type, most
methods,  such  as  deletion,  model-based,  and  estimation
methods,  treat  only  missing  values  and  do  not  consider  the
negative  impact  of  missing  values  on  the  classification.
Although  machine  learning-based  methods  can  classify
missing values, they do not consider the uncertainty caused by
missing values in the process, therefore their performances are

sometimes  not  robust.  Targeting  on  these  limitations,  the
motivation  of  our  work  is  based  on  the  following  three
aspects.

1)  Comparing  to  the  deletion  method,  we  investigate  a
method that does not remove any observed information since
this information may be precious.

2)  Comparing  to  model-based  and  estimation  methods,  we
develop  a  method  that  does  not  introduce  new  uncertainties
since statistical assumption will cause uncertainty.

3)  Comparing  to  machine  learning  methods,  we  aim  to
improve  the  classification  performance  by  modeling  missing
values with uncertainty and imprecision considered.

Based on the above analysis, we observe that these methods
focus  on  the  test  set  and  assume  that  the  training  set  is
complete  in  most  cases.  When the  training set  is  incomplete,
the  incomplete  patterns  are  either  imputed  for  completion  or
deleted  directly.  Moreover,  these  methods  tend  to  directly
model  missing values,  such as estimation strategies or  model
prediction.  However,  this  would  bring  new  uncertainties
because estimated values can never replace the real world. In
this  case,  this  paper  aims  to  answer  an  important  question:
how to improve the classification accuracy of incomplete data
without  losing  information  or  introducing  new  uncertainty
information  in  the  presence  of  many  missing  values  in  both
training  and  test  sets?  To  drive  such  an  answer,  we  design  a
new  belief  combination  of  classifiers  (BCC)  method  for
missing data based on evidence theory.

Evidence theory [33],  [34] has been widely used in pattern
classification  since  it  is  an  efficient  tool  to  characterize  and
combine uncertain and imprecise information, and it can well
compromise (more or  less)  useful  supplementary information
provided  by  different  sources  in  classifier  fusion  [35]–[37].
For  instance,  a  classifier  combination  method  depending  on
the  concepts  of  internal  reliability  and  relative  reliability  is
proposed  for  classifier  fusion  with  contextual  reliability
evaluation  (CF-CRE)  [38]  based  on  evidence  theory,  where
the internal reliability and relative reliability capture different
aspects of the classification reliability.  For non-independence
classifiers,  the  literature  [35]  studies  a  method  of  combining
other  operators  (i.e.,  parameterized t-norm)  with  the
Dempster’s  rule,  aiming  to  make  their  behavior  between  the
Dempster’s rule and the cautious rule. In [36], the transferable
belief  model  (TBM)  [39],  an  uncertain  reasoning  framework
based  on  evidence  theory,  is  employed  to  improve  the
performances  of  mailing  address  recognition  systems  by
combining  the  outputs  from  several  postal  address  readers
(PARs).  Reputably,  the  idea  of  group  decision-making  is
introduced  in  [40]  for  reasoning  with  multiple  pieces  of
evidence  to  identify  and  discount  unreliable  evidence
automatically.  The  core  is  to  construct  an  adaptive  robust
combination  rule  that  incorporates  the  information  contained
in  the  consistent  focal  elements.  These  classifier  fusion
methods based on evidence theory have achieved satisfactory
performances.  However,  they  are  designed  for  complete
patterns.  The  uncertainty  brought  by  the  incompleteness  can
also be considered in the data process [6], [41], making one of
the key ideas of this paper.

The  proposed  method,  named  belief  combination  of
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classifiers  (BCC),  is  able  to  characterize  the  uncertainty  and
imprecision caused by missing values both in training and test
sets  without  imposing  assumptive  models.  The  main
contributions of this paper cover the following aspects:

1)  A novel  classification method based on evidence theory
is  proposed,  applicable  for  data  with  missing  values,  where
incompleteness may exist  in both training and query sets.  To
overcome  the  incompleteness  in  patterns,  classifiers  are
trained  by  subsets  of  attributes,  leading  to  sub-classification
results.

2)  Uncertainty  and  imprecision  reasoning  is  used  for
missing  values,  used  for  training  multiple  classifiers.
Afterwards,  multiple  evidential  sub-classification  results  are
combined for  a  final  decision.  Such designs  with  the  context
of uncertainty and imprecision make the classification results
more robust.

3)  An  optimization  function  is  designed  to  calculate  the
global weight to represent the reliability of each classifier,  as
well  as  the  local  weight  obtained  by  mining  attribute
distribution characteristics  is  used to  quantify  the  importance
of  observed attributes  to  the  pattern  classification.  Moreover,
abundant  experiments  are  conducted,  demonstrating  the
supremacy of BCC over many conventional methods in terms
of classification results.

The remainder of this paper is organized as follows. After a
brief  introduction  of  evidence  theory  in  Section  II,  the  belief
combination  of  classifiers  (BCC)  method  for  missing  data  is
proposed  in  detail  in  Section  III.  Simulations  results  are
presented  in  Section  IV to  evaluate  the  performance  of  BCC
with  different  real  datasets.  Finally,  Section  V  concludes  the
entire work and gives research perspectives.  

II.  Basics of Evidence Theory

Ω = {ω1, . . . ,ωc}

2Ω

Evidence  theory,  also  known  as  Dempster-Shafer  theory
(DST) or the theory of belief functions, is firstly introduced by
Dempster  [33],  then  developed  by  Shafer  in  his A
Mathematical  Theory  of  Evidence [34].  Evidence  theory  is
considered as an extended version of fuzzy set theory and has
been  widely  used  in  data  fusion  [36],  [39],  [40],  decision-
making [37], [42], [43], clustering [44]–[46] and classification
[47]–[49]  applications.  Evidence  theory  is  a  powerful
framework  for  imprecise  probability.  It  works  with  a
discernment  framework  (DF)  consisting  of c
exclusive  and  exhaustive  status  of  a  variable,  the  uncertainty
and  imprecision  degree  of  this  attributes  are  expressed  by
subsets  of  the  power-set  with  different  basic  belief
assignments (BBAs), also called mass functions of belief.

2Ω
m(·) 2Ω [0,1]

m(∅) = 0

In classification problems, the evidential class2 of a pattern
x under the power-set  is mathematically defined as a BBA
mapping  from  to ,  which satisfies  the  following
conditions:  and
 ∑

A∈2Ω
m(A) = 1 (1)

m(A) > 0where  represents  the  support  degree  of  the  object
associated  with  the  element A.  In  classification  problems, A

|A| = 1
|A| > 1 m(Ω)
may represent  singleton class with ,  or  meta-class with

. Ω denotes all elements and  is the degree of total
ignorance.  Total  ignorance usually plays a neutral  role in the
fusion  process  because  it  characterizes  the  vacuous  belief
source of evidence.

m1(·) m2(·) 2Ω
m = m1⊕m2

m(∅) = 0
∀A , ∅ ∈ 2Ω

In  multiple  classifier  fusion  processing,  each  classification
result can be regarded as an evidence source represented by a
BBA, and then the famous Dempster’s rule is used to combine
multiple  BBAs,  which  is  conjunctive,  commutative  and
associative.  The  DS  combination  of  two  distinct  sources  of
evidence characterized by the BBAs  and  over 
is  denoted  as ,  and  it  is  mathematically  defined
(assuming the denominator is not equal to zero) by ,
and  by
 

m(A) = (m1⊕m2)(A) =

∑
B,C∈2Ω
B∩C=A

m1(B)m2(C)

1− ∑
B,C∈2Ω
B∩C=∅

m1(B)m2(C)
(2)

with the whole conflicting factor smaller than 1. formally,
 ∑

B,C∈2Ω
B∩C=∅

m1(B)m2(C) < 1. (3)

Bel(·)
Pl(·)

BetP(·)

BetPm(·)

Evidential degree represented by a BBA m can be converted
into  Bayesian  probabilistic  values  by  belief  function ,
plausibility  function  and  pignistic  probability  function

,  respectively  representing  the  upper  bound,  lower
bound  and  intermediate  value  induced  from  a  BBA.  Herein,
we  introduce  only  the  pignistic  function  on m,  as
follows, which is applied in the proposed BCC method.
 

BetPm(A) =
∑

B∈2Ω,B,∅

|A∩B|
|B|

m(B)
1−m(∅) . (4)

Often,  the  probability  degrees  converted  from  BBA  are
applied for decision making over singletons in DF Ω.

There  are  also  a  few  methods  [31],  [41],  [50]  based  on
evidence theory to deal with incomplete data. For example, a
prototype-based  credal  classification  (PCC)  method  is
proposed  in  [31].  In  PCC,  the  incomplete  pattern  is  edited
with c possible  versions,  for  a c-class  problem,  to  obtain c
different classification results by a single classifier. Then the c
results  with  different  weights  are  fused  to  obtain  the  final
classification  of  the  incomplete  pattern.  Although  PCC  can
characterize uncertainty caused by missing values,  the estim-
ation  strategy  also  introduces  new  uncertainty  information.
Besides, it assumes that the training set is complete.  

III.  Belief Combination of Classifiers

This  section  presents  a  belief  combination  of  classifiers
(BCC)  method  based  on  evidence  theory  for  classifying
incomplete  data.  The  BCC  can  faithfully  make  use  of  the
observed  data  without  imposing  any  assumption  on  missing
values.

X Ω = {ω1, . . . ,

ωc} s ∈ {1, . . . ,S }
Given an S-dimensional dataset  in class DF 

.  The sth  ( )  dimension  of  attributes,  denoted

  
2 In  evidence  theory,  the  term evidential refers  to  variables  with  both
uncertainty and imprecision.
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Xs Cs
x ∈ X Xs

Cs
ωi i ∈ {1, . . . ,c} ps = {ps(1), . . . , ps(c)}

by ,  independently  trains  a  classifier,  denoted as .  For  a
pattern ,  based  on  the  attribute  knowledge  in ,
classifier  provides  a  probability  output  of  membership  to
classes , ,  denoted  as .  To
distinguish  from  the  final  classification  result,  we  call  the
classification  given  from  attribute  subsets  as  sub-
classification.  Therefore,  the  final  classification  accuracy  of
the  pattern  can  be  improved  by  a  discounted  combination  of
the results  of  the S classifiers,  where discounting indexes are
defined  by  the  reliable  prior  information  in  the  training  set.
The  discounting  indexes  depend  strongly  on  two  factors:  the
completeness  of  the  data  and the  importance  of  the  attribute,
respectively  referred  to  as  the  reliability  weight  and  the
importance weight.

x ∈ XFor  an  incomplete  query  pattern  with H observed
attributes, only H classifiers corresponding to the H observed
attributes could provide reliable results among S classifiers.

The  calculation  of  BCC  mainly  consists  of  three  steps:
evaluation  of  classifier  reliability,  evaluation  of  attributes’
importance, and the global fusion of classifiers with decisions.  

A.  Classifier Reliability Calculation

ωi ps(i) = 1 ps(t) = 0 t , i

ps(i)

Cs

Ideally, the output of each classifier would be perfect if it is
completely  consistent  with  the  truth,  i.e.,  the  query  pattern
truly belongs to class ,  and  for .  For
some  classifiers  returning  soft  classification  results,  such  as
Bayesian classifier [51] and multi-layer perceptrons (MLP) [52],

 is  the  returned  value  from  the  classifier,  indicating  the
probability  of  the  pattern  belonging  to  the  corresponding
class. However, this is usually not true as all  training subsets
cannot  train a classifier,  and the classifier  obtained by global
optimization  is  not  always  suitable  for  a  specific  query
pattern.  Therefore,  the  reliability  of  each  classifier  is  not
constant  and  should  be  reviewed.  After  that,  the  sub-
classification outputs with different reliabilities are combined
to make one final result for the query pattern. In the process of
obtaining  the  reliability  of  each  classifier,  all  patterns  in  the
training  set  are  employed.  The  reliability  is  estimated  as
follows:

Cs αs
1×S

α = [α1, . . . ,αS ]
∑S

s=1αs = 1, αs ∈ [0,1].
Xtrain Cs

x px
s = [px

s (1), . . . , px
s (c)] px

s (i)
ωi

px
s (i) ∈ [0,1]

∑c
i=1 px

s (i) = 1
Tx = [T x(1), . . . ,T x(c)],

Denote  the  reliability  of  classifier  by ,  the  reliability
values  of  all  classifiers  are  expressed  by  a  matrix

, subject to  Denote the
training set  by ,  the output  from classifier  on the sth
attribute  of  pattern  by ,  where 
represents  the  possibility  of x belonging  to  the  class ,  and

 with . The real class (ground truth)
of x is represented by  satisfying
 

Tx(i) =
{1, if L(x) = ωi
0, otherwise. (5)

Tx

Tx = [0,1,0] ω2

For  example,  in  a  3-class  problem,  is  valued  by
 if the pattern x belongs to the class .

α
Based  on  the  denotations  above,  an  optimised  reliability

matrix  can be developed by
 

argmin
α

(
S∑

∃s,s=1

αs ps−T). (6)

Therefore, a set of equations are constructed as follows:
 

∥∥∥∥∥∥∥∥
S∑

∃s,s=1

αs p1
s −T1

∥∥∥∥∥∥∥∥
2

= φ1

∥∥∥∥∥∥∥∥
S∑

∃s,s=1

αs p2
s −T2

∥∥∥∥∥∥∥∥
2

= φ2

...∥∥∥∥∥∥∥∥
S∑

∃s,s=1

αs pN
s −TN

∥∥∥∥∥∥∥∥
2

= φM

(7)

 

s.t.
S∑

s=1

αs = 1, αs ∈ [0,1] (8)

∥ · ∥where  represents  a  matrix  norm.  In  our  work,  the
Euclidean norm is accepted. In the calculation, the possibility
of  classification  caused  by  a  missing  value  (let’s  say  the sth
attribute of x is missing) is set as 0, formally
 

px
s = 0, if x(s) is missing. (9)

α
α

From the equations above, it  can be induced that a small φ
implies  a  better  weight  matrix .  Thus,  the  optimal
discounting matrix  is estimated by
 

α = argmin
α

 N∑
n=1

∥∥∥∥∥∥∥∥
S∑

∃s,s=1

αs pn
s −Tn

∥∥∥∥∥∥∥∥
2 (10)

n ∈ {1, . . . ,N}
Xtrain

α

where  with N denoting  the  number  of  patterns
included  in  the  training  set .  The  solution  of  reliability
matrix  is  a  classical  constrained  nonlinear  least  squares
optimization  problem,  which  can  be  estimated  by  the  active-
set  algorithm  [53].  In  our  work,  we  employ  the  sequential
quadratic  programming  (SQP)  method  based  on  the
constraints  (8),  with  the  estimation  of  the  Lagrange-Hessen
equation  updated  by  the  Broyden-Fletcher-Goldfarb-Shanno
(BFGS) formula (quasi-Newton method)3.  

B.  Attribute Importance Calculation

α

cloud

Many works have been devoted to exploring the importance
of attributes in various data analysis domains [6]. In this work,
the reliability matrix  of  classifiers  is  estimated by a global
optimal  combination  process,  which  may  not  apply  to  some
specific patterns. The discounting factors of evidence are also
related  to  the  distributions  of  (missing)  attributes  of  query
patterns.  As  a  simple  example, Fig. 1 illustrates  the
distribution  of  the  1st  and  5th  attributes  for  the  real  dataset,
named , from the UCI (University of California, Irvine)
repository (available at http://archive.ics.uci.edu/ml).

It  can  be  reported  from Fig. 1 that  the  distributions  of  the
5th  attribute  under  the  two  classes  are  quite  different.
Therefore,  the  cross-entropy  between  the  two  classes  in  the  
3 This  paper  focuses  on  the  classification  of  incomplete  data,  which  means
that  the  reliability  weight  can  be  obtained  by  the  proposed  optimization
strategy quickly based on the training set.
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5th  attribute  is  larger  than that  in  the  1st  attribute,  indicating
that the 5th attribute provides more prior information than the
1st  one.  Therefore,  it  is  reasonable  to  assign  different
importance weights to different attributes so that some of the
crucial attributes play more decisive roles while those who are
not very useful for classification are less influential.

βs
Vs

Vs, j
Ls Vs Ls, j

Vs, j
Ls, j ∈ {1, . . . ,c} Vs Ls

ρs
Vs Ls

There are many methods to extract  the correlation between
attribute distribution and the class of patterns. A popular one,
called  Pearson  product-moment  correlation  coefficient  [54]4,
is  adopted  to  estimate  the  attribute  weight .  Specifically,
denote  for  the  set  of  the sth  observed  attribute  of  all
training  patterns,  and  for  the  value  of jth  pattern.  To
build the set  of class labels for , we also define  to
represent  the  label  value  of  the  attribute  (value) ,

. Obviously,  and  are objective. Thus, the
Pearson  product-moment  correlation  coefficient  between
the sth  attribute  variable  and  the  class  variable  is
defined as follows:
 

ρs =
cov(Vs,Ls)
σVsσLs

=
E[(Vs−µVs )(Ls−µLs )]

σVsσLs

(11)

cov(Vs,Ls) Vs
Ls
|ρs| (ρs ∈ [−1,1])

|ρs|

βs

where  denotes  the  covariance  between  and
, σ the  the  standard  deviation, μ the  average  value,  and

 the  degree  of  linear  correlation  between  the
sth  attribute  and  the  class.  In  other  words,  a  smaller 
implies  less  prior  information provided by the distribution of
the sth  attribute  for  classification,  and  vice  versa.  The
importance  of the sth attribute is thereby defined by
 

βs =
|ρs|

S∑
s=1
|ρs|
. (12)

It should be noted that the distribution of missing values for
different patterns are different, thus, the local attribute weight
also  changes  depending on the  observed attributes  of x.  This
will be discussed in detail in the next part.  

C.  Global Combination of Classifiers and Final Decision
After  determining  the  reliability  and  importance  of  each

classifier,  the S sub-classification  results  are  globally
combined for the final decision on the query pattern.

1)  Global  Combination: Due  to  the  diversity  of  different
classifiers’ performances,  some of  the S classification  results
may strongly support different classes. In such a case, the final
results  merely  demonstrate  high  conflicts  if  the  Dempster’s

γs

rule  directly  combines  these  pieces  of  evidence.  Thus,  some
discounting  techniques  are  employed  to  weigh  the  impact  of
these  sources  of  evidence  in  the  global  fusion  process
differently. Since the weights of different outputs are not only
related  to  the  reliability α of  the  classifier,  but  also  the
importance β of  different  attributes,  the  joint  discounting
factor  of the sth output can be defined by
 

γs = αsβs. (13)

γs

H
H ∈ {1, . . . ,S }

γ̂h

Moreover, since the number and relative position of missing
attributes  are  different  for  query  patterns,  the  discounting
factor  of sth  output  should  adapt  to  such  difference.  To
avoid  such  effects,  we  provide  a  benchmark  to  normalize
discounting  factors.  For  the  specific  query  pattern x with 
available  attributes, ,  the  relative  discounting
factor  is defined by
 

γ̂h =
γh

max
j
γ j
, h, j = 1, . . . ,H (14a)

 

max
j
γ j =max{γ1, . . . ,γH}. (14b)

γ̂h

γ̂h
γ̂hmh

With  factor  generally  discounting  the hth  classification
result,  the  discounting  method  proposed  by  Shafer  [34]  is
employed  for  the  fusion  of  differently  discounted  BBAs.
According  to  the  Shafer’s  method,  the  discounted  BBA with
discounting factor , denoted by , is given by
 γ̂hmh(A) = γ̂hmh(A), ∀A ∈ 2Ω

γ̂hmh(Ω) = γ̂hmh(Ω)+1− γ̂h.
(15)

In (15), the information is discounted by a belief degree on
the total ignorance represented by all possible results, denoted
by the DF Ω. Total ignorance Ω plays a neutral role in fusion
process,  thus,  high  conflicts  among  different  classification
results  are  well  managed.  With  this  proper  mechanism  of
conflict management, the outputs can be fused directly by the
Dempster’s  combination  rule,  defined  in  (2).  In  such  a  case,
the  Dempster’s  rule  can  offer  a  reasonable  compromise
between  the  specificity  of  the  result  and  the  level  of
complexity of the combination.

mxThe combined global BBA  representing the final credal
classification result for pattern x is calculated by
 

mx(A) =
⊕

h∈{1,...,H}
mh

x(A), A ∈ 2Ω (16)

mh
x

⊕
where  denotes  the  discounted  sub-classification  results
depending  on  the  output  of  the sth  attribute,  and  the
Dempster’s rule (2).

L(x)

mx BetP(mx)

2) Decision Making: For a query pattern x, its label  is
decided  based  on  the  probability  in  the  frame  of  Ω,  induced
from  the  global  BBA  with  pignistic  function ,
reference (4). The decision is simple, solely the class with the
highest possibility is selected, formally
 

L(x) = argmax
A∈Ω

(BetP(mx(A))). (17)

The  pseudo-code  of  BCC  method  is  given  in  Algorithm  1
for convenience.
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Fig. 1.     The distribution of attributes in different classes with cloud dataset.
 

  
4 It  is  used  to  measure  the  similarity  between  two  sets  of  variables.  Other
correlation  coefficients,  such  as  Spearman’s  correlation  coefficient  [55],
Kendall’s correlation [56] are also applicable.
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Algorithm 1: Belief combination of classifiers

Xtrain = {x1, . . . , xM} Xtest = {x1, . . . ,

xN } C
Require: Training  set: ;  Test  set: 
; A basic classifier: .

Ensure: Class decision results
Xtrain Xtest1: function BCC training data , test data 

S Xs
train2:　　Reconstruct the  training subsets, ;

S Cs3:　　Train  corresponding basic classifiers, ;
4:　　Construct  the  reliability  optimization  equations  by  (6)  and

 (7);
5:　　Optimize classifier reliability matrix by (10) with constraint

  of (8);

ρs

6:　　Obtain the Pearson product-moment correlation coefficient
   by (11);

7:　　Calculate local attribute importance by (12);
i = 18:　　for  to N do

xi9:　　 Obtain  the  classification  results  of  with  the  trained
  classifiers;

γs10:　　Calculate the joint discounting factor  by (13);
γ̂h11:　　Extract  the  relative  discounting  factor  by  (14a)  and

  (14b);
12:　　Discount these different evidence by (15);
13:　　Fuse these different evidence by (16);

xi14:　　Classify the query pattern  and decide by (17).
15:　　end for
16:　　return class label
17: end function

  

D.  Discussion

m(A)
pi = p(ωi)

m(A) ωi

1)  Selection  of  Basic  Classifiers: Since  we  focus  on
improving  the  accuracy  of  classifying  incomplete  data  rather
than improving the classifier’s performance, any classifier can
be  employed  in  principle.  However,  in  the  combination
process, each observed attribute is considered an independent
pattern.  In  such  a  case,  the  patterns  used  to  train  the  basic
classifier  are  1-dimensional.  Therefore,  it  is  better  to  choose
those  general  classifiers  as  benchmarks  rather  than  those
designed  specifically  for  high-dimensional  data.  Most  of  the
conventional  classifiers  are  designed  with  the  framework  of
probability,  so  the  focal  element A usually  represents  a
specific  class  under  the  framework  Ω  in  (7),  thereby
considering  specific  classes  as  an  admissible  solution  of  the
classification.  Nevertheless,  there  are  also  some  classifiers
based  on  the  framework  of  belief  functions  [47],  which  can
generate specific classes as well as the total ignorant class Ω.
In such a case,  is the belief mass committed to the focal
element  (class) A in  (15).  Of  course,  is  equal  to

 if the focal element A represents the specific class  in
(7).

2)  Selection  of  Combination  Rule: For  the  selection  of
combination  rule,  it  is  known  that  numerous  combination
rules  exist  dealing with different  kinds of  evidence resources
and  conflicts.  However,  our  goal  is  not  to  propose  a  new
combination  rule  but  to  improve  the  classification
performance by reasonably characterizing the uncertainty and
imprecision  caused  by  missing  values  based  on  evidence
theory  when  classifying  incomplete  data.  A  number  of

experiments  prove  that  this  is  feasible.  In  fact,  many
combination  rules  have  been  proposed  when  dealing  with
conflicting evidence, such as Smet’s rule [57], Yager’s rule [58],
Dubois-Prade  (DP)  rule  [59]  and  proportional  conflict
redistribution (PCR) rules [60].

The property of associativity is important in our application
since  the  fusion  of  multiple  evidences  are  calculated  in  a
sequential  way  in  which  the  order  makes  no  difference.  The
above  rules  are  not  associative,  which  makes  them  less
attractive  in  applications.  High  conflict  within  evidence
sources  is  another  issue  in  information  fusion  which  often
makes results hardly reliable. By considering these two issues,
in our method, the sources of evidence are firstly modified to
prevent (possible) highly conflicts, and then combined by the
Dempster’s rule to determine the final class of query patterns.
Based  on  the  Shafter’s  discounting  method,  the  whole
conflicts  are  distributed  to  total  ignorance  Ω  due  to
normalization when different evidences are highly conflicting
or in some special low-conflict situations.  

IV.  Experiment Applications

To  validate  the  effectiveness  of  BCC  method  confronting
missing  data,  a  number  of  benchmark  datasets  are  employed
to compare with several other conventional methods based on
four common criteria: 1) accuracy (AC); 2) precision (PE); 3)
recall (RE); 4) F1-measure (F1) [61].  

A.  Methods for Comparison
The  classification  performance  of  this  new  BCC  is

evaluated  by  comparisons  with  several  other  conventional
methods  including  mean  imputation  (MI)  [22], K-nearest
neighbors imputation (KNNI) [23], fuzzy c-means imputation
(FCMI) [24], prototype-based credal classification (PCC) [31],
fuzzy-based information decomposition (FID) [25], generative
adversarial  imputation  nets  (GAIN)  [29]  and  batch  Sinkhorn
imputation  (BSI)  [26].  In  MI,  the  missing  values  in  the
training  set  are  replaced  by  the  average  values  of  the  same
class, and the missing values in the test set are imputed by the
means  of  the  observed  values  of  the  position  in  the  training
set.  In  KNNI,  the  incomplete  pattern  in  the  training  set  is
estimated  by  the  KNNs  with  different  weights  depending  on
the distance between the pattern and the neighbors in the same
class, and the incomplete pattern in the test set is estimated by
the global KNNs. Since the training set is complete by default
in FCMI, PCC, and FID, we thereby use the average values of
the  class  to  impute  the  missing  values  in  the  training  set,
similar to MI. In FCMI, the missing values in the test set are
imputed according to the clustering centers generated by FCM
and the distances between the object and the centers. In PCC,
the  incomplete  pattern  in  the  test  is  imputed  with c possible
versions  for  a c-class  problem,  while  the  centers  of c classes
are obtained from the training set. In FID, the missing values
in  the  test  set  are  estimated  by  taking  into  account  different
contributions  of  the  observed  data.  In  GAIN,  generative
adversarial  nets  are  trained  to  estimate  the  missing  values  in
the  test  set.  In  BSI,  the  missing  values  in  the  test  set  are
imputed  by  minimizing  optimal  transport  distances  between
quantitative  variables.  For  all  parameters  of  the  compared
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methods, we use the default values as in the original papers.
Different  from  the  above  methods,  the  proposed  BCC

considers  each  attribute  as  an  independent  source,  and  the
collection  of  each  attribute  is  considered  as  a  subset.
Afterward, each subset trains a classifier independently, which
allows each observed attribute  to  provide a  sub-classification
result  for  the  query  pattern.  Then  these  sub-classification
results with different weights (discounting factors) are used to
provide  supplementary  information  to  jointly  determine  the
final classes of query patterns.  

B.  Basic Classifiers
In  our  simulations,  K-NN  technique  [62],  evidential K-

nearest  neighbor  (EK-NN)  [47]  and  Bayesian  classifier
(Bayes) [21] are employed as the basic classifiers to generate
pieces  of  evidence.  In  the  Bayesian  classifier,  Gaussian
distributions  are  assumed  for  each  attribute.  For  the
parameters  in  the  classifier,  we  apply  the  default  values
identical  to  the  original  papers.  The  outputs  of  EK-NN  are
BBAs consisting of the singletons and the total ignorance, and
the  outputs  of  K-NN and  Bayesian  classifiers  are  probability
values. Both BBAs and probability can be directly applied to
the  optimal  combination  in  the  BCC method  as  explained  in
Section III-D.  

C.  Benchmark Datasets
Twelve  datasets  from  the  UCI  repository  are  used  to

evaluate  the  effectiveness  of  BCC  with  comparison  to  main
conventional methods. The basic features of these datasets are
shown  in Table I,  including  number  of  classes  (#Class),
number of attributes (#Attr.) and number of instances (#Inst.).
The  size  of  each  dataset  is  defined  by  the  number  of  its
attributes (#Attr.) and the number of instances (#Inst.).
 

TABLE I 

Basic Information of the Used Datasets

Datasets #Class #Attr. #Inst.

Iris (Ir) 3 4 150

Cleve (Cl) 2 13 296

ILPD (IL) 2 10 583

Abalone (Ab) 18 8 4139

Vehicle (Ve) 4 18 946

Heart (He) 2 13 270

White wine quality (Ww) 7 11 4898

Wine (We) 3 13 178

Cloud (Co) 2 10 1024

Parkinsons (Pa) 42 21 5875

Knowledge (Kn) 4 5 403

Red wine quality (Rw) 6 11 1599

 
 

ϕ

In  the  experiments,  each  attribute  independently  recons-
tructs  a  subset  and  trains  a  basic  classifier.  In  order  to
demonstrate  the  effectiveness  under  different  incompleteness
levels,  in  the  training  and  test  sets,  we  assume  that  each
pattern  has  missing  (unobserved)  values  with  missing-

ϕ
completely-at-random  mechanism.  In  experiments,  different
values  of  are  employed  to  verify  the  performance  of  the
BCC method.  

D.  Performance Evaluation

ϕ

ϕ ϕ

ϕ

ϕ

We use  the  simplest  2-fold  cross  validation.  Since  the  size
of  the  training  and  test  sets  are  equal,  all  patterns  can  be
respectively  used  for  training  and  testing  on  each  fold.  The
program  is  randomly  run  10  times5,  and  the  performance  of
BCC  is  shown  for  various ,  denoting  the  number  of  miss-
ing  values  for  each  training  and  test  pattern,  as  reported  in
Tables II–VII.  Specifically,  the  accuracy  values  (AC)  for  the
compared  methods,  based  on  K-NN,  EK-NN and  Bayesian
basic  classifiers6,  are  respectively  reported  in Tables II, IV
and VI. Other indexes, PE, RE, F1, are recorded in Tables III,
V, and VII, with K-NN, EK-NN and Bayesian basic classifiers
integrated  respectively.  In Table III,  taking  the  Cl  dataset  as
an example, PE is the average value with different  (  = 4, 6,
8  in Table II),  based  on  the  K-NN classifier.  In  addition,  the
average  histograms  for  with  different  datasets  and  basic
classifiers are plotted in Fig. 2 to compare the effectiveness of
BCC  more  intuitively. y-axis  represents  the  accuracy,
calculated  by  the  average  of  the  outputs  with  different  in
Tables II, IV and VI.

From these results, it can be observed that the BCC method
generally  provides  better  results  compared  to  other
conventional  methods  in  most  cases.  Moreover,  these  results
support us to make the following analysis.

As  typical  single  imputation  strategies,  MI,  KNNI,  and
FCMI predict possible estimations of missing values based on
different  mechanisms,  but  such  estimations  may  not  be
reasonable  enough.  For  example,  in  KNNI,  similar  patterns
(neighbors)  are  employed  to  impute  missing  values.  In  this
case,  the  selection  of  similarity  measure  norm is  an  essential
process. If an inappropriate measure is chosen, unsatisfactory
results  are  often  obtained.  Moreover,  the  disadvantage  of
direct  modeling  of  missing  values  is  that  it  is  impossible  to
avoid bringing new uncertainties because estimation can never
replace  the  real  world.  Furthermore,  only  modeling  missing
values  is  insufficient  because  the  uncertainty  caused  by
missing  values  can  also  negatively  affect  the  classifier’s
performance.  Therefore,  we  can  see  that  the  results  obtained
by these methods are often not satisfactory.

PCC  and  GAIN  are  multiple  imputation  strategies,  which
means  that  a  missing  value  may  be  estimated  as  multiple
versions  to  characterize  the  uncertainty.  This  is  an
improvement and reasonable in some ways, however, multiple
estimations  are  not  always  better  than  single  estimation
strategies [63]. In particular, as an imputation strategy, GAIN
models  the  uncertainty  of  missing  values  but  still  does  not
characterize the uncertainty and imprecision in the model and
results from a classification perspective. On the other hand, as
an  evidence  theory-based  method,  PCC  is  similar  to  the
proposed  BCC  method  in  characterizing  the  uncertainty  and  
5 All results demonstrated in this paper are average values.
6 The differences between the chosen classifiers are beyond this paper.
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imprecision caused by missing values.  However,  in PCC, the
use  of  class  centers  as  a  benchmark  for  estimating  missing
values is unreasonable and does not assess the reasonableness
and  necessity  of  multiple  estimations.  Therefore,  it  can
characterize  the  imprecision  in  the  results,  but  the
performance is still not good enough.

As  the  latest  work,  FID,  GAIN,  and  BSI  have  proposed
some  feasible  solutions  from  data  distribution  but  only
partially  address  the  problem  of  modeling  incomplete  data.
For  example,  GAIN  and  BSI,  as  model-based  methods,  are
dedicated to perfectly approximating the real world,  which is

practically  impossible.  In  particular,  BSI  assumes  that  two
random batches from the same dataset should follow the same
distribution.  Still,  in  some  scenarios,  the  distribution  of  the
data  itself  is  hard  to  estimate.  If  the  data  distribution  is  not
modeled  precisely  enough,  the  reasonableness  of  the
estimations  is  questionable.  FID  is  a  pioneering  work  that
works on both incomplete and imbalanced data classification.
In  FID,  the  imbalance  is  also  considered  incomplete  data,  so
its  essence  is  still  a  classification  of  incomplete  data.
However,  the  classification  results  are  also  less  than  ideal
because  the  process  does  not  reasonably  characterize  the

 

TABLE II 

The Accuracy (AC) of Different Methods With K-NN Classifier (%)

Datasets ϕ MI KNNI FCMI PCC FID GAIN BSI BCC

4 65.98±2.59 65.54±3.82 64.05±4.85 67.57±2.78 62.57±3.33 62.43±3.04 68.24±2.65 75.81±5.15

Cl 6 65.03±2.38 64.53±5.26 64.39±2.89 68.04±3.09 57.36±4.24 58.78±3.48 64.18±3.24 73.65±2.66

8 62.16±4.16 63.85±3.34 61.96±5.01 68.45±4.19 54.05±3.70 58.10±4.52 68.24±3.16 70.14±3.89

4 68.66±1.31 60.79±6.05 64.55±2.57 67.02±1.85 66.71±2.80 66.91±1.83 64.38±2.14 71.92±3.17

IL 6 70.45±0.82 58.73±3.15 57.71±5.82 65.86±2.06 64.97±3.67 62.79±0.67 63.01±1.35 71.09±1.21

8 69.38±1.42 62.16±0.73 54.97±4.56 63.05±3.71 65.79±2.70 65.34±1.33 61.98±1.92 70.80±1.37

5 80.06±1.19 89.06±0.55 90.47±1.08 92.52±0.95 68.15±1.71 92.66±0.92 93.17±1.26 93.44±0.90

Co 7 72.99±1.38 85.55±0.07 85.20±1.82 88.12±1.56 64.97±3.67 85.70±1.95 87.89±2.03 90.27±1.23

9 64.99±1.66 78.32±0.83 76.88±2.51 80.16±1.88 65.79±2.70 74.41±1.84 71.50±2.13 82.11±2.34

1 43.76±0.64 44.00±1.36 43.79±0.96 43.85±0.80 43.45±1.73 45.41±0.78 47.63±1.52 48.67±0.58

Ww 2 42.79±0.56 42.60±0.68 41.22±0.97 42.94±1.57 41.79±0.75 43.54±0.68 45.77±0.69 48.06±0.51

3 42.23±0.89 41.83±0.73 40.66±0.98 41.20±0.95 41.56±0.57 42.87±1.04 44.54±0.64 46.80±0.46

6 62.96±2.21 62.59±3.67 61.63±3.93 69.48±3.79 56.15±4.56 61.62±1.91 73.07±3.46 73.19±5.68

He 8 59.15±3.22 62.96±2.10 63.63±2.50 68.81±4.33 54.52±3.22 60.44±2.59 70.68±4.51 71.85±3.19

9 58.33±2.91 61.11±3.67 62.81±3.98 66.59±3.60 51.04±2.76 56.89±5.11 67.42±3.13 69.78±3.53

3 61.35±3.22 68.54±5.21 63.03±4.81 76.29±4.57 56.74±4.41 68.31±2.90 91.01±3.43 91.57±3.05

We 5 55.17±3.51 71.91±4.90 64.04±6.51 75.28±4.71 49.10±5.14 68.76±4.99 88.76±4.37 90.00±3.57

7 49.66±3.29 67.64±4.16 58.88±4.24 73.15±3.84 47.30±5.86 66.97±5.19 83.14±3.45 86.18±4.21

1 77.53±3.86 92.53±2.42 91.87±2.84 93.33±3.27 78.00±5.38 92.00±3.77 89.33±3.42 94.93±1.74

Ir 2 60.20±2.53 89.07±4.75 87.47±3.34 89.87±2.68 61.87±6.98 89.13±3.99 82.66±3.36 89.33±3.13

3 46.40±3.42 74.93±3.18 76.27±4.90 75.47±7.42 53.47±7.53 75.13±2.59 62.66±2.14 76.73±3.82

8 41.26±1.40 49.57±2.13 46.24±2.41 47.94±2.34 39.08±1.87 52.50±2.67 54.13±2.78 53.05±2.26

Ve 10 36.78±1.98 46.49±2.53 40.73±2.23 45.01±2.19 35.56±2.36 51.67±3.92 48.93±2.48 51.99±2.57

16 26.89±1.17 38.53±2.13 33.74±2.49 34.92±1.83 29.08±1.98 37.21±1.83 34.04±2.75 39.23±2.95

2 61.11±2.84 61.22±0.29 63.27±3.28 61.88±3.45 45.00±3.15 66.71±2.47 52.47±2.89 67.08±3.56

Kn 3 50.54±2.55 53.63±0.57 50.99±5.36 48.66±2.15 38.56±4.40 59.70±4.08 42.07±2.21 60.25±3.23

4 38.02±2.85 44.05±2.62 38.91±3.75 38.71±3.80 36.24±3.48 47.00±2.61 41.08±3.04 45.94±3.83

1 47.19±1.32 47.79±1.49 47.15±1.75 48.20±1.60 47.01±0.60 49.17±0.80 52.12±2.47 52.17±1.80

Rw 2 46.69±1.39 45.96±1.06 46.86±1.54 47.45±1.12 45.39±1.39 48.07±1.05 51.36±1.68 52.12±1.19

3 45.11±1.01 44.96±0.47 45.00±2.13 46.71±1.35 45.04±2.09 47.92±2.06 50.47±2.34 51.54±1.58

2 21.07±0.36 22.75±0.58 22.91±0.98 22.86±1.49 19.84±0.65 22.53±0.35 23.14±0.45 23.75±0.63

Ab 4 18.60±0.56 20.95±0.33 22.38±0.69 21.72±0.84 18.18±0.65 21.37±0.61 21.78±0.26 22.62±0.27

5 17.98±0.48 20.69±0.07 21.32±1.10 21.14±0.78 17.30±1.15 20.68±0.55 20.19±0.19 22.38±0.24

5 40.30±0.94 54.81±1.01 45.13±1.80 63.82±2.35 32.59±0.70 44.45±1.13 74.77±1.41 82.05±0.77

Pa 7 31.11±0.86 48.62±0.25 36.49±0.28 61.94±0.51 24.78±0.82 36.43±1.87 66.30±2.04 75.85±1.45

9 24.13±1.54 43.57±0.25 29.62±0.86 56.74±0.63 19.19±0.43 30.90±3.61 52.45±2.49 65.71±2.80
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TABLE III 

The PE, RE and F1 of Different Methods With K-NN Classifier (%)

Datasts
MI KNNI FCMI PCC FID GAIN BSI BCC

PE RE F1 PE RE F1 PE RE F1 PE RE F1 PE RE F1 PE RE F1 PE RE F1 PE RE F1

Cl 64.60 64.16 63.72 64.71 64.73 64.60 63.88 63.50 62.87 68.24 68.18 67.82 58.01 57.54 57.01 60.05 59.80 59.39 68.23 67.02 66.36 73.60 72.50 72.39
IL 84.02 65.03 62.92 83.26 83.94 83.50 83.62 84.81 83.82 86.35 86.22 86.23 54.86 53.16 52.49 64.11 53.07 52.39 57.27 51.06 50.48 88.15 87.96 88.00

Co 60.41 59.07 57.78 62.62 61.86 61.04 62.18 62.14 61.95 68.09 68.08 67.85 53.55 53.19 51.91 68.65 63.16 63.34 68.52 63.44 63.09 72.16 71.67 70.35

Ww 22.58 18.84 19.06 23.48 19.39 19.83 23.35 19.87 20.22 24.09 20.04 20.54 23.13 18.71 18.92 25.82 19.87 20.20 24.76 23.16 23.42 27.91 24.09 24.38

He 60.41 59.07 57.78 62.62 61.86 61.04 62.18 62.14 61.95 68.09 68.08 67.85 53.55 53.19 51.91 59.01 58.75 58.17 71.28 70.77 69.56 72.16 71.67 70.35

We 62.15 55.73 53.69 68.18 68.62 67.03 61.62 61.57 60.01 75.61 74.20 73.91 49.88 49.90 45.64 68.11 66.78 65.65 89.45 88.85 88.79 89.65 89.79 89.36

Ir 80.73 61.64 58.81 85.96 85.71 85.39 86.07 85.38 85.29 86.86 86.56 86.31 70.01 64.87 64.74 86.60 86.07 86.44 79.76 78.50 78.44 87.45 87.20 86.86

Ve 41.34 34.86 29.70 45.10 45.32 43.27 40.21 40.82 37.97 42.48 42.79 42.09 35.48 34.84 34.28 47.73 47.63 46.89 47.89 47.30 47.22 47.80 48.47 47.37

Kn 61.85 43.86 42.01 53.22 50.60 51.13 54.65 49.26 49.21 49.30 49.51 47.98 41.01 35.66 33.28 58.14 55.13 55.09 48.42 42.78 42.44 60.13 55.05 55.44

Rw 23.52 20.80 20.54 26.22 21.96 22.42 23.20 21.44 21.24 23.74 21.77 21.76 22.75 19.98 19.67 26.52 21.30 21.10 26.78 21.47 21.09 27.03 22.40 21.53

Ab 12.41 8.18 7.00 15.45 17.31 15.35 15.28 14.97 13.68 15.85 17.58 15.69 11.92 10.44 10.23 16.14 14.01 13.56 16.11 14.46 13.32 17.43 15.47 15.01
Pa 42.68 32.00 32.95 52.50 49.32 49.79 44.27 37.09 38.32 63.17 60.93 61.17 31.29 25.46 26.23 42.42 37.29 37.81 64.42 64.21 64.38 75.44 74.93 74.43

 

 

TABLE IV 

The Accuracy (AC) of Different Methods With EK-NN Classifier (%)

Datasets ϕ MI KNNI FCMI PCC FID GAIN BSI BCC

4 63.72±1.93 62.70±3.89 66.76±2.63 67.03±3.86 57.36±4.21 60.54±3.26 70.94±4.76 75.00±1.72

Cl 6 63.24±4.67 62.57±3.04 60.54±5.50 70.54±5.09 54.46±6.49 54.18±7.63 60.81±4.45 72.16±3.59

8 59.32±3.28 66.22±4.35 66.22±5.47 69.59±4.25 52.57±3.64 54.72±4.16 48.86±3.28 70.14±4.04

4 70.82±1.36 60.34±6.02 67.33±3.41 68.42±2.51 67.67±5.40 69.93±1.94 70.89±2.13 71.30±3.04

IL 6 70.31±1.14 59.45±3.29 60.48±6.72 66.64±1.89 69.28±1.42 69.86±1.47 70.27±1.48 70.62±1.77

8 67.33±2.17 63.15±2.15 54.45±6.22 63.15±0.99 67.71±2.24 65.13±4.63 69.86±1.98 69.52±1.43

5 80.51±1.01 89.10±1.56 90.94±1.16 92.97±1.32 74.10±3.40 91.40±2.45 91.60±1.63 94.39±0.33

Co 7 74.28±1.31 84.18±0.85 85.16±1.04 88.63±0.72 64.47±2.07 86.05±2.75 87.69±2.44 89.06±1.85

9 63.52±3.11 76.50±1.77 77.38±1.16 79.57±0.92 61.35±2.89 75.35±2.11 66.60±2.87 79.98±1.02

1 49.24±0.86 49.45±0.76 49.20±1.15 50.09±0.80 49.14±0.83 49.96±1.14 50.67±1.23 51.57±0.54

Ww 2 46.08±0.36 46.15±1.12 44.91±0.77 46.18±1.19 45.75±0.90 47.21±0.71 48.28±1.08 47.52±0.77

3 43.35±0.55 42.97±1.26 40.90±1.28 42.85±1.06 44.37±0.92 44.56±1.35 44.12±0.98 45.02±0.77

6 61.26±2.64 61.73±1.86 60.44±5.46 72.19±4.58 54.00±4.42 58.81±3.03 66.67±3.57 72.44±2.48

He 8 60.07±2.10 62.47±1.54 65.33±5.68 71.48±3.33 53.78±6.21 53.33±4.23 68.89±4.26 71.56±4.04

9 57.85±1.24 62.96±2.96 63.11±5.77 70.81±3.50 51.70±6.04 56.88±5.50 55.56±5.43 71.26±3.12

3 60.34±3.19 67.42±2.25 66.74±3.86 78.20±2.59 54.49±7.31 65.84±3.85 89.88±4.17 91.69±3.33

We 5 54.38±2.86 65.17±2.25 62.70±4.38 72.58±3.86 49.89±5.16 71.23±5.42 87.32±5.31 89.66±3.08

7 50.22±2.87 65.17±4.49 56.18±5.02 81.12±3.22 44.04±2.95 65.16±4.27 86.21±3.09 86.97±3.04

1 77.47±2.28 92.00±0.00 90.93±4.04 93.33±4.81 74.53±7.38 92.53±2.42 93.33±1.53 93.87±2.02

Ir 2 62.27±5.87 92.44±4.07 89.33±3.40 91.47±1.19 58.13±6.33 91.99±1.88 89.33±1.45 90.40±1.46

3 48.13±4.77 75.11±2.78 75.47±3.07 74.40±5.28 51.07±6.45 91.46±1.52 74.66±1.79 65.87±9.02

8 40.71±1.52 50.43±1.93 45.15±3.29 48.37±3.14 37.64±2.78 52.60±3.29 54.48±2.46 53.14±1.06

Ve 10 38.37±1.34 47.83±1.52 44.73±4.59 47.66±2.71 35.25±2.94 50.82±2.00 47.46±3.27 51.39±1.08

16 28.09±1.57 35.15±0.36 34.14±0.76 35.70±2.61 27.71±2.08 38.39±2.09 31.91±2.90 39.20±1.50

2 60.50±2.69 64.19±3.30 63.27±2.20 60.69±4.12 41.34±3.28 67.29±2.69 50.00±2.98 69.21±2.63

Kn 3 51.53±2.52 53.80±2.81 50.89±2.49 50.50±2.62 37.57±4.17 58.31±2.99 42.57±2.46 62.18±3.55

4 37.67±1.69 45.21±5.08 38.51±4.57 37.62±1.64 33.42±1.96 39.10±3.19 38.11±3.25 46.44±5.72

1 51.89±0.89 53.04±1.09 51.90±1.14 51.15±1.88 49.61±1.66 52.92±1.98 52.76±1.87 53.25±1.69

Rw 2 48.15±1.37 50.96±1.82 47.52±1.21 49.33±1.21 46.79±1.50 51.37±0.57 51.25±0.81 51.42±1.91

3 45.88±1.23 47.42±3.34 46.05±1.62 48.88±1.30 45.09±1.95 49.15±1.52 50.37±1.19 50.96±2.42

5 19.55±0.91 22.37±1.17 23.24±0.50 23.12±0.85 19.17±1.05 22.32±0.85 22.27±0.98 23.46±0.99

Ab 7 18.04±0.45 20.40±1.16 22.54±1.10 22.20±0.48 17.30±0.81 20.93±0.79 20.91±1.01 22.75±0.97

9 17.68±0.38 20.38±0.53 21.58±1.14 21.28±0.34 16.75±1.06 19.84±1.37 19.85±0.77 21.67±1.20

5 39.67±0.83 58.29±1.27 44.70±0.91 63.86±0.93 40.99±0.93 54.32±2.18 74.33±1.74 84.01±0.95

Pa 7 30.41±1.02 52.58±0.21 35.92±1.46 59.81±1.27 30.76±0.78 45.60±1.29 65.75±1.95 77.37±1.72

9 24.24±1.37 47.46±0.19 30.44±1.01 56.94±1.06 23.83±0.62 38.81±4.97 54.39±2.36 68.80±2.44
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TABLE V 

The PE, RE and F1 of Different Methods With EK-NN Classifier (%)

Datasts
MI KNNI FCMI PCC FID GAIN BSI BCC

PE RE F1 PE RE F1 PE RE F1 PE RE F1 PE RE F1 PE RE F1 PE RE F1 PE RE F1

Cl 62.64 62.01 61.23 63.99 63.71 63.51 64.85 64.62 64.08 69.17 68.77 68.60 55.23 54.38 50.25 56.98 51.12 50.17 66.19 66.02 66.02 73.03 72.00 71.75
IL 52.01 50.78 45.84 58.37 59.85 57.18 56.04 56.10 52.40 58.99 59.04 58.73 51.27 50.91 47.28 50.06 44.97 57.87 53.14 50.65 50.96 59.29 53.16 48.86

Co 84.06 65.57 63.33 82.44 82.42 82.33 83.72 85.12 84.02 86.56 86.01 86.20 65.04 64.28 62.87 83.22 83.17 82.62 80.54 80.51 80.03 86.89 86.81 86.80

Ww 33.18 21.43 22.63 24.95 23.51 23.55 29.80 21.49 22.44 38.08 23.84 25.37 32.87 20.04 20.76 21.17 22.18 22.31 25.77 25.08 24.65 39.10 24.26 25.51

He 60.00 58.54 57.25 62.60 62.65 62.26 62.98 62.94 62.57 71.61 71.53 71.27 51.02 51.57 44.51 59.36 58.94 57.28 63.05 61.24 61.76 72.56 71.66 71.39

We 60.35 54.74 51.27 65.38 63.06 61.01 61.90 61.60 59.97 77.18 76.26 76.04 48.81 48.96 44.36 66.19 63.20 63.26 88.23 88.26 87.94 90.29 90.15 89.76

Ir 81.45 61.99 59.42 86.78 86.25 86.29 86.32 85.32 85.19 86.98 86.39 86.24 69.20 61.25 60.31 88.18 88.01 87.35 85.69 85.62 85.58 84.46 84.03 83.70

Ve 42.38 35.18 29.90 44.32 44.67 43.16 41.40 42.08 39.25 43.65 44.26 43.49 36.09 33.92 30.07 47.20 47.84 47.48 47.14 47.45 47.13 47.73 48.41 47.23

Kn 59.07 44.14 42.59 54.34 52.74 52.72 53.50 48.72 49.01 49.59 50.19 48.30 37.78 34.12 30.50 57.93 57.89 57.27 41.35 41.24 41.01 59.33 56.10 56.34

Rw 24.40 22.84 22.63 24.38 24.68 24.52 23.42 23.70 23.15 23.52 24.10 23.59 22.62 21.28 20.91 23.13 22.95 22.39 25.94 23.62 23.93 26.19 24.78 24.39

Ab 11.33 7.58 5.98 13.88 15.92 14.22 14.09 14.92 13.17 15.48 18.05 15.91 11.95 9.55 8.26 13.20 11.97 12.94 12.91 11.73 12.82 15.59 15.07 14.23
Pa 42.26 31.48 32.53 57.28 51.93 54.43 44.60 36.96 38.29 62.59 60.38 60.59 35.85 31.78 31.02 46.78 45.48 45.23 64.90 64.23 64.24 77.03 76.15 75.81

 

 

TABLE VI 

The Accuracy (AC) of Different Methods With Bayesian Classifier (%)

Datasets ϕ MI KNNI FCMI PCC FID GAIN BSI BCC

4 77.36±1.96 76.89±2.59 75.68±2.85 77.64±3.29 74.93±2.03 78.92±2.63 76.35±2.38 79.32±3.58

Cl 6 75.95±1.56 75.95±3.78 75.61±1.92 75.14±3.23 72.50±3.56 75.56±3.14 75.44±3.18 76.42±2.56

8 71.82±5.28 70.95±4.61 71.08±3.68 72.77±6.04 69.19±3.39 72.59±5.13 68.24±4.31 73.65±3.15

4 70.58±1.87 59.86±3.53 61.95±3.33 65.58±2.91 47.50±4.05 52.32±3.87 51.63±3.75 70.91±2.09

IL 6 69.88±1.46 63.97±2.73 64.08±5.50 66.54±2.55 46.61±4.78 50.48±2.80 49.31±2.66 69.81±2.83

8 66.03±2.56 66.16±2.50 65.17±4.46 64.49±2.61 42.57±2.95 43.56±3.59 47.26±3.13 66.42±3.21

5 82.25±2.50 89.69±1.28 87.32±1.52 89.30±1.66 69.26±2.02 82.50±1.89 88.28±2.38 91.43±1.17

Co 7 67.16±1.87 85.59±0.79 84.45±1.97 86.70±1.44 65.68±3.83 77.97±1.98 83.98±1.57 88.18±1.54

9 62.71±0.93 77.97±1.84 77.58±2.39 78.11±1.68 54.41±7.15 75.19±2.81 63.08±4.13 78.39±2.61

1 44.69±0.48 44.34±1.12 43.74±1.01 44.48±0.63 43.82±1.19 44.54±1.09 43.87±0.83 49.99±1.52

Ww 2 44.36±0.69 43.81±1.13 44.36±0.74 43.53±1.31 43.37±0.90 44.18±0.64 44.18±0.97 47.97±0.27

3 44.24±0.71 42.38±1.09 43.30±0.88 44.12±0.92 42.93±1.10 43.72±1.92 42.38±1.04 45.99±1.00

6 77.85±1.69 75.26±3.65 77.56±3.65 76.22±4.14 73.93±3.77 78.01±1.12 74.07±3.57 78.74±5.26

He 8 73.41±3.62 73.19±6.44 65.93±8.28 74.52±3.56 69.78±6.00 74.26±2.89 72.59±4.63 74.81±2.70

9 68.30±4.19 69.48±4.36 65.26±6.76 71.41±2.59 63.41±3.88 73.52±3.49 69.62±3.71 71.78±3.80

3 90.96±3.16 92.81±2.59 91.91±3.55 91.80±3.00 74.38±5.34 92.38±2.38 94.38±2.47 93.22±2.37

We 5 82.92±3.75 87.87±5.41 86.18±4.17 89.44±2.32 65.47±6.18 88.88±3.17 90.77±4.33 89.66±3.74

7 71.80±4.55 82.02±5.45 79.44±4.71 85.73±3.82 54.94±8.85 88.33±2.19 87.24±3.90 87.53±4.25

1 73.27±4.68 91.73±2.89 91.87±2.89 93.20±3.79 64.00±4.02 91.20±3.34 94.89±2.61 95.20±2.89

Ir 2 55.47±4.17 87.47±4.07 89.20±3.69 89.47±4.38 60.13±5.98 89.19±4.75 85.33±4.47 90.27±3.33

3 38.87±5.09 70.93±5.53 74.27±7.57 72.93±6.10 48.00±4.87 86.86±8.25 54.66±5.48 76.93±2.52

8 44.05±2.00 47.80±5.57 43.45±2.36 46.55±2.63 38.96±3.63 43.49±2.95 38.29±3.09 47.20±2.91

Ve 10 40.86±2.40 44.97±0.49 43.17±3.53 45.63±2.74 36.31±2.26 44.82±3.07 41.60±2.82 45.67±3.12

16 28.06±2.33 35.51±1.42 34.35±3.46 35.63±2.41 27.90±2.21 35.80±3.13 36.40±3.73 36.83±2.05

2 63.61±2.80 65.45±3.20 63.22±3.04 62.87±2.79 42.92±2.98 63.06±1.65 56.93±2.80 66.24±2.98

Kn 3 51.93±2.32 54.84±5.62 52.18±3.20 51.63±2.84 37.87±3.04 51.78±1.54 47.52±2.72 55.40±2.26

4 39.28±3.12 42.34±2.28 39.65±2.87 37.62±3.28 35.35±4.28 42.61±3.52 40.59±2.93 43.63±2.32

1 53.26±1.43 50.71±1.39 51.76±2.34 53.12±1.31 47.93±1.66 52.90±3.13 53.12±1.94 55.07±2.59

Rw 2 51.81±1.73 47.42±1.66 51.31±1.82 51.17±2.67 48.40±1.31 50.65±3.14 48.87±3.22 55.43±2.03

3 51.54±1.33 50.00±3.25 52.01±1.28 51.23±2.58 46.99±2.29 40.82±2.13 50.12±2.84 53.08±1.44

2 24.88±0.55 23.43±1.16 22.96±0.94 25.20±0.48 23.16±1.05 23.47±1.80 23.33±1.45 27.31±1.42

Ab 4 21.96±0.71 23.17±1.78 23.30±0.41 23.12±0.90 21.33±1.42 21.81±1.38 21.88±1.07 26.25±1.07

5 20.84±0.37 23.78±1.31 23.94±1.00 22.37±0.34 18.53±1.76 21.38±3.59 18.98±1.87 26.28±0.55

5 66.63±0.78 77.82±0.75 68.43±0.95 77.77±0.55 45.05±1.42 54.18±2.51 61.13±1.34 78.13±1.80

Pa 7 55.95±0.55 69.63±0.56 57.78±0.78 71.55±0.54 37.79±1.40 45.13±2.36 51.83±1.94 72.86±2.32

9 46.09±0.51 61.33±1.47 51.52±0.84 66.99±0.83 30.87±1.44 38.33±2.64 43.70±1.87 68.41±1.86
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uncertainty and imprecision caused by missing values.
The proposed BCC method avoids modeling missing values

directly.  Thus,  it  can  handle  well  the  cases  where  both  the
training  and  test  sets  contain  many  missing  values  without
losing  information  and  introducing  new  uncertainty
information.  We  model  each  attribute  independently  while
avoiding  negative  interactions  between  attributes.
Simultaneously,  different  attributes  are  able  to  provide
complementary information under the framework of evidence
theory.  By  doing  this,  the  distribution  characteristics  of
different  attributes  are  thoroughly  mined,  and  each  attribute
can  train  a  basic  classifier  independently.  Moreover,  the
performance  of  the  classifiers  depends  on  the  quality  of  the
training  sets  constrained  by  missing  values.  In  this  case,  the
global  measurement  of  the  weight  on  each  classifier  is  an
important part of making decisions as cautious as possible. In
addition, the proposed BCC method is end-to-end, which can
characterize  the  uncertainty  and  imprecision  in  the  data,  the
model,  and  the  results  simultaneously.  Therefore,  the
proposed  BCC  is  often  able  to  outperform  other  comparison
methods.

Furthermore,  from Fig. 3,  it  can  be  observed  that  the
accuracy is less affected by the data incompleteness level for
BCC than other methods, indicating that BCC is more robust.
Indeed,  the  BCC  can  be  regarded  as  an  intermediate  of

multiple  classifiers,  effected  by  the  combination  process.
Since  the  incompleteness  is  characterized  by  imprecision
rather than uncertainty in evidence theory, the imputed values
make  less  impact  on  the  classification  results  than  other
methods, realized by the Dempster’s combination rule. Such a
mechanism brings robustness to the BCC method.

ϕ

ϕ

ϕ

ϕ

In addition, we can also observe that with the increase of ,
the  classification  accuracy  results  of  different  methods
decreases  in  most  cases.  This  is  consistent  with  our  intuitive
perception,  because  a  larger  implies  the  loss  of  more
attributes  from  a  pattern.  The  less  information  the  pattern
contains,  the  more  difficult  it  is  to  classify  the  pattern
correctly,  the  classification  accuracy  thereby  gradually
declines. However, the performance of BCC is still better than
that  of  other  conventional  methods  in  the  same  case.  In
addition,  the  increase  in  also  reflects  the  increase  in  the
proportion of missing from another perspective. For example,
if  = 9, for the Cloud dataset, the missing rate of the training
and testing sets is 90%.

We  admit  that  a  few  issues  exist  in  BCC,  one  of  which  is
the  computational  cost.  Since  BCC  is  a  combination
mechanism  of  multiple  classifiers,  it  is  less  efficient  than  a
single  classifier.  Thus,  the satisfactory results  are  obtained at
the  cost  of  more  computational  resources.  Another  potential
issue is the combination step. The Dempster’s rule is applied

 

TABLE VII 

The PE, RE and F1 of Different Methods With Bayesian Classifier (%)

Datasets
MI KNNI FCMI PCC FID GAIN BSI BCC

PE RE F1 PE RE F1 PE RE F1 PE RE F1 PE RE F1 PE RE F1 PE RE F1 PE RE F1

Cl 75.47 75.02 74.72 74.74 74.57 74.45 74.28 74.13 73.91 75.17 74.97 74.84 72.30 72.17 71.93 76.70 75.58 75.61 74.43 73.36 73.29 77.06 75.84 75.83
IL 58.96 54.14 49.59 60.13 61.20 58.43 60.24 59.95 56.45 60.48 61.69 60.24 56.11 55.90 45.23 56.92 54.61 48.65 55.73 55.08 48.28 61.50 60.43 59.20

Co 78.30 62.61 58.03 83.64 83.51 83.41 82.59 83.52 82.55 83.86 84.22 83.97 65.01 65.19 62.19 82.04 80.01 78.19 79.07 79.71 78.19 85.06 85.63 85.21

Ww 27.60 28.0 26.07 27.68 27.99 26.05 26.81 27.68 25.30 26.85 28.28 26.06 24.39 25.70 23.56 27.59 27.43 25.67 26.95 25.77 24.29 27.76 17.14 15.06

He 73.93 72.74 72.15 72.51 72.05 71.93 70.72 69.72 68.56 73.94 73.86 73.61 68.86 68.67 68.42 74.76 73.77 73.63 72.85 71.95 71.50 75.81 74.12 74.05

We 88.01 80.21 80.67 89.22 86.68 87.27 87.99 85.06 85.67 90.42 89.12 89.23 70.77 64.30 62.08 90.74 90.62 90.18 91.82 91.47 90.16 90.43 90.82 90.29

Ir 66.41 56.34 50.76 85.01 83.64 83.55 85.51 85.49 85.04 85.81 85.46 85.18 66.69 57.21 55.90 86.85 86.96 86.50 78.66 78.58 78.44 87.82 87.80 87.39

Ve 38.62 37.32 33.39 43.47 43.10 42.09 41.75 41.08 37.55 42.99 42.75 42.25 35.91 34.33 33.80 42.54 41.84 41.67 41.53 39.98 33.50 43.75 43.90 42.05

Kn 67.54 48.05 47.54 55.14 52.06 52.54 59.43 48.93 49.85 50.52 51.80 49.65 41.99 35.19 31.38 55.73 50.86 50.87 48.19 46.11 46.15 60.06 51.87 52.79

Rw 29.25 29.24 28.58 28.79 30.16 28.50 28.68 29.21 28.43 29.98 31.23 29.78 26.48 26.83 25.92 29.04 28.76 27.78 31.34 32.74 29.93 22.97 22.71 20.87

Ab 10.21 9.87 8.24 16.34 18.10 15.54 12.81 14.59 12.33 16.54 19.08 16.10 13.34 12.71 11.50 14.66 12.37 10.96 18.31 19.98 14.96 14.83 17.05 15.22
Pa 83.17 55.89 62.70 73.90 69.64 70.21 71.23 59.68 61.38 77.86 74.59 75.44 44.61 37.92 37.16 51.87 46.16 43.68 55.76 52.55 50.32 77.56 73.46 72.11

 

 

TABLE VIII 

Execution Time With K-NN Classifier (s)

Data ϕ MI KNNI FCMI PCC FID GAIN BSI BCC

Cl 6 0.0697 16.233 0.0977 0.0538 0.1276 27.458 67.101 1.0617

IL 5 0.1136 33.920 0.1443 0.0779 0.2153 27.355 46.481 1.4826

Co 6 0.2119 56.604 0.2182 0.1475 0.4678 27.426 66.956 2.1495

Ww 2 0.8237 270.36 1.1519 2.9101 1.8665 27.452 49.215 23.036

He 7 0.0648 15.750 0.0747 0.0488 0.1206 27.152 59.258 0.8247

We 8 0.0418 9.9419 0.0638 0.0448 0.1099 25.511 32.881 0.4997

Ir 2 0.0367 8.0887 0.0738 0.0369 0.0362 26.046 41.427 0.2015

Ve 9 0.2068 51.183 0.3058 0.2233 0.5046 29.746 93.118 3.8033

Kn 2 0.0628 24.494 0.1531 0.0978 0.1068 27.914 60.312 0.7250

Rw 6 0.3062 94.604 0.4018 0.8605 0.6513 28.946 51.655 4.3880

Ab 4 0.6782 248.60 5.0948 27.599 1.6579 29.041 53.208 14.340

Pa 10 1.1748 330.12 21.930 267.26 6.2400 28.203 29.803 152.97
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to combine multiple classification results. When high conflicts
still exist between discounted evidence, the rule may return an
undecidable  BBA.  In  this  case,  the  issue  becomes  non-
negligible.  

E.  Computational Cost
The execution time of the different methods with K-NN as

the  basic  classifier  is  shown  in Table VIII.  It  shows  that  the
BCC  method  is  indeed  more  time-consuming  than  other
methods  since  BCC  needs  to  spend  more  time  training  the
basic  classifier  and  optimizing  the  discounting  factors  of
pieces of evidence. However, the computational cost is much
less  than  KNNI,  GAIN  and  BSI  methods  in  most  cases,  for
example, for KNNI, because searching for neighbors is a very
time-consuming  task  as  the  number  of  patterns  increases.

Therefore,  it  is  necessary  to  take  a  trade-off  between
performance  and  computational  cost  when  using  the  BCC
method.  Generally  speaking,  BCC  is  more  suitable  for
applications  in  which high classification accuracy is  required
whereas efficient computation is not a strong requirement.  

V.  Conclusion

Confronting  the  problem  of  classification  over  incomplete
data,  we  proposed  a  new  belief  combination  of  classifiers
(BCC) method in the framework of evidence theory under the
fact that patterns in the training set and test set are incomplete.
The  BCC  method  characterizes  the  uncertainty  and
imprecision caused by missing values with the theory of belief
functions.  By  doing  so,  BCC  is  able  to  make  full  use  of
observed  data  while  introducing  little  impact  in  dealing  with
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Fig. 2.     The average accuracy (AC) of different methods in various datasets.
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missing  data.  Consequently,  it  outperforms  conventional
classification methods for incomplete data. The core action of
BCC  is  to  construct  attributes  as  independent  sources,  and

each  of  them is  used  to  train  a  classifier  and  thereby  predict
the class of query patterns. As a result,  multiple outputs with
different  discounting  factors  for  the  query  pattern  are
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Fig. 3.     The  effect  of  parameter ϕ on  average  accuracy  (AC)  within  different  methods  over  various  datasets.  The  horizontal  and  vertical  axis  respectively
represents the value of parameter ϕ and AC.
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obtained. The discounting factor includes two parts: the global
classifier  importance  and  the  local  attribute  reliability,  with
which  the  famous  Dempster’s  rule  is  employed  to  fuse  the
discounted  pieces  of  evidence  representing  evidential  sub-
classes  and  then  determine  the  final  belief  classification  for
the query patterns. The effectiveness of BCC is demonstrated
using  various  real  datasets  by  comparisons  with  other
conventional  methods.  The  experimental  results  show  that
BCC  significantly  improves  the  performance  in  accuracy,
precision,  recall,  and  F1  measure.  Furthermore,  this  new
method  is  robust  since  it  does  not  need  to  set  parameters
manually, making it convenient for practical applications.

In  recent  methods,  missing  values  are  usually  imputed  by
value  approximation,  significantly  affected  by  deep  learning
approaches. However, the lack of robustness caused by over-
fitting  and  under-fitting  issues  has  been  an  obstacle  in
applying  these  theoretical  methods.  The  proposed  BCC
method  makes  a  step  forward  by  taking  decisions  between
specific  classes  and  total  ignorance.  However,  it  cannot  yet
characterize  local  imprecision  [31],  [50].  To  conclude,  the
mathematical method given in this paper can somewhat reveal
the hidden real world from missing data. In the future, we will
employ  these  classifiers  specially  designed  for  high-
dimensional  data,  and  we  will  explore  applying  a  similar
methodology  to  more  missing  data  scenarios  beyond  the
conventional  classification.  Concerning  the  robustness
problem  caused  by  data  missing,  a  more  general  framework
managing  uncertainty  and  imprecision  adaptable  to  various
learning tasks with incomplete patterns is also in the scope of
our future work.
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