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ABSTRACT
This paper presents a new deblurring method to remove the out-

of-focus blur from similar image pairs. The method is motivated by
an observation that a blurred structure appearing in one image can
often have its corresponding clear one in the similar clear images.
Our method first extracts the patch pairs from input images by SIFT
matching. Then the constraints on the patch pairs are used to esti-
mate the blur kernel via the RANSAC algorithm. Finally, the non-
blind deconvolution is adopted to restore the blurred image. The
main advantage is that we can improve the deblurring results with
the help of additional similar clear images in many practical appli-
cations. Our method is validated on synthetic and real images by
comparing with state-of-the-art methods.

Index Terms— Image deblurring, out-of-focus blur, SIFT
matching, region pairs

1. INTRODUCTION

When taking photos, one general problem is the blurs in the cap-
tured images. Caused by cameras shaking or objects out-of-focus,
these blurs significantly degenerate the visual qualities of the im-
ages. In the last decades, many image deblurring methods have been
proposed to restore the clear images. In these methods, the image
deblurring is generally modeled as a problem of blind deconvolu-
tion, in which the blurred image is generated by a convolution of a
clear image with a blur kernel. Due to the unknown clear image and
kernel, image deblurring is a challenging ill-posed problem.

To make the problem well defined, one kind of methods adop-
t the statistical priors learned from the natural images. Levin [1]
assumes that the gradients of natural images follow a Laplacian dis-
tribution. This prior is later used to constrain the estimation of a
motion blur kernel. Fergus and Singh [2] combine the prior of the
image gradients with the prior of noise to maximize the posterior
probability of the kernel. Shan et al. [3] go a further step by using
the priors of image, kernel and noise to maximize the joint proba-
bility of the latent image and the kernel. Other priors, e.g., gradient
Hyper-Laplacian prior [4], normalized sparse prior [5] and variant
gradient priors [6], are also introduced in recent methods. Although
great improvements have been achieved by these methods, the sta-
tistical priors alone are not adequate for the deblurring.

To improve the generic model derived from the statistical pri-
ors of a single image, the multi-image based methods are developed.
Rav and Peleg [7] use the constraints between two different motion
blurred images to estimate the motion kernel. Yuan et al. [8] take a
noisy image as the latent image of the blurred image to compute the
blur kernel. Zhuo et al. [9] use a no-flashed image to deblur a flashed
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motion blurred image. In addition, to avoid estimating the blur ker-
nel, Xiang et al. employ blurred-clear image pairs as samples to
train matrix mapping functions in terms of supervised learning [10].
Although satisfied results are produced, their experimental settings
make them difficult to be applied in practical situations. For exam-
ple, two aligned images for the same scene are required in [8, 9].

Other methods are also developed with the help of additional
hardware. Levin et al. [11] use a coded aperture to estimate the
depth of the scene and then recover the all in-focus image by decon-
volution. Joshi et al. [12] use an inertial measurement sensors to
record the acceleration and angular velocity during the motion blur
and then estimate the blur kernel. Although high-quality results are
obtained, their methods can not be applied for traditional cameras.

In many applications, we can easily obtain several clear images
with similar scenes to the blurred images. The objects defocused in
one image will be clear in the other images when they are focused.
One example is illustrated in Fig. 1. The flowers and the leaves
blurred in one image are clear in another image. In such cases, the
clear images can provide useful information to remove the blur in
the blurred images. Specifically, the patches in the blurred images
can have their corresponding clear ones in the other images.

Fig. 1. Two images taken at different focuses. While some of the
regions in one image are blurred, their corresponding regions in an-
other image are clear. The blurred and clear regions are bounded
separately by red and green rectangles.

In this paper, we propose a method to remove the out-of-focus
blur from similar clear images. It arises from the observation that a
patch in a blurred image can often have a corresponding clear one
in their similar images. Our method first extracts the patch pairs by
using SIFT matching. Then, we estimate the blur kernel by the con-
straint between the patch pairs via the RANSAC algorithm. Finally,
the clear image is restored by image deconvolution.

The main contribution of our method is that we adopt new con-
straints extracted from similar clear images for the deblurring. Com-
pared with methods [1-6], our constraints are more specific than the
statistical priors. While the statistical priors are generic for all the
natural images, our constraints are specifical to the blurred image.
In fact, our constraints can be a complementary to the statistical
priors. In compared with methods with multiple images [7-9], our
method relaxes the experimental requirements in their methods, i.e.,
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Fig. 2. The framework of our algorithm

the aligned images for the same scene are replaced by the unaligned
images for similar scene. Finally, our methods can be applied for
the images captured by either the traditional cameras or the compu-
tational camera with the coded aperture [11].

The reminder of the paper is organized as follows: Section 2
describes our method. The experiments are conducted and analyzed
in Section 3. Finally, we conclude our paper in Section 4.

2. OUR ALGORITHM

The goal of our method is to remove the out-of-focus blur. This blur,
namely the Bokeh effect, happens when parts of the scene lie outside
the depth of field. In our method, we adopt the common assumption
used in existing methods [1, 2] that the blur is shift-invariant. Under
this assumption, the out-of-focus image can be modeled as a convo-
lution of a latent clear image with a blur kernel:

B = I ⊗K, (1)

where B is the blurred image, I is the latent clear image and K is the
blur kernel, ⊗ is the convolution operator. Although the assumption
is not true for the out-of-focus image, it is valid for some of the
regions which have the approximately same depths. However, it is
still a challenging problem to segment the scene with the same depth
[13]. In this paper, we manually select these regions to be deblurred.

In (1), the problem is ill-posed because both the latent image
I and the blur kernel K are unknown. Fortunately, we can easily
obtain the similar clear images along with the out-of-focus image
as shown in Fig. 1. In these similar clear images, they often con-
tains the clear regions corresponding to the blurred regions in the
out-of-focus image. This inspires us to use the constraints between
the region pairs to remove the blur, where the region pairs can be
extracted from the out-of-focus image and its similar clear images.

Our algorithm first extracts region pairs. This is implemented
by extracting and matching SIFT points in input images. Then the
image pairs are aligned by affine transformation and the region pairs
are extracted around each the matching point pair in each input im-
age. With the region pairs, the constraints are obtained and the blur
kernel is estimated by enforcing these constraints via the RANSAC
algorithm. Finally, the blurred image is restored by deconvolution.
The framework of our algorithm is illustrated in Fig. 2 and an exam-
ple is shown in Fig. 3.

2.1. Region Pairs Constraints

Given RB , a blurred region from the blurred image B, and RIS ,
its corresponding clear region in the clear image IS , we have the
following constraint between the region pair

RB = RIS ⊗K. (2)

To extract the region pairs, we propose a method based on SIFT
matching [14]. The reason is explained below. Generally, the out-
of-focus image can be approximately considered as the convolution
of an latent clear image with a Gaussian kernel [15]. Consequently,

Fig. 3. An example of our deblurring framework: (a) input image
pairs. The region in red box is to be deblurred, (b) the extracted
region pairs and the estimated kernel, (c) the restored image.

the out-of-focus image resembles the scaled image of the latent clear
image. Therefore, the SIFT matching can extract the corresponding
scale-invariant points in the input images.

As described above, the point pairs are first automatically ex-
tracted and matched by SIFT matching. Then, affine transform is
used to align the similar clear image to the blurred image. After
alignment, the N ∗ N region pairs {RB

i , RIS
i } are obtained by ex-

tracting the regions around the point pairs. For the extracted region
pairs, the regions in the similar clear image will correspond to the
regions in the blurred image. Fig. 4 illustrates some of the extracted
region pairs from the images in Fig. 3. As shown in Fig. 4, the
extracted region pairs are indeed the corresponding regions in the
out-of-focus image and similar clear image.

Fig. 4. Extracted region pairs: the first row shows the regions in the
out-of-focus image, the second row shows the corresponding clear
regions in the similar clear image. The red rectangles show some
outliers in the extracted region pairs.

After the patch pairs extraction, one simple deblurring method
is to replace the blurred image by its aligned clear images. Unfor-
tunately, this method often fails. For example, the eyes of the man
in the restored image in Fig. 3 will be open by direct substitution.
However, the eyes of the man in the blurred image should be closed.
Instead, we adopt an alternative method by estimating the blur kernel
using constraint between the region pairs and then restore the image
by deconvolution.

2.2. Robust Kernel Estimation

In (2), there is a linear constraint for the blur kernel K on each region
pair which is extracted from each of the multiple input similar clear
image. With some sets of region pairs obtained, K are usually over-
constrained and can be easily estimated. Actually, we can generally
extract more than twenty region pairs in our experiments, which are
adequate for estimating the blur kernel.

Our objective function with respective to K is defined as

L(K) =
∑M

i=1
||RB

i −RIS
i ⊗K||22, (3)
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where {RB
i , RIS

i } are the extracted region pairs, M is the number
of the extracted pairs. By minimizing (3), K is uniquely estimated
and has a closed-form solution in the frequency domain:

K = F−1

{ ∑M
i=1 F

∗(RIS
i )F (RB

i )∑M
i=1 F

∗(RIS
i )F (RIS

i )

}
, (4)

where F and F−1 are the Fourier transform and the inverse Fourier
transform respectively, and the superscript ∗ represents the conjugate
of the complex.

However, the result of (4) will be deviate from the true kernel
when some region pairs do not satisfy (2). Fig. 4 shows two out-
lier pairs. In these two region pairs, the eyes in the blurred image
are closed, while the clear eyes in the similar clear image are open.
Therefore, the estimated kernel by these pairs will be inaccurate .
To this end, robust method RANSAC [16] is used to remove these
outliers. It proceeds as follows:

1. Randomly select a region pair {RB
i , RIS

i } to compute the ini-
tial kernel Ki [17]:

Ki = F−1

{
F ∗(RIS

i )F (RB
i )

F ∗(RIS
i )F (RIS

i )

}
; (5)

2. Use Ki estimate the inlier region pairs. We select the region
pairs with the small errors:

Ei
j = ||RB

j −RIS
j ⊗Ki||22, j = 1, . . . ,M ; (6)

3. Re-estimate the kernel K̄i using all the inlier pairs, and com-
pute the error of K̄i by summing all the errors of the inlier
region pairs;

4. Go through all the region pairs and choose the kernel with the
minimal error as the final kernel.

2.3. Deconvolution

After the kernel has been estimated, we use Richardson-Lucy decon-
volution method [18] to restore the image. It iteratively computes the
latent image I until convergence:

It+1 = It × K̃ ⊗ B

K ⊗ It
, (7)

where K̃ is the transpose of K that flips the shape of K upside-down
and left-to-right, and × is the pointwise product operator. While it
is simple, we can produce satisfied results because of the accurately
estimated blur kernel.

3. EXPERIMENTS

We validate our algorithm on synthetic and real images. Three state-
of-the-art methods, i.e., Shan et al. [3]1, Li and Jia [17]2 and Kr-
ishnan et al. [5]3, are compared with our method. The codes are
provided by the authors and the parameters in the codes are tuned to
produce the best results.

In our method, the extracted patch size is larger than the kernel
size to ensure (5) can be computed. In our experiments, we set it
to 41 × 41. The number of the inliers in RANSAC is set to be the
half of the number of the region pairs. The size of the blur kernel is
determined by the level of the blur and 17× 17 is used by default.

1http://www.cse.cuhk.edu.hk/∼leojia/projects/motion deblurring/
2http://www.cse.cuhk.edu.hk/∼leojia/deblurring.htm
3http://cs.nyu.edu/∼dilip/research/blind-deconvolution/

(a) (b) (c) (d) (f)(e)

Fig. 5. Comparisons on synthetic images. (a) Blurred image, (b)
ground truth (also used as the similar clear image in our method),
(c)-(f) results of [17], [3], [5] and ours respectively.

For synthetic images, we evaluate the Mean Square Error (MSE)
between the restored image and the ground truth. The results are il-
lustrated in Fig. 5. Our method restores the clear image, in which
the blurred edges are recovered and the characters in the blurred im-
age can be recognized. The MSE of [17], [3], [5] and ours are 16.42,
18.57, 16.57 and 17.60 respectively. Our MSE is comparable to the
MSE of the other methods. The visual and quantity comparisons in-
dicate that our constraints on region pairs indeed help the deblurring
and can play the role of statistical prior in the other methods.

The comparisons on real images are illustrated in Fig. 6. While
our method produces the comparable results on the overall blurred
region, we obtain the better results in recovering more details and
produce fewer artifacts. This is shown in the restored eye in Fig. 6.
In [3], obvious artifacts of blocks appear around the eye. In [17] and
[5], the details are lost and the restored image are smoothed in the
eyelid. However, our method produces the satisfied results with the
more details and fewer artifacts. While [17] and [5] seams clear in
that the edges of the restored images are enhanced, our result is more
natural because both the texture and the details are restored.

We show another comparative results on real image in Fig. 7. As
shown, the results of [3] and [17] are much more blurred than the re-
sults of [5] and ours. Whereas, the method in [5] tends to smooth the
image in the textural regions and thereby loses many details around
the eye in Fig. 7 (e). Contrast to [5], our result contains more details
and the restored eye is more human-like because the skin of the eye
has fine texture rather than just a smoothed surface.

The reason that better results are produced is that we estimate
the accurate blur kernel with additional similar clear images. For
the other three methods, statistical priors are adopted to estimate the
blur kernel. These priors are generic for all the natural images. Con-
trarily, the constraints in our method is specific to the blurred image.
Therefore, they are more efficient than the statistical priors and more
accurate kernel are estimated.

Finally, we give one of our applications in Fig. 8, where two
different focused images are fused to generate their all-in-focus im-
ages. As shown in Fig. 8, there is always one man out-of-focus in the
input image (a) and (b). Using our method, we recover each blurred
man in one image by taking the other image as the corresponding
similar clear image. After our deblurring algorithm, both the men
are focused in the restored images (c) and (d).

4. CONCLUSION

We have presented a new method to deblur an out-of-focus image
from its similar clear images. With the constraints extracted from
the similar images, we accurately estimated the blur kernel and pro-
duced high-quality results. By comparing with state-of-the-art meth-
ods, we demonstrated that similar clear images could provide useful
information and improve the deblurring results. We just provided
one way to efficiently utilize other similar images and more power-
ful algorithms will be developed in the future.
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(a) (b) (c) (d) (e) (f)

Fig. 6. Comparisons on real images. (a) Two input similar image pairs, the red rectangle is the region to be deblurred, (b) blurred region,
(c)-(f) deblurred regions of [17], [3], [5] and ours respectively. The bottom row shows the close-ups of the yellow rectangle.

(a) (c) (e)(d) (f)(b)

Fig. 7. Comparisons on real images. (a) Two input similar image pairs, the red rectangle is the region to be deblurred, (b) blurred region,
(c)-(f) deblurred regions of [17], [3], [5] and ours respectively. The bottom row shows the close-ups of the yellow rectangle.

(a) (b) (c) (d)

Fig. 8. Generating all focused images: (a) and (b) Two different focused images. The men in the green rectangles are in-focus and the men
in the red rectangles are out-of-focus. The red rectangles are the regions to be deblurred. (c) the restored clear image of (a), (d) the restored
clear image of (b). By taking one image as the blurred image and another image as the similar clear image, our method removes the blur in
both input images. As shown, both (c) and (d) have the two men focused.
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