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Abstract
Purpose: We aimed to develop a noninvasive artificial intelligence (AI) model to
diagnose signet-ring cell carcinoma (SRCC) of gastric cancer (GC) and identify
patients with SRCC who could benefit from postoperative chemotherapy based
on preoperative contrast-enhanced computed tomography (CT).
Methods: A total of 855 GC patients with 855 single GCs were included, of
which 249 patients were diagnosed as SRCC by histopathologic examinations.
The AI model was generated with clinical,handcrafted radiomic,and deep learn-
ing features. Model diagnostic performance was measured by area under the
receiver operating characteristic curve (AUC), sensitivity, and specificity, while
predictive performance was measured by Kaplan–Meier curves.
Results: In the test cohort (n = 257), the AUC, sensitivity, and specificity of
our AI model for diagnosing SRCC were 0.786 (95% CI: 0.721–0.845), 77.3%,
and 69.2%, respectively. For the entire cohort, patients with AI-predicted high
risk had a significantly shorter median OS compared with those with low risk
(median overall survival [OS], 38.8 vs. 64.2 months, p = 0.009). Importantly, in
pathologically confirmed advanced SRCC patients,AI-predicted high-risk status
was indicative of a shorter overall survival (median overall survival [OS], 31.0
vs. 54.4 months, p = 0.036) and marked chemotherapy resistance, whereas
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AI-predicted low-risk status had substantial chemotherapy benefit (median OS
[without vs. with chemotherapy], 26.0 vs. not reached, p = 0.013).
Conclusions: The CT-based AI model demonstrated good performance for
diagnosing SRCC, stratifying patient prognosis, and predicting chemotherapy
responses.Advanced SRCC patients with AI-predicted low-risk status may ben-
efit substantially from adjuvant chemotherapy.

KEYWORDS
chemotherapy, deep learning, diagnosis, signet-ring cell carcinoma, survival

1 INTRODUCTION

Gastric cancer (GC) is one of the most common cancers
and is a major cause of cancer-related death globally.1,2

Signet-ring cell carcinoma (SRCC) is defined as GC
composed of at least 50% signet-ring cells in the patho-
logic specimen.3 In prior studies, SRCC was exclusively
found in the diffuse subtype of the Lauren classification
of GC and was significantly associated with advanced
tumor stage and a higher risk of metastasis.4–6 Interest-
ingly,while associated with better survival and prognosis
in early GC, SRCC in advanced GC is an unfavorable
histological subtype and is an independent prognostic
factor for lymph node and distant metastases, increased
chemotherapy resistance, and poor survival.4–6

Despite the prognostic significance of SRCC, pre-
operative diagnosis of SRCC still relies on tissue
biopsies, which are invasive and subjective to sampling
error.7 These intrinsic limitations are exacerbated by
the heterogenous nature of GC and thus may give
rise to a biased diagnosis and delayed or even inap-
propriate treatment.8 However, the field of noninvasive
approaches for SRCC is in its infancy.9,10 Therefore, a
noninvasive and easy-to-use tool for predicting SRCC
is necessary. Moreover, due to the uncertainty of the
efficacy of chemotherapy in SRCC patients, an easy-
to-use tool for predicting chemotherapy response and
survival for SRCC patients is necessary.6 The strengths
of imaging, in particular the ability to assess the tumor
in its entirety, are well suited to overcome the current
challenges in SRCC diagnosis and prognosis.11

Based on medical imaging and artificial intelligence
(AI), radiomics has become a hot research topic in
cancer research.12–16 Radiomics converts images into
minable data and extracts high-dimensional quantitative
features from these data.17,18 These radiomic features,
which include handcrafted features and deep-learning
features, may reflect the pathological or physiological
features of cancer. It should be mentioned that we

termed the traditional radiomic features as handcrafted
features for distinguishing them from deep learning
features. Handcrafted and deep learning features can
be assessed using AI analytical methods to assist
personalized precision medicine.19,20 Some studies
have reported that handcrafted and deep learning fea-
tures offer complementary information by which more
accurate decisions can be made.21,22 Radiomics has
been widely used in cancer detection, diagnosis, and
prognosis.23,24 Specifically, the value of radiomics has
been validated in the differentiation of pathologic types
in GC.25 However, there is no study to our knowledge
utilizing a radiomics approach or AI to address the
SRCC diagnosis and prognosis problem.

Therefore, we aimed to develop an AI model to
diagnose SRCC and to stratify the risk of postopera-
tive chemotherapy resistance and patient survival on
preoperative contrast-enhanced CT.

2 MATERIALS AND METHODS

Our institutional review board approved this secondary
analysis, and the requirements for informed consent
were waived because all patient data were retrospec-
tively retrieved from a prospectively collected database
(Surgical Gastric Cancer Patient Registry [SGCPR],26,27

registration No.: WCH-SGCPR-2020-01).

2.1 Patients

From June 1, 2009 to December 31, 2014, consecu-
tive patients with primary GC who underwent gastrec-
tomy in West China Hospital, Sichuan University had
been enrolled in the gastric cancer registry. The inclu-
sion criteria were as follows: (1) patients underwent
partial or total gastrectomy with regional lymphadenec-
tomy in two gastric cancer surgical treatment teams
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and (2) patients with available contrast-enhanced CT
scan of the abdomen within 30 days prior to surgery.
Patient exclusion criteria were as follows: (1) with pre-
operative chemotherapy and/or radiotherapy; (2) under-
went surgery for previous remnant gastric cancers; (3)
incomplete CT image data for qualitative and/or quan-
titative analysis; and (4) lost to postoperative follow-up.
Curative intent surgical resection had been performed
according to the Japanese gastric cancer treatment
guidelines 2010.28 Postoperative chemotherapy based
on 5-fluorouracil and oxaliplatin was recommended for
patients at advanced T stages and/or with lymph node
metastasis. All patients had been followed-up after
surgery with CT or MRI at least twice per year in the
first three years and once per year thereafter until death,
loss of follow-up or 12/30/2019, whichever came first.
Patients were randomly allocated to the training or test
cohort at a 7:3 ratio.

2.2 Histopathologic analysis

Histopathologic examinations of the resected speci-
mens were used as the reference standard for SRCC
diagnosis according to the WHO Classification of
Tumors of the Digestive System,and patients were clas-
sified into SRCC (containing > 50% of signet-ring cells)
or non-SRCC (containing < 50% of signet-ring cells
in pathologic specimen).3 Other pathological character-
istics, including TNM stage and Lauren’s classification
were also collected.29

All histopathologic examinations were assessed inde-
pendently by two pathologists who were aware of
the clinical and imaging data. All disagreements were
resolved by discussion and consensus.

2.3 Imaging acquisition

Preoperative multiphasic contrast-enhanced CT scans
were acquired using several multidetector CT scan-
ners in this study. CT images were acquired before and
after administration of contrast media during the arte-
rial phase (AP) and portal venous phase (PVP).Detailed
imaging acquisition protocols are summarized in Sup-
plementary Material 1.

2.4 Regions of interest (ROIs)
segmentation

A study coordinator ([BLINDED FOR REVIEW]) with 6
years of experience in gastrointestinal imaging retrieved
and de-identified all patient images,evaluated the image
quality, and determined the locations of the gastric
lesion on the maximum cross sections of PVP CT

images with reference to the surgical and pathological
reports.

All CT images were then reviewed independently by
two abdominal radiologists ([BLINDED FOR REVIEW])
who were blinded to any clinicopathologic and follow-
up information with 5 and 6 years of experience
in gastrointestinal CT imaging, respectively. For each
patient,a manually delineated tumor ROI (ROItumor) was
placed by each reviewer along the entire tumor mar-
gin on the maximum cross sections of precontrast, AP,
and PVP images. A minimum bounding rectangle ROI
(ROIrec_tumor) was automatically generated by computer
to encompass the corresponding ROItumor for develop-
ment of the deep learning models.

2.5 Model development

First, we built individual models based on handcrafted
radiomics, deep learning, and clinical features for pre-
dicting SRCC, respectively. Finally, an AI model that
encompassed all of the above features was generated.

2.5.1 Radiomics model

A total of 448 handcrafted features were extracted from
each ROItumor using the Pyradiomics package (http:
//pyradiomics.readthedocs.io) in Python (version 3.6;
https://www.python.org/).30 Then, feature extraction was
performed based on each radiologist’s ROIs separately.
During the feature selection, intraclass correlation coef-
ficient (ICC), univariate analysis, minimum redundancy
maximum relevance algorithm (mRMR), and backward
stepwise according to Akaike’s information criterion
(AIC) were used to remove irrelevant features. After-
ward, multivariate logistic regression was performed to
construct a radiomics model (ModelR) based on the
optimal feature subset. Detailed feature extraction and
selection are described in Supplementary Material 2.

2.5.2 Deep learning model

Additionally, we developed a deep learning model
(ModelDL) to predict the SRCC directly from the images.

In order to extract specific characteristics of the
primary tumor, we developed the deep learning model
in the following two steps. First, we adopted U-Net
as a semantic segmentation network and performed
a segmentation task.31,32 The input of the segmen-
tation network was the ROIrec_turmor. The ground
truth was the binarized ROItumor (1: primary tumor, 0:
other tissues). Both the input and the ground truth
were first resized to 112 × 112 pixels by bilinear
interpolation.

http://pyradiomics.readthedocs.io
http://pyradiomics.readthedocs.io
https://www.python.org/
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Second, we appended three fully connected layers
behind the encoder network of U-Net and termed it as a
classification network (ModelDL).The weight of ModelDL
was initialized by U-Net and fine-tuned for five epochs.33

Consequently,ModelDL could extract more specific char-
acteristics of the primary tumor itself. All of the above
operations were conducted in the training cohort.

During the training process,online sample augmenta-
tion techniques were used to improve model robustness,
such as random rotation, horizontal flip, and vertical flip.
For alleviating the issue of class balance, we adopted
a weighted random sampler method in each batch. In
addition, we randomly selected one-fifth of the training
cohort samples as the validation set for hyperparameter
optimization. More details of the image preprocessing,
model structure, and hyperparameter are described in
Supplementary Material 3.

2.5.3 Clinical model

Preoperative clinical characteristics (patient age, gen-
der, and tumor location) were fed into a logistic regres-
sion model to diagnose SRCC.A clinical model (ModelC)
was established accordingly based on significant clinical
characteristics selected by multivariate analyses.

2.5.4 The combined AI model

Finally, a logistic regression algorithm was conducted to
build ModelAI, combing significant medical features with
the outputs of ModelR and ModelDL. ModelAI generated
the probability that each patient belongs to SRCC. The
development of the combined AI model is shown in
Figure 1.

2.6 Statistical analysis

Differences between two groups were estimated by an
independent-sample t-test or Mann–Whitney U test for
continuous variables and chi-square test or Fisher exact
test for categorical variables.

The areas under the receiver operating characteristic
curves (AUCs) were used to estimate model diagnostic
performance and were compared by the Delong test.
We selected thresholds by maximizing the Youden index
in the training cohort, applied these thresholds to the
testing cohort, and calculated accuracy, specificity, and
sensitivity. Calibration curves were plotted to assess
the calibration of the AI model and examined by the
Hosmer-Lemeshow test. In addition, decision curve
analysis was conducted to estimate the AI model’s clini-
cal usefulness by quantifying the net benefits at different
threshold probabilities. We computed the net reclassifi-
cation index (NRI) to assess diagnostic improvements

between models. In order to measure model predictive
performance and robustness, we performed fivefold
cross-validation on the entire dataset and computed the
mean AUC across all folds and relative standard devi-
ation as a percentile (RSD, RSD = (sdAUC/meanAUC)
× 100%).34 Furthermore, stratification analysis
was performed on patient age, gender, and tumor
locations.

Kaplan–Meier curves were constructed to analyze
overall survival (OS) outcomes, with the log-rank test
used to assess statistical significance. Patients were
stratified into high-risk and low-risk groups according
to an optimal cutoff point estimated in the training
cohort by X-tile software based on the probability scores
of ModelAI (version 3.6.1; Yale University School of
Medicine, New Haven, CT, USA).35

All analyses were conducted with R software (version
3.5.1; http://www.Rproject.org). A two-sided p < 0.05
was used to indicate a statistically significant difference.

3 RESULTS

3.1 Histopathologic characteristics

A total of 855 patients (median age, 59.2 years; range,
21–86 years, 594 men) each with a single GC lesion
(median size,6.0 cm,range,1.0–25.0 cm) were included.
Consistent with previous reports, patients with SRCC
(n = 249, 29.1%) were younger and more likely to be
female than those with non-SRCC (Table 1). SRCC was
also more frequently found in the nonesophagogastric
junction of the stomach, in the diffuse subtype of Lau-
ren’s classification, and associated with more advanced
pathological T, N, and M stages (Table 1). Among these
patients, 598 (69.9%) were assigned to the training
cohort and 257 (30.1%) were assigned to the test cohort
(Figure 2). No difference in any clinical characteristics
was observed between the training and test cohorts
(Supplementary Material 4).

3.2 Diagnostic performance of different
models

3.2.1 Radiomics model

We constructed models with features from precon-
trast, AP, and PVP phases, respectively. Because no
significant improvement was achieved after combining
features derived from precontrast and AP images, four
features from PVP exclusively (detailed in Supplemen-
tary Material 5) were used to generate ModelR. The
AUC for ModelR was 0.697 (95% confidence interval
[CI]: 0.648–0.744) in the training cohort and 0.700 (95%
CI: 0.617–0.777) in the test cohort, respectively (Table 2
and Figure 3).

http://www.Rproject.org
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F IGURE 1 The pipeline of AI model construction and assessment. (a) Original CT images and segmentation of the region of interest by
two radiologists. (b) Deep learning and handcrafted feature extraction from the primary tumor. (c) Construction of AI model based on deep
learning, handcrafted, and clinical features. (d), (e) Evaluation of the AI model in SRCC classification and stratification. R model, radiomics
model; DL model, deep learning model

F IGURE 2 Process of patient enrollment for training and test cohorts. SGCPR, Surgical Gastric Cancer Patient Registry
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TABLE 1 Characteristics of GC patients in this study

Characteristics SRCC Non-SRCC p Value*

No. of patients 249 606 …

Median age (range in years) 57 (21–84) 61 (26–86) <0.001*

Gender no. (%) <0.001*

Male 142 (57.0) 452 (74.6)

Female 107 (43.0) 154 (25.4)

Tumor size median (range in mm) 7.0 (1.0–25.0) 6.0 (1.0–25.0) <0.001*

Lauren classification no. (%) <0.001*

Intestinal subtype 3 (1.2) 170 (28.1)

Diffuse subtype 186 (74.7) 110 (18.2)

Mixed subtype 20 (8.0) 82 (13.5)

Unknown 40 (16.1) 244 (40.2)

Tumor location no. (%) <0.001*

Esophagogastric junction 57 (22.9) 219 (36.1)

Other locations 192 (77.1) 387 (63.9)

T stage no. (%) 0.01*

pT1 stage 8 (3.2) 27 (4.5)

pT2 stage 17 (6.8) 69 (11.4)

pT3 stage 30 (12.0) 108 (17.8)

pT4 stage 194 (78.0) 402 (66.3)

N stage no. (%) <0.001*

pN0 stage 30 (12.0) 119 (19.6)

pN1 stage 22 (8.8) 103 (17.0)

pN2 stage 36 (14.5) 124 (20.5)

pN3 stage 161 (64.7) 260 (42.9)

M stage no. (%) 0.024*

pM0 stage 202 (81.1) 528 (87.1)

pM1 stage 47 (18.9) 78 (12.9)

No. of patients with adjuvant chemotherapy (%) 0.368

With adjuvant chemotherapy 121 (48.6) 315 (52.0)

Without adjuvant chemotherapy 128 (51.4) 291 (48.0)

Note. Unless stated otherwise, data are the number of patients or lesions. Data are presented as count (percentage), mean ± standard deviation, or median (range),
where applicable.
*Comparisons are made using the Student’s t-test or Mann–Whitney U test for continuous variables,and with the χ2 test or Fisher’s exact test for categorical variables,
where applicable. SRCC, signet-ring cell carcinoma.

TABLE 2 Model diagnostic performance for signet-ring cell carcinoma

Index

Training cohort Test cohort
AUC (95% CI) ACC SEN SPE AUC (95% CI) ACC SEN SPE

ModelC 0.634 (0.586–0.689) 68.1% 45.4% 77.4% 0.640 (0.559–0.717) 68.1% 40.0% 79.7%

ModelR 0.697 (0.648–0.744) 64.7% 64.4% 64.9% 0.700 (0.617–0.777) 65.0% 62.7% 65.9%

ModelDL 0.728 (0.681–0.768) 65.9% 74.7% 62.3% 0.716 (0.641–0.780) 63.8% 70.7% 61.0%

ModelAI 0.797 (0.763–0.840) 72.2% 73.0% 71.9% 0.786 (0.721–0.845) 71.6% 77.3% 69.2%

ACC, accuracy; SEN, sensitivity; SPE, specificity; AUC, area under curve; CI, confidence interval.
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F IGURE 3 Receiver operating characteristic curves, calibration curves, and decision curves of SRCC diagnose by different models. (a), (b)
Receiver operating characteristic curves of the radiomics (ModelR), deep learning (ModelDL), clinical (ModelC), and AI (ModelAI) models in the
training and test cohorts. (c), (d) Calibration curves of ModelAI in the training and test cohorts. (e) Decision curves of ModelAI, ModelC,
all-diagnosed-as-SRCC, and all-diagnosed-as-non-SRCC. SRCC, Signet-ring cell carcinoma

3.2.2 Deep learning model

Similarly, as precontrast and AP images did not bring
in additional diagnostic benefits, ModelDL was con-
structed solely on PVP images (Supplementary Material
5). ModelDL yielded an AUC of 0.728 (95% CI: 0.681–
0.768) in the training cohort and 0.716 (95% CI: 0.641–
0.780) in the test cohort, respectively.

3.2.3 Clinical model

Only patient age (odds ratio [OR] = 0.975, p = 0.001)
and gender (OR = 1.992, p = 0.001) were identified as
significant predictive clinical factors for SRCC in the mul-
tivariate analysis in the training cohort. ModelC, which
incorporated only these two factors, demonstrated an
AUC of 0.634 (95% CI: 0.586–0.689) in the training
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cohort and 0.640 (95% CI: 0.559–0.717) in the test
cohort (Table 2 and Figure 3).

3.2.4 The combined AI model

After integrating the outputs of ModelR and ModelDL
and significant clinical features, ModelAI had the high-
est AUCs of 0.797 (95% CI: 0.763–0.840) in the
training cohort and 0.786 (95% CI: 0.721–0.845) in
the test cohort, respectively (Table 2 and Figure 3).
According to the cross-validation experiments, the mean
AUC of ModelAI was 0.780 (range: 0.738–0.833) and
RSD = 4.57% in the test cohort, indicating satisfac-
tory method robustness.The calibration curve (Figure 3)
demonstrated good agreement between predicted and
observed SRCC in both the training (p = 0.84) and test
cohorts (p = 0.45). As indicated by the stratification
analysis, performance of ModelAI was not affected by
patient age (p = 0.67), sex (p = 0.80), or tumor location
(p = 0.20) (Supplementary Material 6).

3.2.5 Comparisons between models

In the test cohort, ModelAI performed significantly bet-
ter than ModelR (Delong test: p = 0.002; NRI: 0.180,
p = 0.006), ModelDL (Delong test: p = 0.005; NRI: 0.196,
p = 0.001), and ModelC (Delong test: p < 0.001; NRI:
0.260, p < 0.001), and similar results were also found
in the cross-validation experiments (p < 0.05 for all pair-
wise comparisons,Supplementary Material 7).When the
above models were used for preoperative SRCC predic-
tion, the decision curves also revealed the greatest ben-
efit for ModelAI (Figure 3).

3.3 Prediction of postoperative
survival

A total of 851 (99.5%) patients had complete OS follow-
up information until 12/30/2019, with overall death
rate of 57.2% (487/851). The median OS of these
patients was 53.6 (95% CI: 43.8–66.7) months and was
38.2 (95% CI: 30.0–55.2) months for SRCC patients
and 66.7 (95% CI: 48.7–87.7) months for non-SRCC
patients (log-rank p = 0.003).Utilizing ModelAI to stratify
patients into high-risk and low-risk groups according to
the optimal cutoff point determined by X-tile software,
the median OS was 38.8 (95%CI:31.0–56.0) months for
high-risk patients and 64.2 (95% CI: 47.8–85.8) months
for low-risk patients (log-rank test p = 0.009) (Sup-
plementary Material 8). The pathologically determined
SRCC status and the probability scores of ModelAI
yielded comparable performance in predicting OS.

We further explored the utility of ModelAI in pre-
dicting survival and the chemosensitive profiles in

patients with pathologically confirmed advanced (T2–
T4 stages) SRCC (n = 239). We found that advanced
SRCC patients with AI-predicted high risk (n = 139)
had significantly shorter median OS compared with
those with low risk (n = 100) (31.0 months vs. 54.4
months, log-rank p = 0.036). In addition, chemotherapy
benefit was insignificant in the whole advanced SRCC
patients (median OS [without vs. with chemotherapy],
30.5 vs. 43.6, p = 0.110). Furthermore, we evaluated
whether AI-predicted risk status could predict adjuvant
chemotherapy response. Not surprisingly, chemother-
apy benefit was substantial in the AI-predicted low-risk
group (median OS [without vs. with chemotherapy],
26.0 vs. not reached, p = 0.013), while insignificant
in the high-risk group (median OS [without vs. with
chemotherapy], 31.0 vs. 29.3, p = 0.840).

The survival analysis results are summarized in
Table 3, and the Kaplan–Meier curves are shown in
Figure 4 and Supplementary Material 9.

4 DISCUSSION

Accurate and noninvasive assessment of SRCC, a
factor associated with paradoxical prognosis in early
(characterized by better survival) and advanced (char-
acterized by increased chemotherapy resistance and
worse survival) GCs, is paramount for personalized
management. Based on a large-scale GC cohort,
we generated a noninvasive CT-based preoperative
promising AI model integrating clinical, handcrafted
radiomics and DL features, which showed good diag-
nostic accuracy for SRCC. Our study was, to our
knowledge, the first attempt to investigate the value of
AI in preoperative SRCC diagnosis. Our predictive mod-
els demonstrated potential value in predicting long-term
survival and, more importantly, treatment response to
standard chemotherapies for SRCC.

Several GC subtyping systems have been introduced
to stratify patient survival and guide treatment decision-
making, but most of these systems require invasive
histopathological evaluations. Promising results have
been reported on the utility of imaging techniques,36,37

particularly with the assistance of AI, in discriminating
between Lauren’s subtypes (e.g. diffuse vs. intestinal
subtypes). However, among all subtyping systems of
GC,SRCC has been identified as a particularly informa-
tive prognostic factor indicative of poor patient survival
and increased chemotherapy resistance at advanced
stages. Conventional CT features of GC, including
enhancement pattern and tumor thickness, have been
indicative of SRCC.38 However, these features were
subjective, nonspecific, and with limited diagnostic
utilities. In contrast, AI techniques hold great promise
in revealing intrinsic tumor biology unseen by human
eyes and hence may overcome the barriers posed
by conventional imaging evaluations. The AI model
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TABLE 3 Survival analysis in GC patients

Cohort Group
Median
(months) 95% CI (months)

Log-rank
test p

All patients SRCC 38.2 30.0–55.2 0.003

Non-SRCC 66.7 48.7–87.7

All patients AI-predicted high risk 38.8 31.0–56.0 0.009

AI-predicted low risk 64.2 47.8–85.8

Advanced SRCC patients AI-predicted high risk 31.0 30.0–not reached 0.036

AI-predicted low risk 54.4 24.4–39.8

Advanced SRCC patients With adjuvant chemotherapy 43.6 30.0–69.0 0.110

Without adjuvant chemotherapy 30.5 24.0–40.0

Advanced SRCC patients with
AI-predicted low risk

With adjuvant chemotherapy Not reached 43.3–not reached 0.013

Without adjuvant chemotherapy 26.0 18.7–59.4

Advanced SRCC patients with
AI-predicted high risk

With adjuvant chemotherapy 29.3 21.1–53.0 0.840

Without adjuvant chemotherapy 31.0 24.0–50.4

SRCC, signet-ring cell carcinoma; AI, artificial intelligence.

demonstrated good discrimination and calibration per-
formance for SRCC diagnosis, which underscored its
promising potential in depicting the histologic profiles
of GC.

We investigated the effects of SRCC status and the
AI model in GC prognosis stratification in our cohort.
In parallel with prior studies,4,39,40 SRCC confirmed at
postoperative pathology was associated with a more
unfavorable prognosis in advanced GCs, as was the
case with the AI model.However,despite being indicative
of a poor prognosis, few treatment options are available
to improve the long-term survival of advanced SRCC
patients after gastrectomy, and the therapeutic benefit
of chemodrugs remains a current matter of debate.
Fortunately, as put forth in a bi-center study,41 around
16.3% locally advanced esophagogastric SRCCs could
achieve survival benefits after neoadjuvant chemother-
apy, highlighting the importance of finding biomarkers,
which may help identify potential chemoresponders
in this specific population. For this purpose, previous
genomics studies reported that somatic alteration of
CLDN18-ARHGAP26 fusion was detected in predomi-
nantly diffuse gastric cancers indicating its unique role.42

The value of CLDN18-ARHGAP26 fusion was further
confirmed in another study as a promising indicator of a
more unfavorable prognosis and increased chemodrug
resistance in patients with advanced SRCC.39 However,
the utility of this fusion gene remains in the preclinical
domain, largely because its evaluation is still mandated
by the histological analysis of the resected tumor tis-
sues,which were variegated at genomic and phenotypic
levels.

In contrast, by characterizing a much larger area of
the primary tumor than a biopsy, noninvasive imaging
techniques are well suited to address the intrinsic
tension between the tumor heterogeneity and lim-

ited sample tissues acquired at biopsy. Early gastric
cancer patients are mostly treated by endoscopic
resection, while advanced gastric cancer patients are
mostly treated with chemotherapy.28 However, SRCC
is significantly associated with advanced tumor stage
and is an independent prognostic factor for increased
chemotherapy resistance and poor survival.4,5 There-
fore, we explored whether our AI model could help in
stratifying advanced SRCC patients into subgroups with
different treatment outcomes to derive similar results.
In the current study, advanced SRCC patients with
AI-predicted high risk had a markedly worse survival
compared with those with a low risk. More importantly,
those AI-determined low-risk patients could benefit
substantially from postoperative adjuvant chemothera-
pies, while the high-risk patients may be spared further
conventional chemotherapy due to extremely limited
therapeutic benefits. These results shed light on the
great potential of our AI model in detecting respon-
ders (up to ∼42% among all SRCC patients in the
current study) who would be more likely to benefit from
chemotherapy. In this regard,as the management of GC
continues to move toward a focus on precision medicine,
our AI model could help patients avoid nonbeneficial
conventional adjuvant therapies in favor of support-
ive care or novel treatment modalities. The strengths
of AI may pave the way for individualized treatment-
planning throughout chemotherapy regimen selection,
response prediction, and long-term survival stratifica-
tion. Furthermore, the utility of our model may also be
extrapolated to the preoperative settings, where the
model could offer help in predicting treatment response
to neoadjuvant chemotherapies in confirmed SRCC
patients.

A number of limitations should be noted in this study.
First, this was a single-institutional study, and the model
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F IGURE 4 Survival curves of ModelAI for stratifying overall survival and predicting chemotherapy response in advanced SRCC patients. (a)
All advanced SRCC patients assigned in high- (n = 139) and low-risk (n = 100) groups according to ModelAI. (b) Chemotherapy outcomes of all
the advanced SRCC patients. (c) Chemotherapy outcomes of advanced SRCC patients in AI-predicted low-risk subgroup. (d) Chemotherapy
outcomes of advanced SRCC patients in AI-predicted high-risk subgroup. SRCC, Signet-ring cell carcinoma

should be validated on a larger multicenter dataset.
Second, all patients included in the current study under-
went curative surgical intent resection. Therefore, our
findings may not apply to GC patients who are not
candidates for primary resection. Third, the survival
analysis was conducted in a retrospective manner,
which to some extent had dampened the utility of our
AI model as a predictor of the chemotherapy response,
particularly in preoperative settings. Therefore, despite
the promising results of our AI model in SRCC diag-

nosis and risk stratification, hope should be tempered
until they are validated in further prospective studies.
Fourth, although 3D ROIs covering the entire tumor
might provide more information regarding tumor biology
and heterogeneity. However, the annotation of the entire
tumor in 3D is time-consuming, 2D ROIs on the single
largest slice were analyzed for the sake of efficiency.
Finally, only clinical and imaging data were combined
in the AI model generated in this study. However, given
the marked ability of AI in aggregating parallel data
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streams, efforts should continue to be actively pursued
to integrate more genomics and pathology information
to further optimize the current model.

5 CONCLUSIONS

In summary, based on preoperative CT images, we con-
structed a promising AI model, which demonstrated
good performance for diagnosing SRCC in GC patients.
The model also showed promise in stratifying patient
prognosis and identifying advanced SRCC patients who
can benefit from chemotherapy.
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