
Subspace Regularization: A New
Semi-supervised Learning Method

Yan-Ming Zhang, Xinwen Hou, Shiming Xiang, and Cheng-Lin Liu

National Laboratory of Pattern Recognition,
Institute of Automation, Chinese Academy of Sciences,

95 Zhongguancun East Road, Beijing 100190, P.R. China
{ymzhang,xwhou,smxiang,liucl}@nlpr.ia.ac.cn

Abstract. Most existing semi-supervised learning methods are based
on the smoothness assumption that data points in the same high den-
sity region should have the same label. This assumption, though works
well in many cases, has some limitations. To overcome this problems, we
introduce into semi-supervised learning the classic low-dimensionality
embedding assumption, stating that most geometric information of high
dimensional data is embedded in a low dimensional manifold. Based on
this, we formulate the problem of semi-supervised learning as a task of
finding a subspace and a decision function on the subspace such that the
projected data are well separated and the original geometric information
is preserved as much as possible. Under this framework, the optimal sub-
space and decision function are iteratively found via a projection pursuit
procedure. The low computational complexity of the proposed method
lends it to applications on large scale data sets. Experimental compari-
son with some previous semi-supervised learning methods demonstrates
the effectiveness of our method.

1 Introduction

We consider the general problem of learning from labeled and unlabeled data.
Given an input data set {x1, . . . , xl, xl+1, . . . , xn}, the first l points have labels
{y1, . . . , yl} ∈ {−1,+1} and the remaining points are unlabeled. The goal is to
learn a prediction function which has low classification error on test points.

To make use of unlabeled data, assumption of the relationship between the
marginal distribution p(x) and the conditional distribution p(y|x) should be
made. This prior assumption plays an essential role in semi-supervised learning
[1,2]. Most of the semi-supervised learning methods proposed by far are based on
the smoothness assumption that “two points in the same high-density region are
likely of the same label” [1]. The effectiveness and generality of this assumption
has made the smoothness-based methods very successful, and in fact most of the
state-of-the-art semi-supervised learning methods are based on this assumption.

Although the smoothness assumption is effective and methods based on it
have obtained good performance on some problems, there are two main limi-
tations of it. First, according to Mann and McCallum [3], most of the current
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semi-supervised methods lack in scalability. Typical semi-supervised learning
methods, such as label propagation [4,5,2], Manifold Regularization [6], Trans-
ductive Support Vector Machines (TSVM) [7], require learning time of order
O(n3) where n is the size of data set. Second, when data of different classes
overlap heavily, the ideal decision boundary should cross the overlapping area
which is a high density region. Thus, smoothness-based methods may fail since
they always avoid a decision boundary that crosses high density region to satisfy
the smoothness assumption [3,8].

In this paper, we turn to consider the low-dimensionality embedding assump-
tion in the semi-supervised learning setting. This assumption can be roughly
described as most information of high dimensional data is embedded in a low di-
mensional manifold. It has been traditionally used in dimension reduction meth-
ods to map the high dimensional data to a low-dimensional representation while
preserving most original information [9].

In the typical setting of semi-supervised learning, there is very limited num-
ber of labeled data in a high-dimensional input space. According to statistical
learning theory, because of the sparseness of data it is impossible to learn a good
classifier for a general problem [10]. Based on the low-dimensional embedding
assumption, we naturally hope to find a low-dimensional representation of data
so as to make the labeled data more dense and therefore much easier for train-
ing. To this end, both labeled and unlabeled data can be used to explore the
low-dimensional structure in data. Specifically, we propose a combined criterion
to evaluate the candidate subspace and the classifier simultaneously: the data-
fitting term evaluates how well the labeled data points of different classes are
separated in the subspace, and the regularization term evaluates how much infor-
mation has been lost by mapping the whole (labeled and unlabeled) data to the
subspace. As the regularization term tends to find the subspace that preserves
most interesting information, we call this framework as subspace regularization.

Within the above general framework, we instantiate a specific algorithm called
PCA-based Least Square (PCA-LS), where the regularization term aims at re-
ducing the reconstruction error of input points just like Principal Component
Analysis (PCA) [11]. We also kernelize the PCA-LS to extend our method to
nonlinear cases. The method we use to solve the optimal problem turns out to
be a special case of the classic projection pursuit procedure which constructs the
subspace and the decision function defined on this subspace in an incremental
manner.

Compared to the smoothness-based methods, subspace regularization has two
remarkable advantages. First, our methods still work when data from differ-
ent classes overlap heavily, while smoothness-based methods may fail. Roughly
speaking, after the subspace is fixed, subspace regularization looks for a decision
boundary that can optimally classify the projected labeled data. Thus, although
the data still overlap in the subspace, the decision boundary will not be affected
by the data density directly and avoids the problem that fails smoothness-based
methods. Second, our method has very low computational complexity which im-
plies that it can be applied in large-scale applications. For linear PCA-LS, the
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computational complexity is linear in the number of data points and dimension
of the input space. As a result, for a data set of 80, 000 points, our method is
about 60 times faster than typical smoothness-based methods in training. Be-
side these, the method is rather robust to hyperparameters and still suitable
when l/n is large. We will examine these in much more detail in the experiment
section.

The remainder of this paper is organized as follows. In section 2, we briefly
review the existing semi-supervised learning methods. Section 3 introduces the
subspace regularization framework and the details of algorithms. Experimental
results are reported in section 4. We conclude the paper in section 5.

2 Related Work

Over the past decade, there are many methods have been proposed to handle
the semi-supervised problem. Based on the prior assumptions they use, these
methods can be roughly divided into three categories.

The methods from the first category are generative models in which they
make a prior assumption on the form of the input data distribution, for example
Gaussian mixture models or naive Bayes models [8]. Then, models are trained
by Expectation Maximization algorithm using both labeled and unlabeled data.
Nigam et al. applied this method to text classification problem and improved the
performance dramatically [12]. However, this prior assumption on data distribu-
tion is too strict for general problems, and when the model is wrong unlabeled
data may hurt accuracy.

The methods from the second category are based on the smoothness assump-
tion as stated in the previous section. Based on this assumption, two families of
methods have been developed.

The methods in the first family, namely, graph-based methods, have been
developed to satisfy the smoothness assumption by penalizing the variance of
decision function in high density region of data. Specifically, using both labeled
and unlabeled data, an adjacency graph is constructed to explore the intrinsic
geometric structure of the data. The decision function is then found by minimiz-
ing the training error on labeled data and the variance on the adjacency graph.
Many famous semi-supervised learning methods, like label propagation [4,5,2],
spectral methods [13,14], manifold regularization [6], belong to this family.

The methods in the second family, namely, low-density-separation-based meth-
ods, implement the smoothness assumption based on an equivalent assumption
that “the best decision boundary should be located in low-density region”. The
aim of this kind of methods is to find a decision boundary which can correctly
classify the labeled data and meanwhile is far away from the high density region
of unlabeled data points. The distance from one point to the decision boundary
is evaluated by the absolute value of the decision function or the value of pos-
terior probability on the point. Methods of this family include the TSVM [7],
semi-supervised Gaussian processes [15], entropy regularization [16], information
regularization [17], low density separation [18], etc.
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The methods from the third category make use of the prior knowledge of label
distribution. They force the model predictions on unlabeled data to match the
prior label distribution. For example, Zhu et al. used class mean normalization
(CMN) as a post-processing step of Gaussian Random Fields (GRF) method to
adjust the classification results [4]. Mann et al. proposed a method named Expec-
tation Regularization that directly augments the objective function by adding
a regularization term which is defined as the KL-divergence between prior label
distribution and empirical label distribution predicted by model [3]. One impor-
tant advantage of the methods of this type is their high efficiency in computation.
However, as they do not explicitly explore the underling structure of data, these
methods can not utilize the information of unlabeled data sufficiently.

3 Subspace Regularization

In this section, we first present the subspace regularization framework. Then a
specific algorithm is given to learn linear decision function, and kernelized to
tackle the nonlinear case. Finally, we analyze the computational complexity of
our method.

3.1 Objective Function

Given a set of labeled and unlabeled data, we denote the input data by matrix
X = [x1, . . . , xn], and the output by vector Y = [y1, . . . , yl]T . Without confusion,
we use W to denote the subspace W = span{w1, . . . , wp|wi ⊥ wj , i 
= j} and the
matrix W = [w1, . . . , wp] depending on the context.

From the above discussion, we aim to find a low-dimensional subspace W =
span{w1, . . . , wp|wi ⊥ wj , i 
= j} and a decision function g defined on the W
such that the following objective is minimized:

L(X,Y,W, g) =
l∑

i=1

LF (yi, g(xT
i W )) + λLR(X,XW ), (1)

where LF and LR are loss functions, and XW = [xW
1 , . . . , xW

n ] in which xW
i is

the projection of xi onto the subspace W . The first term evaluates how well
the projected labeled data can be separated by g in the subspace W , and the
second term evaluates how much information is lost by projecting data onto the
subspace.

Specifically, we choose LF as the least square error, LR as the reconstruction
error, and let g be an arbitrary linear function defined on W . Then, the objective
function can be rewritten as

L(X,Y,W, g) =
l∑

i=1

(yi −
p∑

t=1

αtx
T
i wt)2 + λ

n∑
i=1

‖xi − xW
i ‖2. (2)

The parameters α = [α1, ..., αp] and W are estimated by minimizing (2). The
dimension of subspace p and the regularization factor λ are hyperparameters
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which can be fixed by cross-validations. In experiment section, we will show our
method is surprisingly robust to the λ, while the p should be carefully chosen.
The hyperparameter λ is introduced to trade off between terms of data-fitting
error and reconstruction error. When λ becomes large, the optimal subspace
approximates the PCA subspace. Thus, we name our algorithm as PCA-based
least square (PCA-LS).

3.2 PCA-Based Least Square Algorithm

We employ the traditional projection pursuit procedure [19,20] to incrementally
construct the optimal subspace W and decision function g in problem (2). More
specifically, we use an iterative procedure to minimize the objective function. In
each iteration, based on the current model, we select one projection direction to
add into the subspace and choose the coefficient in g for the selected direction
such that the objective function has a maximum reduction.

one iteration in projection pursuit
Suppose that, at tth iteration, we have W = span{w1, . . . , wt−1|wi ⊥ wj , i 
=

j} and g(v) =
∑t−1

j=1 αjvj . Then the residual ri of decision response yi is ri =
yi −

∑t−1
j=1 αjx

T
i wj , and the residual Ri of data point xi is Ri = xi − xW

i =
xi −

∑t−1
j=1 β

j
iwj . Note that Ri is orthogonal to the subspace W. Our goal in the

tth iteration is to optimize the following problem:

min
α,β,w

I(α, β, w) =
l∑

i=1

(yi −
t−1∑
j=1

αjx
T
i wj − αxT

i w)2 +
n∑

i=1

‖xi −
t−1∑
j=1

βj
iwj − βiw‖2

=
l∑

i=1

(ri − αxT
i w)2 + λ

n∑
i=1

‖Ri − βiw‖2

= ‖r − αXLT

w‖2 + λ

n∑
i=1

‖Ri − βiw‖2,

s.t. w ⊥ wj ∀j = 1, . . . , t− 1, (3)

where XL is the first l columns of X, α is a scalar, β = [β1, . . . , βn]T and
r = [r1, . . . , rl]T . After w is solved from problem (3), we denote it by wt and add
it to W . In this way, we finish one iteration of projection pursuit.

The problem (3) is difficult to optimize due to the high order of variables and
the orthogonal constraints. To eliminate the constraints, we limit the searching
scope of direction to be the subspace spanned by the residuals, which means
w =

∑n
i=1 ηiRi = Rη in which R = [R1, . . . , Rn] and η = [η1, . . . , ηn]T . As

Ri ⊥ W ∀i = 1, . . . , n, the orthogonal constraints are automatically met. It
thus results in the following unconstrained minimization problem:

H(α, β, η) = ‖r − αXLT

Rη‖2 + λ

n∑
i=1

‖Ri − βiRη‖2. (4)
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Fortunately, it is guaranteed that the optimal w∗ of problem (3) is indeed a
linear combination of Ri:

Proposition 1: The minimum point of problem (3) can be represented as a
linear combination of Ri.

Proof: We decompose R
d as R

d = X‖ ⊕ X⊥, where X‖ is the subspace
spanned by xi, 1 ≤ i ≤ n and X⊥ is the orthogonal complement space of X‖.
By construction, X‖ can be further decomposed as X‖ = W ⊕ R, where W is
the subspace spanned by wj , 1 ≤ j ≤ t − 1, and R is the subspace spanned by
Ri, 1 ≤ i ≤ n. As the optimal solution w∗ of (3) should be perpendicular to the
subspace W, thus w∗ ∈ X⊥ ⊕ R. Assume w∗ = w⊥ + wR, where w⊥ ∈ X⊥ and
wR ∈ R. So,

I(α, β, w∗) = ‖r − αXLT

w∗‖2 + λ

n∑
i=1

‖Ri − βiw
∗‖2,

= ‖r − αXLT

(w⊥ + wR)‖2 + λ
n∑

i=1

‖Ri − βi(w⊥ + wR)‖2,

= ‖r − αXLT

wR‖2 + λ

n∑
i=1

(‖Ri − βiw
R‖2 + β2

i ‖w⊥‖2). (5)

The third equation follows from the fact that XLT

w⊥ = 0 and RT
i w

⊥ = 0. Since
I(α, β, w∗) ≥ I(α, β, wR) and w∗ minimize I(α, β, w), we have w∗ = wR. Thus,
w∗ is in the subspace R, and can be represented as a linear combination ofRi, 1 ≤
i ≤ n. �
To minimize the objective function (4), the iterative coordinate decent method
is used. Briefly speaking, in each step, we optimize α, β for fixed η , and then
optimize η for fixed α, β.

For a fixed η, the optimal α and β can be obtained by setting the partial
derivatives ∂H(α,β,η)

∂α , ∂H(α,β,η)
∂β to zeros, and are given by:

α =
〈r,XLT

Rη〉
〈XLTRη,XLTRη〉

, βi =
〈Ri, Rη〉
〈Rη,Rη〉 . (6)

For fixed α and β, gradient decent is used to update η. The partial derivative of
H(α, β, η) with respect to η is given by

∂H(α, β, η)
∂η

= −2αRTXLr + 2α2RTXLXLT

Rη + 2λRTR((
n∑

i=1

β2
i )η − β). (7)

After the iterative coordinate decent method converges, we get the optimal
solution α∗, β∗, η∗ for the problem (4). The new projection direction wt = Rη∗

is then added into {w1, . . . , wt−1} to form the new basis of subspace W . The
residual of the response and the residual of inputs are updated by r ← r −
α∗XLT

Rη∗ and Ri ← Ri − β∗
i Rη

∗. Note that the new residual Ri preserves the
property that it is orthogonal to the new subspace W = span{w1, . . . , wt}. This
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fact follows the observation that the method we use to update the residual of
input data is exactly the Gram-Schmidt orthogonalization.

After p times greedy search, we get the p dimensional subspace W and a deci-
sion function g(v) =

∑p
t=1 αtvt defined on W . If only classification is concerned,

these two things can be combined to get the final decision function defined on
the input space f(x) =

∑p
t=1 αtx

Twt = xTWα.
The whole procedure is summarized in Algorithm 1.

Algorithm 1. PCA-based Least Square (PCA-LS)
Init: r = [r1, . . . , rl]T ; Ri = xi i = 1, . . . , n
for t = 1 to p do

repeat
1. Compute α, β using (6)
2. Compute ∂H(α,β,η)

∂η
using (7)

3. η = η − StepSize ∗ ∂H(α,β,η)
∂η

until η is convergent
wt = Rη
αt = α
r = r − αtX

Lwt

Ri = Ri − βiwt i = 1, . . . , n
end for
Output:
f(x) =

∑p
t=1 αtx

T wt = xT Wα
α = [α1, . . . , αp]T

3.3 Kernel PCA-Based Least Square

When the data set has highly nonlinear structure, the PCA-based least square
may fail. One common technique to tackle the nonlinear problem in machine
learning is the kernel trick, which can be briefly described as follows: with a
feature mapping φ : x → φ(x), the input data is mapped to a feature space.
For linear learning in this feature space, the inner product of two mapped data
is defined as the kernel function: k(x, y) = 〈φ(x), φ(y)〉, and the matrix K with
(K)ij = k(xi, xj) is the Gram matrix.

At the tth iteration, suppose that the residual Ri of φ(xi) can be expressed
as Ri =

∑n
j=1M

j
i φ(xj) = φ(X)Mi, where φ(X) = [φ(x1), . . . , φ(xn)] and Mi =

[M1
i , . . . ,M

n
i ]T . Thus, R = [R1, . . . , Rn] = φ(X)[M1, . . . ,Mn] = φ(X)M , where

M is a n×n matrix. In parallel with the linear case, we constrain the projection
direction w to be a linear combination of residuals: w =

∑n
i=1 ηiRi = Rη =

φ(X)Mη. Now we get the objective function H(α, β, η) of the kernel method
similar to the linear case:

H(α, β, η) = ‖r − αφ(XL)TRη‖2 + λ

n∑
i=1

‖Ri − βiRη‖2
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= ‖r − αφ(XL)Tφ(X)Mη‖2 + λ

n∑
i=1

‖Ri − βiRη‖2

= ‖r − αKLT

Mη‖2 + λ

n∑
i=1

‖Ri − βiRη‖2,

(8)

where KL is the first l columns of the Gram matrix K.
As before, we employ the iterative coordinate decent method to minimize the

objective function (8). In each step, α, β are given by

α =
rTKLT

Mη

ηTMTKLKLTMη
, βi =

MiKMη

ηTMTKMη
, (9)

and the partial derivative of H(α, β, η) with respect to η is given by

∂H(α, β, η)
∂η

= −2αMTKLr + 2α2MTKLKLT

Mη + 2λMTKM((
n∑

i=1

β2
i )η − β).

(10)

After the iterative coordinate decent method converges, we get the optimal solu-
tion α∗, β∗, η∗ for the problem (8). Then, the direction wt = φ(X)Mη∗ is added
to {w1, . . . , wt−1} to form the new basis of subspace W . The residual of response
and residual of inputs are updated by: r ← r − α∗φ(XL)TRη∗ = r − α∗KLT

η∗

and Mi ← Mi − β∗
i Mη∗. Again the new residual Ri is orthogonal to the new

subspace W = span{w1, . . . , wt}.
The whole process is summarized in Algorithm 2. Different from the linear

case, we can not express the projection direction wt explicitly. Instead, the co-
efficient vector st of wt’s linear representation by {φ(x1), . . . , φ(xn)} is stored.

3.4 Computational Complexity

As discussed above, large-scale problem is extremely important for semi-
supervised learning. The linear PCA-LS algorithm consists of p times greedy
search iterations, where p is the dimensionality of the subspace W . The com-
plexity of every iteration is dominated by computing the gradient of η which
scales as O(nd) where d is the dimensionality of the input space. Thus, the com-
putational complexity of the linear PCA-LS is O(pnd). By a similar analysis,
the computational complexity of the kernel PCA-LS algorithm scales as O(pn2).

4 Experiments

In this section, we first conduct experiments on synthetic data sets to show
the ability of subspace regularization methods in handling overlapping data and
manifold data. Then comparison experiments are given on several real data sets.
Finally, we analyze the robustness of our methods to hyperparameters.



594 Y.-M. Zhang et al.

Algorithm 2. Kernel PCA-based Least Square (Kernel PCA-LS)
Init: r = [r1, . . . , rl]T ; M = I
for t = 1 to p do

repeat
1. Compute α, β using (9)
2. Compute ∂H(α,β,η)

∂η
using (10)

3. η = η − StepSize ∗ ∂H(α,β,η)
∂η

until η is convergent
st = Mη
αt = α
r = r − αtK

LT

st

Mi = Mi − βist i = 1, . . . , n
end for
Output:
f(x) = kn(x)T Sα
kn(x) = [k(x, x1), . . . , k(x, xn)]T

S = [s1, . . . , sp]
α = [α1, . . . , αp]T

4.1 Overlapping Data

When data of different classes overlap heavily, the optimal decision boundary
or Bayesian decision boundary may cross the overlapping area which is a high
density region. In this case, the smoothness-based methods tend to fail as they
prefer a decision boundary located in low density area [3,8]. With following ex-
periments, we demonstrate that subspace regularization methods can effectively
avoid this problem.

Two dimension case. 200 data points were drawn from each of two unit-
variance Gaussians, the centers of which are (0, 0) and (1.5, 1.5). Only one point
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Fig. 1. Two Gaussians Data Set: Decision boundary using RBF kernel for KPCA-LS
(a) and KLapRLS (b)
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was labeled in each class and all the rest points were treated as unlabeled. The
data set and the best decision boundary across a range of hyperparameters of
kernel PCA-LS (KPCA-LS) and kernel LapRLS (KLapRLS) [6] are shown in
Figure 1. Just as PCA, KPCA-LS finds the first principal component direction
as the subspace to project on. In Figure 1 (a), this direction is parallel to the line
passing through the centers of two Gaussians. As a result, the decision boundary
is a line that is perpendicular to the selected subspace and can correctly classify
the labeled data. However, for KLapRLS, the smoothness regularization term
makes the decision boundary avoid the overlapping area as crossing such a high
density region would lead to a big penalty. This makes the KLapRLS fail to find
a satisfactory solution.

High dimension case. G241c and G241d are commonly-used data sets in
semi-supervised learning which are constructed by Chapelle et al. [1]. Each of
them is composed of 1500 points with dimension of 241. For G241c, two classes
data come from two unit-variance Gaussians respectively, and centers of the two
Gaussians have a distance of 2.5. For G241d, the data of the first class come
from the two unit-variance Gaussians, the centers of which have a distance of 6;
and the data of second class come from another two Gaussians which are fixed
by moving each of the former centers a distance of 2.5. By the construction of
G241c and G241d, we see that there exists overlapping between different class.

We compare subspace regularization methods with 3 smoothness-based meth-
ods, including Gaussian Random Field (GRF) [5], Learning with Local and
Global Consistency (LLGC) [2] and manifold regularization (linear LapRLS and
kernel LapRLS) [6]. 50 points are randomly sampled as labeled data, and the
rest are left as unlabeled data. Data set is split 10 times, and the reported results
are averaged classification accuracy over these 10 splits. 5-fold cross-validation
is used to select hyperparameters, and the detailed setting for every method is
introduced in following section. Experiments results is summarized in Table 1.

From the results, we can conclude that, when data of different classes over-
lap heavily, the subspace regularization methods outperform smoothness-based
methods dramatically.

4.2 Manifold Data

This experiment was conducted on the two moons data set which was designed
to satisfy the smoothness assumption and have a strong geometric structure. 200
data points were drawn from each of two moons, and three points drawn from

Table 1. Averaged classification accuracy (%) for 50 labeled data

GRF LLGC LapRLS KLapRLS PCA-LS KPCA-LS
G241c 48.28 48.28 71.66 68.36 84.62 83.59
G241d 65.62 63.53 67.90 66.28 83.92 74.01
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Fig. 2. Two Moons Data Set: Decision boundary using RBF kernel for KPCA-LS (a)
and KLapRLS (b)

each class were labeled. The data set and the best decision boundary across a
range of hyperparameters of kernel PCA-LS and kernel LapRLS are shown in
Figure 2. It is well-known that the kernel LapRLS algorithm can work perfectly
well on such problems. As can be seen from Figure 2, the kernel PCA-LS also
learns a satisfactory decision function that correctly classify all the data points.

4.3 Real Data Sets

To evaluate our methods, We perform experiments on seven data sets of binary
classification problem that come from the benchmark in Chapelle’s book [1]
and UCI machine learning repository. These data set originate from areas like
image, text, biometrics etc., with size from 277 to 83,679 and dimension from 9
to 11,960. The characteristics of the data sets are shown in Table 2.

We compare subspace regularization methods with 3 smoothness-based semi-
supervised learning methods, including GRF [5], LLGC [2], manifold regular-
ization (linear LapRLS and kernel LapRLS) [6]. We also use both labeled and
unlabeled data to perform dimension reduction with PCA, and then use regular-
ized least square (RLS) to learn classifier on labeled data. For convenience, we
name this baseline algorithm as PCA+RLS. We details the experimental setting
for each method in the following:

Table 2. Description of the data sets

Breast-cancer BCI USPS Text Image Waveform SecStr
size 277 400 1500 1500 2310 5000 83,679

dimension 9 117 241 11,960 18 21 315
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Table 3. Averaged classification accuracy (%)

PCA+RLS GRF LLGC LapRLS KLapRLS PCA-LS KPCA-LS
Breast-cancer 67.84 70.83 70.22 67.36 70.53 73.44 71.98

BCI 57.77 50.34 50.00 62.29 61.69 62.29 58.94
USPS 86.18 89.81 94.5 84.61 87.48 84.10 86.18
Text 73.25 52.68 62.63 71.84 68.62 72.25 71.32
Image 78.00 49.53 73.17 76.90 83.60 76.36 80.13

Waveform 78.99 70.84 79.69 78.34 - 85.33 86.18
SecStr 60.26 - - 60.41 - 61.28 -

– PCA-LS: the dimension of subspace is chosen from {2; 22; 23; 24; 25}, and the
regularization factor λ is simply fixed to 1.

– KPCA-LS: the dimension of subspace is chosen from {2; 22; 23; 24; 25}, the
regularization factor λ is simply fixed to 100. RBF kernel is selected as kernel
function, and the σk is chosen from σ0 ∗ {2; 1; 2−1; 2−2; 2−3; 2−4} where σ0
is the averaged distance between every two points in data set.

– GRF and LLGC methods: we use RBF kernel as similarity function to
construct the graph, and the hyperparameter σg is chosen from σ0 ∗
{2; 1; 2−1; 2−2; 2−3; 2−4} where σ0 is defined as above.

– LapRLS: γA and γI are chosen from {104; 102; 1; 10−2; 10−4}. Linear kernel
is used as kernel function. For all data sets except SecStr, RBF kernel is used
as similarity function to construct the graph, and the hyperparameter σg is
chosen from σ0 ∗ {2; 1; 2−1; 2−2; 2−3; 2−4} where σ0 is defined as above. For
SecStr, the graph entry Gij = 1 if xi is among xj ’s k nearest neighbors, else
Gij = 0. k is fixed to 5 which is the value used in [1].

– KLapRLS: γA, γI and σg is selected as in linear LapRLS. RBF kernel is used
as kernel function, and the σk is chosen from σ0 ∗ {2; 1; 2−1; 2−2; 2−3; 2−4}.

– PCA+RLS: the dimension of subspace is chosen from {2; 22; 23; 24; 25}, and
the regularization factor λ is chosen from {104; 102; 1; 10−2; 10−4}.

As some graph-based methods like GRF and LLGC can not directly predict
the out-of-sample points, we adopt the transductive setting in the experiments
which means all the data points are available before training. But we emphasize
that the subspace regularization method is inductive.

For all data sets except SecStr, 50 points are randomly sampled as labeled
data, and the rest are left unlabeled. We split each data set 10 times, and report
the averaged classification accuracy over these 10 splits. 5-fold cross-validation
is used to select hyperparameters. For SecStr, 500 points are randomly sampled
as labeled data in which 400 points are used for training and 100 points are used
to select the hyperparameters. The reported results are averaged accuracy on 10
splits.

Table 3 summarizes the experiments results. There are blank entries in Table 3
as some algorithms require too many memory, or the results can not be achieved
within 3 days.
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For all data sets except image (Image and USPS), subspace regulariza-
tion method works as well as or better than smoothness-based methods. It
demonstrates that subspace regularization is a powerful semi-supervised learning
method. We will analyze this result in more detail in the next section.

For SecStr data set, it costs PCA-LS less than 5 minutes to learn a decision
function and a subspace of dimension p = 8 which is the dimensionality selected
by most splits. However, for graph-based methods, only to construct a neigh-
borhood graph will take more than 2 hours without saying to inverse a matrix
of same size with neighborhood graph. All experiments are performed on a PC
with 3.0GHz CPU, 2GB memory, using Matlab.

4.4 Robustness Analysis

Recall that in all of the above experiments the regularization factor λ for sub-
space regularization methods is set to a fixed number, and here we will examine
this robustness of our methods to hyperparameters in more details.

To evaluate the PCA-LS’s robustness to the regularization factor λ, we fix
the dimension p of subspace to 16 and report the classification accuracy for
λ = {10−4, 10−2, 100, 102, 104}. For SecStr, 500 points are randomly labeled,
and for other data sets 50 data are randomly labeled. The result is averaged
over 10 splits which is shown in the Figure 3. We can see that PCA-LS is rather
robust to the variation of λ, so no careful tuning of λ is needed.

To evaluate the PCA-LS’s robustness to the dimension p of subspace, we fix
the λ to 1 and report the classification accuracy for p = {1, 2, 22, 23, 24, 25, 26}.
For SecStr, 500 points are randomly labeled, and for other data sets 50 data are
randomly labeled. The result shown in the Figure 4 is averaged over 10 splits.
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Fig. 3. PCA-LS’s classification accuracy with different λ (p = 16)
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Fig. 4. PCA-LS’s classification accuracy with different p (λ = 1)

Unlike λ, the dimension p of the subspace is very important to the success of
subspace regularization methods, and needs to be chosen carefully. According to
the performance of PCA-LS, these seven data sets can be clearly divided into two
categories. For Breast-cancer, waveform, Text and SecStr, the accuracy peaks at
a very small p and then decrease gradually, which means most of the information
valuable for classification is actually embedding in a low dimensional subspace.
For Image, USPS and BCI, however, the accuracy increases with the dimension
of subspace monotonically which means the discriminative information is highly
nonlinear and can not be captured by a low dimensional subspace. It is very
interesting to see that it is exactly on the first class of data sets that the sub-
space regularization methods beat all the smoothness-based methods, while on
the second class of data sets smoothness-based methods work better. Thus the
conclusion is that, for very limited labeled data finding a general semi-supervised
learning method that works well for most problem may be extremely hard, and
we need to choose method carefully according to the characteristics of problem
at hands. For manifold or highly nonlinear data set, smoothness-based methods
are good choices. For those linear or approximately linear problems, subspace
regularization methods are more effective.

5 Conclusions

This paper has presented subspace regularization, a new method for semi-super-
vised learning. The motivation of our work is to find a low-dimensional repre-
sentation of data to avoid the curse of dimensionality and reduce the complexity
of the problem. Specifically, we hope to find a subspace and a decision function
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defined on this subspace such that the projection of labeled data onto this sub-
space can be easily separated and meanwhile the data information does not loss
too much by projection. By specifying the regularization term as reconstruction
error as PCA, we propose the PCA-based least square algorithm.

Unlike most of the semi-supervised learning methods which are based on the
smoothness assumption, subspace regularization utilizes the classic low dimen-
sional embedding assumption. Compared with previous works, our methods have
two remarkable advantages. First, under the situation that data from differ-
ent classes overlap heavily, our methods can still work, while smoothness-based
methods may fail. Second, our method has low computational complexity. For
linear PCA-LS, the computational complexity is linear in the number of data
points and dimension of the input space. This favorable property enables our
method to be applied to large-scale applications which have been demonstrated
in the experiment section.

Acknowledgments. This work was supported by the National Natural Science
Foundation of China (NSFC) under Grant nos. 60825301 and 60723005. The
authors thank the anonymous reviewers for their valuable comments.

References

1. Chapelle, O., Schölkopf, B., Zien, A., NetLibrary, I.: Semi-supervised learning. MIT
Press, Cambridge (2006)

2. Zhou, D., Bousquet, O., Lal, T., Weston, J., Scholkopf, B.: Learning with local
and global consistency. In: Advances in Neural Information Processing Systems 16,
pp. 321–328 (2004)

3. Mann, G., McCallum, A.: Simple, robust, scalable semi-supervised learning via
expectation regularization. In: Proceedings of the International Conference on Ma-
chine Learning, pp. 593–600 (2007)

4. Zhu, X., Ghahramani, Z.: Learning from labeled and unlabeled data with label
propagation. Technical Report CMU-CALD-02, Computer Science, University of
Wisconsin-Madison (2002)

5. Zhu, X., Ghahramani, Z., Lafferty, J.: Semi-supervised learning using Gaussian
fields and Harmonic functions. In: Proceedings of the International Conference on
Machine Learning, pp. 912–919 (2003)

6. Belkin, M., Niyogi, P., Sindhwani, V.: Manifold regularization: a geometric frame-
work for learning from labeled and unlabeled examples. The Journal of Machine
Learning Research 7, 2399–2434 (2006)

7. Joachims, T.: Transductive inference for text classification using support vector
machines. In: Proceedings of the International Conference on Machine Learning,
pp. 200–209 (1999)

8. Zhu, X.: Semi-supervised learning literature survey. Technical report, Computer
Science, University of Wisconsin-Madison (2005)

9. Burges, C.: Geometric methods for feature extraction and dimensional reduction: A
guided tour. In: The Data Mining and Knowledge Discovery Handbook, pp. 59–92
(2005)

10. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, Heidelberg (1995)



Subspace Regularization: A New Semi-supervised Learning Method 601

11. Jolliffe, I.: Principal component analysis. Springer, New York (2002)
12. Nigam, K., McCallum, A., Thrun, S., Mitchell, T.: Text classification from labeled

and unlabeled documents using EM. Machine learning 39(2), 103–134 (2000)
13. Joachims, T.: Transductive learning via spectral graph partitioning. In: Proceed-

ings of the International Conference on Machine Learning, pp. 290–297 (2003)
14. Belkin, M., Niyogi, P.: Semi-supervised learning on Riemannian manifolds. Machine

Learning 56(1), 209–239 (2004)
15. Lawrence, N.D., Jordan, M.I.: Semi-supervised learning via Gaussian processes. In:

Saul, L.K., Weiss, Y., Bottou, L. (eds.) Advances in Neural Information Processing
Systems 17, pp. 753–760 (2005)

16. Grandvalet, Y., Bengio, Y.: Semi-supervised learning by entropy minimization. In:
Advances in Neural Information Processing Systems 17, pp. 529–536 (2005)

17. Szummer, M., Jaakkola, T.: Information regularization with partially labeled data.
In: Becker, S., Thrun, S., Obermayer, K. (eds.) Advances in Neural Information
Processing Systems 15 (2003)

18. Chapelle, O., Zien, A.: Semi-supervised classification by low density separation. In:
Cowell, R.G., Ghahramani, Z. (eds.) Society for Artificial Intelligence and Statis-
tics, pp. 57–64 (2005)

19. Friedman, J., Stuetzle, W.: Projection pursuit regression. Journal of the American
Statistical Association 76(376), 817–823 (1981)

20. Huber, P.: Projection pursuit. The Annals of Statistics 13(2), 435–475 (1985)


