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Abstract

This paper proposes a new framework of band se-
lection for object classification in hyperspectral im-
ages. Different from traditional approaches where the
selected bands are shared from all classes, in this work,
different subsets of bands are selected for different class
pairs. Without prior knowledge of spectral database, we
estimate the spectral characteristic of objects with the
labeled and unlabeled samples, benefiting from the con-
cept of semi-supervised learning. Under the assump-
tion of Gaussian mixture model (GMM), the vectors of
mean values and covariance matrices for each class are
estimated. The separabilities for all pairs of classes
are thus calculated on each band. The bands with the
highest separabilities are then selected. To validate our
band selection result, support vector machine (SVM) is
employed using a strategy of one against one (OAO).
Experiments are conducted on a real data set of hyper-
spectral image, and the results can validate our algo-
rithm.

1. Introduction

In hyperspectral image processing, band selection
is a very hot topic that has been studied for a decade.
However, the motivation behind the scene may be quite
various. Due to the limitations of hardware, early stud-
ies aim to reduce the burdens of calculations. Among
these uniform band selection is an easy but typical
method [2]. In this method, the set of spectral bands is
uniformly sampled to a subset with pre-defined number
of bands. As a sacrifice, the loss of information for this
algorithm is usually very large. Some algorithms cal-
culate the correlations between the spectral bands and
reserve the bands with least correlations or reject some
highly correlated bands to reduce the redundancy [10],
[11]. Among these algorithms an energy function is

usually established to describe the correlation [3]. Ac-
companied with these band selection methods, a band
clustering algorithm is usually performed as well [8].

Another family of algorithms is more closely de-
signed for the purpose of classification. These algo-
rithms aim to achieve the highest separabilities between
classes on the select subset of bands [9], [5], [7]. To
reach this goal, labeled samples are utilized in super-
vised band selection, or more recently, both labeled and
unlabeled samples are used in semi-supervised band se-
lection. The separabilities are defined by divergence or
a certain form of distance, e.g, Bhattacharyya distance,
JeffriesCMatusita (JM) distance. Unfortunately, these
separabilities based algorithms select the same subset
of bands for all class combinations and ignore the pos-
sibility that is easy to think of: for different pairs of
classes, can the subsets of bands that best describe the
separabilities be different?

In this paper, we design the band selection algorithm
specially to the purpose of classification, and propose
an entirely new band selection strategy. Different from
the state-of-art algorithms, the selected subsets of bands
can be different for different pairs of classes. To achieve
this goal, we select spectral bands for all pairs of classes
separately. For each class pair, the separabilities are
evaluated according to the difference of spectral charac-
teristics on each band. To reach this goal, it is necessary
to obtain spectral characteristics for each class.

For a long time, an ideal assumption is that a spectral
database is available. By contrasting with the database,
the detailed information for each class of objects can be
acquired, as well as spectral characteristics. In this pa-
per, however, we utilize the labeled samples, and some
unlabeled samples. This is so called a semi-supervised
band selection method. With these samples, the statis-
tical parameters for each class are estimated. These pa-
rameters are the evidence for the separabilities between
the classes.

The remainder of this paper is organized as follows.
Section 2 describes the framework of our work. In sec-
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tion 3 the details of our methodology are presented. The
experimental results are demonstrated in section 4. The
conclusions are drawn in the final section.

2. The main framework

As is described in section 1, our band selection al-
gorithm is designed for a classification task. For this
reason, the core idea is to increase the separabilities be-
tween the classes. In fact, the separabilities between a
pair of classes often concentrate on a subset of bands,
and these subsets may be quite different for different
pair of classes. This idea is what our algorithm origi-
nally arises from.

Our problem can be described as: given a data set
of hyperspectal image, and a set of labeled X+ and un-
labeled samples X u, the goal of our formulations is to
find a collection S = {Sij : i, j ∈ L, i ̸= j}, where Sij

is a subset of bands and L is the label set.
To accomplish our work, we establish our algorithm

on the basic assumption that the distributions of the
spectral data fit a solid model, or GMM. From this
model, we can easily estimate some statistical param-
eters, such as mean values and covariance matrices.

The main steps of our algorithm can be expressed as
follows.

1. Benefiting from the algorithm of Semi-supervised
Expectation Maximization (SS-EM) algorithm [1],
we use labeled and some unlabeled samples to
estimate the mean values and covariances for all
classes on all the bands.

2. For each pair of classes, we estimate the separa-
bilities on each band with the calculated statistical
parameters.

3. For each pair of classes, all the bands are sorted by
their separabilities. To achieve the best classifica-
tion result, we select the top n bands with the high-
est seprabilities, where n is a pre-defined number
for real applications.

In this work, we use spectral features only and no
spatial information is considered.

3. Methodologies and validations

3.1. SS-EM

Although expectation maximization (EM) has been
proposed for years, the research and applications of SS-
EM have not gained attention until the recent years. In
this paper, we adopt the SS-EM algorithm proposed in

[1]. Meanwhile, we make some improvements to reject
the outliers.

Compared with traditional unsupervised EM, in SS-
EM some samples are assigned solid labels. The opti-
mization of log-likelihood function thus turns out to be:

logL(X ,Z; Ψ) =
∑
j∈Xu

c∑
i=1

zji log πifi(xj ; θi)

+
∑

j∈X+

log πl(j)fl(j)(xj ; θl(j))

(1)
In (1) X is the set of samples, and X+ and X u are the

sets of labeled and unlabeled samples separately, πi is
the prior probability, zji = 1 if xj is a sample of class i
an 0 otherwise. fi(xj , θi) is the probability function and
θi = (µi,Σi) are mean values and covariance matrices
to be estimated, and l(j) stands for the label of sample
xj .

To clarify the optimization process of SS-EM, we re-
view the process of traditional EM as E-step (2) and M-
step (3)-(5)separately:

τ
(k+1)
ji =

π
(k)
i fi(xj ; θ̂

(k)
i )∑c

h=1 π
(k)
h fh(xj ; θ̂

(k)
h )

(2)

π
(k+1)
i =

∑N
j=1 τ

(k+1)
ji

N
(3)

µ̂
(k+1)
i =

∑N
j=1 xjτ

(k+1)
ji

N∑
j=1

τ
(k+1)
ji

(4)

Σ̂
(k+1)
i =

N∑
j=1

(xj − µ̂
(k+1)
i )(xj − µ̂

(k+1)
i )′τ

(k+1)
ji

N∑
j=1

τ
(k+1)
ji

(5)
In (3) τji is an estimation of zji or the posterior prob-

ability, and k is the number of iterations.
In [1], it is pointed out that the main difference of

SS-EM with respect to traditional EM is the estimation
of posterior probability for the labeled samples. For a
labeled sample, it is not formulated as (2). Instead, it is
defined as:

τji =

{
1, if i = l(j)

0, otherwise
(6)

Another problem is the initialization. In this semi-
supervised context, the parameters can be initialized by
the labeled samples.
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3.2. Separability estimation and band selection

Under the assumption of GMM, the samples for each
class obey the distribution of d-dimensional Gaussian.
As a mathematical rule, the marginal distribution on
each band is also 1-dimensional Gaussian. Having the
statistical information for each class, we now concen-
trate our problem on a certain pair of classes. On each
band, the next task to be done is to estimate the 1-
dimensional separabilitiy between the samples of two
classes. In fact, this separability can be expressed as
the Bhattacharyya distance as a classical pattern recog-
nition problem [6]. Let (µ1, σ

2
1) and (µ2, σ

2
2) be the

means and covariances separately for the two classes,
the separability can be estimated as:

D =
1

4

(µ1 − µ2)
2

σ2
1 + σ2

2

+
1

2
log(

σ2
1 + σ2

2

2σ1σ2
) (7)

The remaining problem is how to select the subset of
bands for the class pair. In this paper we use a simple
strategy: by sorting all the bands with their separabili-
ties, we select those bands with the highest separabili-
ties. The number of bands can be predefined to meet the
requirement of the application.

3.3. Validations

Due to the fact that our band selection algorithm is
designed for classification, the results of our work are
also validated by classification tasks. Since the selected
bands are mostly different for all pairs of classes, the
decision of a testing sample is made with a binary clas-
sifier on any possible combinations of class pairs with
the corresponding selected bands. Then a voting rule is
performed via the well known one against one strategy
(OAO). In theory, any binary classifier can accomplish
this task. In this work, we use the SVM classifier and
the software is LibSVM [4].

4. Experimental results

The data set, Pavia city is provided by the HySens
project acquired by the ROSIS-3 optical sensor. For our
experiment, we cut off the part on the left of the image
and retain the part on the right since there is a black strip
for unknown regions. The number of bands is 102 with
a spectral range from 0.43µm to 0.86µm. The spatial
resolution is about 1.3m per pixel. Its size is 1096×492.
Nine classes are labeled: water, asphalt, trees, shadow,
meadows, bare soil, tiles, bricks and bitumen. From
all the bands we select three to combine a false RGB
image in Figure 1(a). The training (labeled) and testing

samples for classification are also presented in Figure 1
(b) and (c).

chch    (a) False RGB          (b) Training           (c) Testing 

Figure 1. Overview of the data set in our
experiment. (a) The false RGB image
combined by three bands; (b) The map for
the training (labeled) set; and (c) The map
for the testing set.

According to the algorithm described in section 3,
we perform our band selection process. An SVM clas-
sifier is employed to validate the results of band selec-
tion. To evaluate the performance of our algorithm, we
test with different values for the number of bands n, e.g,
10, 20, 30, ..., 90. The change of overall accuracies with
the number of selected bands are illustrated in Figure 2.

In Figure 2, when the number of selected band is
small (n = 10), the result is already fine. This shows
very high separabilities in this case. The overall accu-
racy of the classification results increases with the num-
ber of bands. From this figure, when the number of
band is 60, the overall accuracy is higher than that at-
tained with all bands. This proves the fact that the sepa-
rabilities can concentrate on the subsets of bands. This
is also because there are some noisy bands. From these
analysis this figure can well validate our algorithm.

Specially we test the result when the number of se-
lected band is small on an extreme case. That is when
n = 3. The classification result with all bands is also
testified. For comparisons we also show the classifica-
tion results of the uniform method for n = 3, which are
reported in Table 1.

In Table 1, it is illustrated that the classification re-
sults can exhibit rather well. The results for some
classes can approach those with all the bands. Com-
pared to the uniform method, the results for some
classes behave much better. This is because we achieve
better separabilities using our band selection algorithm.
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Table 1. Classification accuracies of the
band selection results for the AVIRIS data
set when n = 3

Classes Uniform Ours All Bands

Water 97.06 96.88 96.74

Asphalt 93.13 93.79 95.79

Trees 78.72 86.23 92.47

Shadow 99.63 98.66 99.95

Meadows 93.59 93.66 96.34

Bare soil 96.95 93.71 96.00

Tiles 29.79 61.11 98.99

Bricks 58.69 50.05 83.74

Bitumen 74.13 78.81 95.70

OA 91.04 92.37 96.14

chch

Figure 2. The variations of overall accu-
racy with the number of selected bands

5. Conclusion

This paper presents a new framework of band se-
lection, which we call classification oriented band se-
lection. Different from traditional band selection algo-
rithm, the subsets of bands are selected customized to
the class pairs. To estimate the separabilites between
band, a semi-EM algorithm is employed, and the statis-
tical parameters are estimated. Finally the classification
results are demonstrated. For comparison, the results of
the uniform method are also presented. These results
can validate our method.
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