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Abstract—Although neural the architecture search (NAS) can
bring improvement to deep models, it always neglects precious
knowledge of existing models. The computation and time cost-
ing property in NAS also means that we should not start from
scratch to search, but make every attempt to reuse the existing
knowledge. In this article, we discuss what kind of knowledge in
a model can and should be used for a new architecture design.
Then, we propose a new NAS algorithm, namely, ModuleNet,
which can fully inherit knowledge from the existing convolu-
tional neural networks. To make full use of the existing models,
we decompose existing models into different modules, which also
keep their weights, consisting of a knowledge base. Then, we
sample and search for a new architecture according to the knowl-
edge base. Unlike previous search algorithms, and benefiting from
inherited knowledge, our method is able to directly search for
architectures in the macrospace by the NSGA-II algorithm with-
out tuning parameters in these modules. Experiments show that
our strategy can efficiently evaluate the performance of a new
architecture even without tuning weights in convolutional layers.
With the help of knowledge we inherited, our search results can
always achieve better performance on various datasets (CIFAR10,
CIFAR100, and ImageNet) over original architectures.

Index Terms—Evaluation algorithm, knowledge inherited, neu-
ral architecture search (NAS).

I. INTRODUCTION

DUE TO the powerful capabilities of representation learn-
ing and data modeling, deep learning has widely been

applied in many fields [1], and achieved state-of-the-art per-
formances in many tasks, even outperforming human, such
as image classification [2]–[5], object detection [6]–[8], and
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natural language processing. However, these impressive suc-
cesses usually are at the cost of human experts’ huge efforts
and many attempts in the exquisite design of the network
architecture and tedious training techniques. These days, the
manual design has hardly satisfied the increasing needs of
various applications. Therefore, it is urgent and promising to
automatically design an excellent network for a given task.

Auto machine learning (AutoML) provides a new paradigm
to design a new neural architecture [9], [10]. Neural archi-
tecture search (NAS) is a promising technique to implement
automatic design and search of neural architectures, which
has achieved remarkable performances, even surpassing hand-
designed models in some tasks. NAS usually uses a search
algorithm to sample a candidate model architecture, such as
a child model. The candidate model needs to be trained to
convergence for evaluating its performance that is used as
feedback to guide the controller to find more promising model
architectures at the next step. In addition, sampling and train-
ing candidates are needed to be repeated many times, leading
to time-consuming and high computational costs. Zoph and
Le [11] first used a recurrent neural network as the controller
to search the entire chain structure and found a competitive
architecture using 800 GPU for about 30 days. To improve this,
Zoph et al. [12] searched a cell structure first and then stacked
it to generate the entire architecture while it also costs 450
GPUs for 3–4 days. After that, based on parameter sharing,
ENAS [13] is proposed to find an architecture that outper-
forms the human-designed ones only using 0.5 GPU days.
The one-shot paradigm is proposed, such as FairNAS [14] and
Single-path [15], [16], which build a supernet, share weights
among child architectures in the supernet, and find excel-
lent architectures within a few GPU days. In these parameter
sharing methods, a supernet is built and all the candidate
architectures inherit weights from the supernet directly. The
supernet is initialized with random weights and trained from
scratch. However, training supernet to convergence is diffi-
cult with high costs. In fact, various deep neural networks
have been designed by experts for different tasks and trained
on datasets in recent years, in which there are at least two
aspects of knowledge: 1) architecture and 2) trained parame-
ters. The knowledge ignored by recent NAS methods can be
used extensively, thereby reducing the search cost.

First, Architecture: The convolutional neural network
(CNN), a well-known deep learning architecture, contains pre-
cious knowledge, which reflects scientists’ comprehension of
CNN and inspirations from that. In the early years, inspired
by the visual perception mechanism of the creatures, Kunihiko
proposes the predecessor of CNN: Neocognition [17] in 1970,
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Fig. 1. Example of architecture generation of ModuleNet. We decompose
some existing architectures (shown with the same color) into five cells and
keep their parameters to form modules (“m” in the figure). Arrows in gray
show original inference paths. Purple lines and brown lines separately show
two possible architectures.

then LeCun establishes the modern architecture of CNN in
1997 [18], and later designs LeNet-5 [19] for the digit classi-
fication task. LeNet-5 uses backpropagation to train and learn
a representation of original images, but not effective for com-
plex tasks. Krizhevsky expands the architecture depth for a
complex task, designing AlexNet [2] and achieving the best
performance in ILSVRC2012. Experts study that filter size
should be smaller [20] and the architecture depth needs to
be expanded [4], [21]. The success of VGG [4] confirms
the significance of depth in visual representations and while
the architecture depth increases, gradient diffusion and over-
fit occur. Kaiming He’s introduction of shortcut connection
in ResNet [3] saves CNNs from the degradation problem
when going deeper. GoogleNet [21], UNet [22], and FPN [23]
separately show great importance of features in multiscale
and multiresolution. All of this expert knowledge has great
potential for rediscovery and reorganization. However, cur-
rent AutoML methods constrain themselves in searching from
scratch, turning a blind eye to this knowledge.

Second, Trained Parameters: By training on a given dataset,
CNN can learn and distill knowledge contained implicitly
inside massive data. For one thing, transfer learning through
weight-sharing is widely accepted in various computer vision
tasks, such as backbones in object detection models [6], [24].
Besides, weight-sharing is used as a basic method in NAS
after [13]. Therefore, trained weights have great transfer-
ability. For the other, within a specific architecture, different
trained parameters can extract features from different aspects.
Since different features are clearly helpful to separability
among inputs, parameters are important for modules to possess
diversity. Transferability makes trained parameters usable for
reorganization. Diversity can introduce more knowledge into
consideration when searching. Therefore, trained parameters
in modules are helpful for NAS.

From the evolutionary algorithm (EA) [25], [26] to rein-
forcement learning (RL) [12], [13], [27], [28] and gradient-
based methods [29], scientists overrate optimization in the
scenario of starting from the very stage to search, but overlook
precious knowledge in the existing architecture and trained

parameters. Actually, we should make progress by “standing
on the shoulders of giants.”

Therefore, we propose a new NAS algorithm, namely,
ModuleNet, to solve the problems above. As shown in Fig. 1,
we build a knowledge base for the existing architectures with
their trained parameters. By searching over different mod-
ules for the entire architecture, ModuleNet can inherit all
knowledge from the knowledge base. Specifically, we first
acquire the knowledge base by decomposing various architec-
tures with their trained weights into different modules to keep
their integrity. Then, we iteratively search for some best archi-
tectures according to the knowledge base using nondominated
sorting genetic algorithm II (NSGA-II) algorithm [30], with-
out tuning parameters in convolutional layers. In each iteration,
new architectures will be generated by reorganizing modules,
which keep their weights as the origin to inherit from the
knowledge base. In this way, we can make full use of the exist-
ing architecture and trained parameters, and rediscover and
reorganize them for better results. In ModuleNet, the knowl-
edge base, regarded as the supernet in NAS, inherits these
weights from existing architectures, which avoids the burden
of training the supernet. In our experiments, the effectiveness
of ModuleNet is verified on various visual datasets, showing
improvements over the original architectures it inherits.

To summarize, our contributions in this article are mainly
as follows.

1) We propose a modular network architecture search
scheme that effectively exploits the empirical knowledge
and data knowledge of the existing artificially designed
models. Systematic experiments show that the proposed
method is always able to search for better network archi-
tectures than existing models by inheriting modules of
existing different models.

2) We propose an ingenious way to connect different mod-
ules with different channels and sizes in various existing
networks. In addition, the proposed module connection
does not contain trainable parameters, which significantly
reduces the computational consumption of search.

3) We propose a performance evaluation method to search
for differentiated network architectures to avoid falling
into existing and pretrained network architectures dur-
ing the search and invent equal opportunity among these
existing architectures and new reassembled architec-
tures, which consider loss changing rate, error rate, and
architecture similarity.

The remainder of this article is organized as follows. In
Section II, we give a review on the architecture design and
EA for NAS. Section III introduces the proposed approaches,
including the overview for ModuleNet, knowledge base,
encoding, and the performance evaluation. Section IV presents
our experiments and results in CIFAR10, CIFAR100, and
ImageNet. Finally, we conclude the study in Section V.

II. RELATED WORK

A. CNN Architecture Design

From the very step of the CNN architecture design, sci-
entists use trial-and-error to discover better architecture for

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on June 12,2023 at 01:30:59 UTC from IEEE Xplore.  Restrictions apply. 



CHEN et al.: ModuleNet: KNOWLEDGE-INHERITED NEURAL ARCHITECTURE SEARCH 11663

target tasks. In this stage, though laborious, various success-
ful contributions are made, such as VGG [4], ResNet [3],
GoogleNet [21], and EfficientNet [31]. Besides, new opera-
tors and principles are also introduced for different targets.
For example, batch normalization [32] helps us to solve the
internal covariate shift. Dense connection [33] extends think-
ing in skip connection to every layer in macro space. The
underlying mechanism is discussed further in [34], through
which the preactivation architecture is discovered. To another
end, depthwise separable convolution is extendedly used to
shrink the barrier between accuracy and latency [35]. Due to
the incomplete comprehension of the underlying mechanisms
of CNN, however, these works can only pay attention to few
aspects of CNN design. Actually, both their inspirations of the
architecture design and trained parameters contain very mean-
ingful knowledge. We should consider every part of them from
a more general view.

For another, with the boom of computing power by accel-
erating hardware, AutoML has become usable to search for
promising architecture automatically. With the help of param-
eter sharing and performance prediction, ENAS [13] sets a
good example in this area. Although based only on one
design principle from manual experience—similar cell repeat-
ing, AutoML has been broadly developed. BlockQNN [36]
searches the connection among blocks. DARTS [29] relaxes
the search space to be continuous and makes the architec-
ture generation optimizable using a gradient. BNAS [37]
proposes a method for searching abroad neural architecture.
Besides, various algorithms are proposed to better search for
the optimal architecture. Progressive shrinking makes it possi-
ble to train once-for-all weights before searching [38]. The
prediction with experts advice (PEA) theory is introduced
in [39] to optimize regret for a better architecture search.
However, all these works need to train supernet or child model
from scratch, costing lots of computation. Moreover, none of
these works can efficiently consider previous experts’ effort in
architecture design, causing a huge waste.

B. Evolutionary Algorithm for NAS

RL [12], [13]; EA [25], [26]; and gradient-based algo-
rithm [29] are always used for NAS. Among them, EA
has been used for the neural-network design for some
time. Reference [40] is an early example using EA, and
then the NeuroEvolution of Augmenting Topologies (NEAT)
algorithm [41], can only search well for small networks.
From them, various works tend to extend the usage of EA
in NAS, such as CoDeepNEAT [42] or AmoebaNet [25].
Loni et al. [43] uses fixed-length combinations of binary code
to represent the network structure, which facilitates population
operations (such as crossover operation). In order to repre-
sent more details and more freedom expression of architecture,
Sun et al. [44] proposed a variable-length encoding strategy.
The initial population starts from the random initialization in
the designed search space [44], some initial conditions [45],
and the rich initialization (called the well-designed architec-
ture) [46]. Generally, only one population is generated during
the evolution. Kotyan and Vargas [47] though created three

Algorithm 1: Search Algorithm for ModuleNet
Input: n architectures arch1 · · · archn, cell number c,

evolutionary generation gen, population size
p_size

Output: population pop
1 decompose each archi into c cells, archi-cellj stands for

jth cell in archi;
/* Initialize knowledge base */

2 for j from 1 to c do
3 for i from 1 to n do
4 modulei

j = fm(archi-cellj)‡;
5 knowledge_base[j][i] = modulei

j;

/* Initialize population */
6 for i from 1 to p_size do
7 for j from 1 to c do
8 pop[i][j] = module∗

j sampled from
knowledge_base[j][:];

9 evaluate‡ individuals in pop;
/* Do evolutionary search */

10 for g from 2 to gen do
11 new_individual = mate† and generate† according to

pop and encoding method‡;
12 assemble new architecture with connections‡;
13 evaluate‡ individuals in new_individual;
14 compare† over (pop + new_individual) and sort†;
15 pop = select† from sort results;

† Evolutionary procedures show respect to NSGA-II.
‡ Our proposed methods are seen in the following sections.

subpopulations, which have different population operations.
Rawal and Miikkulainen [48] and Behjat et al. [49] also divide
the population into several subpopulations, in order to maintain
diversity during the evolutionary processing.

Conceptually, the search back end of the proposed
ModuleNet is inspired by NSGA-Net [26], which also
uses NSGA-II [30] for searching. NSGA-II is an evolu-
tionary multiobjective optimization algorithm. By extending
NSGA [50], NSGA-II solves the problem of the nonelitism
approach and lowers its computational complexity, making it
suitable for NAS.

III. METHOD

A. Overview for ModuleNet

An overview of our method can be seen in Algorithm 1.
In general, we first decompose some existing architectures
to different cells according to the downsampling positions of
architectures. Then, we extract the architectures and weights
of cells to form different modules and add these modules to the
knowledge base. Finally, we make use of the NSGA-II algo-
rithm as a search algorithm for finding the optimal architecture
from the built knowledge base. In the following parts, we will
focus on four important details in our proposed method.
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Fig. 2. Universal view for most CNN architectures. We combine convolu-
tional layers and their following reduction layer as a basic cell.

In Section III-B, we will illustrate how we decompose an
existing architecture to make it suitable for reassembling and
compatible with other modules in the new architectures. We
fix parameters from our knowledge base of each module to
both save on high computing costs for gradient backward
and effectively inherit knowledge from the existing modules.
In Section III-C, our encoding method for different modules,
together with the definition of search space, will be illustrated.
These two parts can be considered as preprocessing for search.

After that, Sections III-D and III-E serve as the key points in
our method. To relieve the pressure of parameter-tuning when
searching, we design new operators as connections, namely,
the Channel Pool and Channel DePool (ChP and ChDP).
Together with the fixed parameters, we use these operators to
completely eliminate trainable parameters before linear lay-
ers when searching. In Section III-E, we will present a new
function to better evaluate performance with restriction from
fixed parameters. Experiments show the fine correlative rela-
tionship between our function and test error obtained with all
parameters trainable.

To be acknowledged, we only use NSGA-II with one objec-
tive in the article. However, taking advantage of the basic
design target of NSGA-II, the proposed ModuleNet can be
easily extended for multiobjective search.

B. Knowledge Base

Existing CNN architectures, regardless if they were dis-
covered by experts or AutoML, are all precious knowledge
that should be used to the fullest extent. We first decompose
some existing architectures into uniform cells and then build a
knowledge base to hold. As shown in Fig. 2, inspired by [13],
we consider a CNN architecture as a stack of convolutional
layers and reduction layers between the input and the classifier
(which always has softmax and linear layers). Considering the
continuity of the layers, we combine convolutional layers and
their following reduction layer as a basic cell.

Not merely architectures of CNNs, we also consider weights
in cells to avoid the burden of retraining. Keeping weights
can also help us better inherit knowledge not only from archi-
tectures but also from the training procedure. By extracting
weights to form the entire architecture, we can finally obtain
different modules for search, referred to as

modulei
j = fm

(
archi − cellj

)

for the jth cell in archi. To make it clear, we have the following.

Fig. 3. Example of decoding string to architecture. Cells from the same
architectures are in the same color. The reassembled architecture consists of
the first cell of the third architecture, following by the second cell of the fifth
architecture, the third cell of the fifth architecture, the fourth cell of the first
architecture, and the fifth cell of the second architecture.

Definition 1 (Module): This pertains to a cell that has
decomposed from an existing CNN architecture, and has kept
its trained weights in the original architecture.

Paying attention to that in our method, we consider CNNs as
multilayer filters, and each layer can process information from
different semantic aspects. For example, layers that are in a
relatively shallow stage of CNNs may process information at a
local level; however, deeper layers, which have a larger recep-
tive field, are fit for extracting information with a global view
or at a high semantic level. Therefore, we have to keep some
settings unchanged when reassembling new architectures, to
make weights in modules usable. First, we keep the module’s
position of the order in the new architecture as the origin.
Second, we keep the resolution of input unchanged by adjust-
ing the reduction in the preceding block. Only in this way
can we make each module take effect of its original semantic
level.

C. Encoding

Considering that we have n architectures in total, and a
decomposition of c cells for each architecture, by assign-
ing different architectures archi to an integer i, each string
of integers in {i1i2 · · · ic|i ∈ N+, i ≤ n} can be decoded
as an architecture. Specifically, ij represents archi − cellj,
namely, the jth cell of the ith architecture. We use modulei

j,
{i, j ∈ N+|i ≤ n, j ≤ c} as representations.

An example with c = 5 and n ≥ 5, shown in Fig. 3, means
that there are more than five architectures and five cells of each
architecture in the knowledge base. The reassembled architec-
ture shown in this figure consists of the first cell of the third
architecture, followed by the second cell of the fifth architec-
ture, the third cell of the fifth architecture, the fourth cell of
the first architecture, and the fifth cell of the second archi-
tecture. Besides, we can obtain the size of search space (�)
through

|�| = nc

which is much smaller than those in previous works [13],
[26], [29] when searching in macro space, but, benefiting from
existing fine design, is powerful enough to make progress for
tasks.

D. Module Connection

Since we are using modules from a different architec-
ture, which are separately designed, neighboring modules in
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a new architecture may have different channels. Following
Definition 1, we need not and should not change weights in
modules. However, if we use trainable parameters in connec-
tion, we still need to backpropagate loss through a gradient to
the front stage. This can cause a huge computing cost and may
cause instability due to weight-fixing in each module. To solve
the problems above, in this section, we will introduce two new
operators as connections, namely: 1) ChP and 2) ChDP. These
two operators do not contain trainable parameters, thus solving
those problems elegantly.

Channel Pool performs a standard 1-D average pooling on
the channel dimension. It is used to decrease the number of
channels. Given the architecture input with size (N, C, H, W),
which means dimensions of the Number of batch, Channel,
Height, and Width, respectively, the expected output with size
(N, CoutP , H, W) is denoted as outP. In ModuleNet, the num-
bers of batch, height, and width of feature maps do not change
through the processing of every module in the knowledge base.
But the number of channels usually changes for extracting
more features. Assuming that the output channel number is
smaller than the input ones (CoutP < C) and that CoutP is
divided by C with no remainder (CoutP |C), we have

outP = ChP(input; {kP}) (1)

where kP is the kernel size, kP = [C/CoutP ]. The calculation
for the lth channel dimension of outP, or outP(∗, l, ∗, ∗), is

outP(N, l, H, W) = 1

kP

kP−1∑

m=0

input(N, kP × l + m, H, W)

for l ∈ {l ∈ N+|0 ≤ l < [C/kP]}.
Channel DePool performs a duplication and connection on

the channel dimension. It is used to increase the number
of channels. Considering input with size (N, C, H, W), the
expected size of outDP is (N, CoutDP , H, W). Assuming that
CoutDP > C, and C is divided by CoutDP with no remainder
(C|CoutDP), we have

outDP = ChDP(input; {kDP}) (2)

where {kDP} is the duplication times, kDP = (CoutDP/C).
The calculation for the lth channel dimension of outDP, or
outDP(∗, l, ∗, ∗), is

outDP(N, l, H, W) = input(N, mod(l, C), H, W)

where mod(l, C) means l performs the remainder operation on
C and l ∈ {l ∈ N+|0 ≤ l < C × kDP}.

However, the actual situation may break our assumptions
in definitions easily. Therefore, we should consider more
complex situations.

For neighboring modules that need a connection from C
channels to Cout channels, if Cout|C or C|Cout, we just use a
ChP or ChDP to make connections. Otherwise, we will extend
these two operators as follows. In this part, since we only
focus on the channel dimension of input, we use CIn as the
representation. CIn can be considered as a 1-D array.

Fig. 4. Example for using ChP with CIn = 192, andCout = 128.

1) C > Cout: We first find the greatest common divisor of
C and Cout as η

η = gcd(C, Cout)

where gcd(C, Cout) means the operation to find the greatest
common divisor of C and Cout.

Then, we use a ChP as
⎧
⎨

⎩
out =

Cout/η−1
Concat

i=0

[
ChP

(
CIn

i ; {k′
P})]

CIn
i = Concat

(
CIn[i : end], CIn[begin : i]

) (3)

where k′
P = (C/η) and [:] denotes the slice operation. Note

that CIn[0:end] contains all elements in CIn, and CIn[begin:0]
is empty. An example of this part can be seen in Fig. 4.

2) C < Cout: We use a slice of output from ChDP as

out = ChDP
(
CIn; {k′

DP

})[
begin : Cout

]

where k′
DP = �(Cout/C)�.

Finally, through ChP and ChDP, we can make module con-
nections between neighbors without parameters. In this way,
the gradient can be avoided from being backpropagated deeply
and a lot of computing costs can be saved.

Experiments also show that using nonparameter connec-
tions has a non-negative, even sometimes positive, effect on
performance evaluation when searching.

E. Performance Evaluation

Admittedly, although fixing parameters in modules can
largely reduce both computing costs in a single iterator and the
total epoch needed to convergence, the accuracy on the valida-
tion set (accval) may not fully represent the real performance
for an architecture. Since the parameters in use are extracted
from some pretrained models, and these models or architec-
tures are still reachable through our search algorithm, accval
on these models can be much higher than the others. Besides,
for those architectures that are very similar to those pretrained
models (only have a few modules changed), original parame-
ters may fit them better compared to others with more different
modules. To avoid this problem of unfair accuracy, we propose
a new metric by taking the loss changing rate (lrate), error rate
(errval), and architecture similarity (sim) into consideration to
better evaluate the real performance when searching, as defined
by

score = errval − α · lrate + β · sim (4)

where α and β are parameters to balance different items, and
determined through experiments. errval is the evaluation error
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on the validation set, which can be obtained by

errval = 1 − accval. (5)

With a basic consideration that fixing parameters may lead
to a decrease in the architecture’s ability for generalization, but
not convergence, the changing rate of loss can be suitable to
evaluate the convergence ability of an architecture. By defining
lrate as the loss changing rate when training on the training set
for n epochs, it can be obtained by

lrate = lossepoch=1 − lossepoch=n

lossepoch=1
. (6)

With lrate normalized in [0, 1], it can work well together with
errval.

The last item in (4), sim, represents the degree of similarity
between a given architecture and each architecture used for
pretraining. Moreover, we discover that given the same num-
ber of different modules between two architectures, the place
where the different modules lie is also one of the important
factors for performance evaluation. Besides, we also find that
if we break up the continuity in relatively shallow places of
the entire architecture, accval may decrease slightly, but not
that much if in relatively deep places. Therefore, we define
sim through

sim = 1

c
fsim(code, 2, c) (7)

where

fsim(a, u, c)

=
{

fsim(a, u + 1, c) + 1, u ≤ c and a[u] = a[u − 1]
0, u > c or a[u] 	= a[u − 1].

(8)

Code is the architecture encoding i1i2 · · · ic, for c architectures
in our knowledge base.

Our experiments show that the scoring function (4) has
enough correlative relationship to help us accurately evaluate
the performance for a given architecture when searching.

IV. EXPERIMENTS

Our experiments for the proposed ModuleNet are conducted
with two stages: 1) the searching stage and 2) the evalua-
tion stage. The first is the searching stage. As defined by
Algorithm 1, we use c = 5, gen = 30, and psize = 40 for each
experiment. As for n (Algorithm 1), α, and β (4), we will
illustrate in the section of each experiment. After the search-
ing stage, we can obtain the population of the final generation
popfinal (Algorithm 1). Then, in the second stage, we make
all parameters in the architectures trainable and fine tune the
parameters. Through this evaluation stage, we can determine
the best final architecture for a given task.

As for the classifier (depicted in Fig. 2) in each experi-
ment, we use three fully connected layers, with a feature size
of input size − 4096 − 4096 − class number, of which the
input size is determined by the last convolutional layer and
the class number is determined by the dataset. We use the
standard Cross-Entropy Loss as

loss(x, class) = − log

(
exp x[class]
∑

j exp x[j]

)

Fig. 5. Searched architecture based on craft design for CIFAR10: this archi-
tecture is searched on CIFAR10 with the knowledge base containing only
VGGs and ResNets.

TABLE I
RESULT COMPARISON BETWEEN OUR SEARCHED ARCHITECTURE AND

ITS ORIGINAL ARCHITECTURES IN THE KNOWLEDGE BASE ON CIFAR10.
OUR DATASET SPLITTING FOR TRAIN/EVALUATION FOLLOWS 40K/10K

ON TRAINING SET FOR EACH ARCHITECTURE

where x is the array of network output, indicating possibilities
to each class, and class is the class label for input.

We train for 20 epochs to make parameters in the classifier
convergent in the searching stage, and 50 epochs for fine tun-
ing in the evaluation stage. The original architectures used for
comparison are trained or fine tuned with about 350 epochs
to achieve the best performance. They have achieved equiva-
lent or even better performance than the original papers. More
specifically, the feature extractor is composed of convolution-
based modules, which extract feature representations for the
following fully connected classification layer, as shown in
Fig. 3. We mention that the backbone of the feature extractor
is exactly the architecture we search from the existing mod-
ules. As for training when searching, we only optimize the
last classifier weights with 20 epochs but fix weights of the
feature extractor.

A. Results on CIFAR10

CIFAR10 [51] is a highly used dataset for image classi-
fication. In this section, we conduct the experiment based
on the hand-designed modules on CIFAR10 and show our
results. Then, we add some modules, whose architectures
are searched by some state-of-the-art search algorithms to
our knowledge base and show that our algorithm can still
make steady improvements even for these already-perform-
well modules. In addition, we also compare the search time
between the proposed method and the common method.

1) Search With Craft Design: We use a configuration with
n = 7 architectures designed by craft for searching, contain-
ing ResNet34, ResNet50, and ResNet101 [3] and VGG13,
VGG16, VGG13bn, and VGG16bn [4]. We use the implements
from torchvision1 with their pretrained weights accordingly.

After two stages of searching, the best architecture we
obtain is shown in Fig. 5 and the result comparison can be

1Torchvision can be found in https://github.com/pytorch/vision, we are
using version v0.3.0.
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Fig. 6. Searched architecture based on other NAS results for CIFAR10.

TABLE II
SEARCH TIME COMPARISON OF THE INHERITED AND THE NONINHERITED

WEIGHTS IN THE SAME CONFIGURATION

seen in Table I. From the results, we may notice that although
our searched architecture contains only one module different
from the original architecture, it can bring a huge increase in
performance.

2) Search With NAS Design: To extend our experiments,
we then add some modules searched by other NAS algo-
rithms in our knowledge base to enlarge our search space.
DARTS [29] is the first to introduce continuous relaxation to
architecture representation, and famous work in the NAS area.
By extending DARTS, PDARTS [53] and PC-DARTS [54]
also make progress in searching for better architectures and
follow the same configuration. Therefore, we introduce mod-
ules searched by these three algorithms2 into our knowl-
edge base, referred to as DARTS, PDARTS, PC-DARTS-cifar
(searched by PC-DARTS for CIFAR10), and PC-DARTS-
ImageNet (searched by PC-DARTS for ImageNet [55]). Since
we are using c = 5 in other experiments, we also change their
stacking strategy with a reduction in 5, 10, 15, and 20 layers in
total. In this way, we have five cells in each module, together
with a stem cell as the first module, making up five modules.

Keeping other setting the same as the previous experiments
except for α = 10 and β = 30, after two stages of the search,
the architecture we obtain is shown in Fig. 6 and the result
comparison can be seen in Table II. From the results, we may
note that even for NAS searched architectures, stacking cells
is not the best way. Besides, our result does not contain those
cells that perform better when stacked, from which we can
conclude that there is no strong correlation on performance
between a single cell and entire architecture.

3) Comparison on GPU Cost: In this part, we compare
the GPU costs during the search phase. All experiments are
run on a server computer configured with Intel Xeon E5-2620
CPUs, 128-GB RAM, and 4 Nvidia 2080 GPUs. Table III

2Implements can be found in https://github.com/flymin/darts.

TABLE III
SEARCH TIME COMPARISON OF THE INHERITED AND THE NONINHERITED

WEIGHTS IN THE SAME CONFIGURATION

Fig. 7. Searched architecture based on craft design for CIFAR100: this
architecture is searched on CIFAR100 with the knowledge base containing
only VGGs and ResNets.

TABLE IV
RESULT COMPARISON BETWEEN OUR SEARCHED ARCHITECTURE AND

ITS ORIGINAL ARCHITECTURES IN THE KNOWLEDGE BASE ON

CIFAR100. IN THE FINE-TUNE STAGE, WE USE CUTOUT

LENGTH = 16. OUR DATASET SPLITTING FOR

TRAIN/EVALUATION FOLLOWS 40K/10K ON

TRAINING SET FOR EACH ARCHITECTURE

reports the GPU days. Under the same experimental configu-
ration, the proposed knowledge-inherited search method takes
0.22 min to train the searched architecture an epoch, while
the common search method without knowledge inheritance
takes 1.01 min to train the searched architecture an epoch.
Therefore, the proposed knowledge-inherited NAS method can
significantly reduce the search time and bring the acceleration
of 4.59× per epoch.

B. Results on CIFAR100

CIFAR100 [51] is also a highly used dataset for image clas-
sification. Because it has a small image size, a deep model [20]
can be trained on this dataset in a short time. Since its class
number is more than CIFAR10 [51], it is broadly used in the
NAS scenario.

In this section, we go one step further in this section to
verify the efficiency of our ModuleNet. First, as a standard
experiment, similar to those on CIFAR10, we first fine tune
those architectures given in Section IV-A for new modules in
the knowledge base. Then, we apply searching with the same
configurations as above.
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TABLE V
RESULT COMPARISON AMONG OUR SEARCHED ARCHITECTURE, ITS

ORIGINAL ARCHITECTURES

After two stages of searching, the best architecture we obtain
is shown in Fig. 7. The evaluation result comparison can be
seen in Table IV. The best architecture of ResNets (ResNet34,
ResNet50, and ResNet101) has 22.97% test error, and the
test error of the best architecture of VGGs (VGG13, VGG16,
VGG13bn, and VGG16bn) is 28.27%. While the new architec-
ture searched by the proposed ModuleNet has only 17.99% test
error, which reduced by at least 4.98% and 10.28% compared
to ResNets and VGGs, respectively. It may due to that the
proposed ModuleNet finds the novel reassembled architecture
from the knowledge base with the existing models.

However, compared to the experiments on CIFAR10, we
also note that different datasets need different architectures to
guarantee better performance, and simply stacking the same
cells or transferring architecture designed for other datasets
may not bring the best results.

C. Results on ImageNet

To evaluate the architecture searched by our approach
on larger datasets, we evaluate the architecture searched in
CIFAR10 or CIFAR100 directly on ImageNet [55] using the
DGX station. From Figs. 5 and 7, we can see that the best
architectures searched by ModuleNet replace the first module
in ResNet with VGG’s. We suppose a possible explanation
that in shallow layers, modules need to rule out more use-
less information, whereas in deep layers, with the loss of
useless information, modules need to be more careful when
filtering. Therefore, VGG modules, which are better at rul-
ing out information, are used as shallow layers. Whereas,
ResNet modules, which are better at identifying and keep-
ing useful information, are used as deep layers. In order
to evaluate the explanation, we conduct two experiments on
ImageNet: the first module of VGG13bn replacing ResNet50
(ModuleNet-Exp1) and ResNet101 (ModuleNet-Exp2), and
results are shown in Table V.

We inherit the knowledge of VGG13bn, ResNet50, and
ResNet101 models, which are trained in the ImageNet
dataset [56]. The test errors (top 1) of VGG13bn, ResNet50,
and ResNet101 are 28.45%, 23.85%, and 22.63%. From the
first four lines of Table V, we can see that ModuleNet-Exp1
reassembled by VGG and ResNet50 improves its performance
by at least 1.11% compared to ResNet50 and VGG in the

top 5. Compared to ResNet101, ModuleNet-Exp2 reassembled
by VGG and ResNet101 has a slight improvement.

Compared to the last two lines, the architecture searched
by the proposed ModuleNet outperforms the one searched by
FairDARTS [57] by 1.49% in the top 1 error and 0.64% in
the top 5 error. We can see that our algorithm can still make
improvements even compared to the state-of-the-art method
FairDARTS [57].

These results show that the searched architecture replac-
ing the first module of ResNet with VGG’s is also robust for
the large-scale dataset ImageNet. Compared to the ModuleNet
architectures of Tables I, IV, and V, we also see that a
small and simple architecture is fit for a simple task, such as
CIFAR10 only with ten categories, and the deeper and larger
architecture is suitable to solve difficult task such as ImageNet
with 1000 categories.

We also search the architectures in the modular space com-
posed of both hand-designed modules and NAS-optimized
modules. However, the searched architectures combining the
different modules both in hand-designed modules and NAS-
optimized modules do not achieve good performance. We
observe the instability of the ModuleNet searching algorithm
when mixing hand-designed and NAS-optimized modules. It
could be due to that the NAS-optimized modules are more
complex and impressible to the architecture than the hand-
designed ones. There are also many differences between them,
such as the channel size, the feature map size, and the skip
connection. In order to connect these modules with great dif-
ferences, we need to introduce many extra pooling/depooling
(ChP, ChDP) connection channels. Fortunately, with the help
of the proposed connection channels, we can obtain better
model architectures under the spaces of both hand-designed
and NAS-optimized modules.

V. ABLATION STUDIES

In this section, we will show some additional experiments
to verify the effectiveness of three core parts (evaluation strat-
egy, evolutionary search, and nonparameters) in our proposed
method separately.

A. Efficiency of Performance Evaluation

As a core part of our search algorithm, score in (4) performs
an important role to make a comparison between different
architectures during evolution. Therefore, the efficiency of the
evaluation function is very important and directly related to
the final results we obtain. In this section, we conduct some
more experiments to verify the efficiency of our evaluation
function score.

As the NAS algorithm aiming to improve the performance
on image classification tasks, the basic evaluation metric
should be the Test Error. However, directly calculating Test
Error requires a fully trained architecture on the training set,
which demands high computing costs and time. Therefore,
we introduce a new strategy and new function to evaluate.
Accordingly, the best way to show the efficiency of our
strategy and function is to make a comparison with Test Error
for architectures after being fully trained.
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Fig. 8. Comparison between results generated through our searching strat-
egy by score (donated by searching score), and test error after retraining.
Both metrics are the lower the better. Architectures are obtained from all 30
generations of populations in the experiment of Section IV-B1, descendingly
sorted according to searching score.

TABLE VI
CORRELATION COEFFICIENT (COE) BETWEEN EACH ITEM IN (4) AND Test

Error, WHERE Test Error MEANS THE PERFORMANCE OF

ARCHITECTURES AFTER FULLY TRAINED

As shown in Fig. 8, descending of the searching score indi-
cates the descending of Test Error. Such a result can verify that
there is a correlative relationship between our evaluation strat-
egy and Test Error, which proves that our strategy is usable to
search for better architectures. Furthermore, architectures used
in Fig. 8 are from the same searching path of experiment in
Section IV-B1, which can be a side proof that our evaluation
strategy searching score is fit for the EA we used.

Moreover, we analyze each item in complicate score in (4)
to make the effect of score convincing. Using the data in Fig. 8,
we calculate the correlation coefficient (coe) between each
item and Test Error, shown in Table VI. lrate and errval have
a strong correlationship with Test Error, which makes sense
because of their definitions. Although sim itself has no strong
correlationship with Test Error, by combining all these three
items as a score, we can note an increase in the correlationship.

B. Efficiency of Evolutionary Search

In general, the EA NSGA-II is a multiobjective optimization
algorithm. We choose NSGA-II as the back end to bring more
scalability to our search algorithm. In the future, other objec-
tives, such as the number of parameters, latency, or amount of
floating-point operations, can be easily extended into the cur-
rent search framework. However, for now, we only consider
score as the only objective.

To evaluate the efficiency of EA, one side is judging the final
result searched by this algorithm, which has already shown
in Section IV; the other side is the convergence of the algo-
rithm. Although mutation and crossover are made between

Fig. 9. New survival between generations: For each experiment in Section IV,
new survived genotypes for popi (population of generation i) compared to
popi−1. CIFAR100 refers to the experiments in Section IV-A, and CIFAR10-
Exp1 and CIFAR10-Exp2 refer to the experiments in Section IV-B1 and
Section IV-B2, respectively.

generations, we still expect that genotypes of living generation
may become relatively stable after generations of evolution.
Therefore, we calculate genotype changes between (indicated
by new survival) two consecutive generations, as shown in
Fig. 9.

We can note that in each separate experiment, genotypes in
populations will always converge to be stable after generations
of evolution. From such results, we can conclude that the EA,
NSGA-II, is fit for the NAS task within the scenario of our
proposed ModuleNet.

C. Nonparameter Connection

As illustrated in Section III-D, using nonparameter con-
nections (Channel Pool and Channel DePool) can slightly
reduce trainable parameters when searching and, thus, reduce
the searching time. Although we theoretically keep enough
diversity when connecting the preceding module with the
following module, these operations, however, may leave a
question. Do nonparameter connections result in a negative
effect on the performance judgment? To verify the efficiency
of our proposed nonparameter connections, we do some further
experiments.

In our experiments, we apply a 1 × 1 convolution between
each module to transfer between different channels. 1 × 1
convolution can be the simplest way to change channel dimen-
sions and keep others. Besides, it contains trainable parameters
to make it adjustable by the gradient.

We use architectures searched from all 30 generations of
populations in the experiment of Section IV-B1, and make
a comparison between the nonparameter architectures and
architectures connecting with 1 × 1 convolution. All these
architectures are trained under search setting (fix parameters
in each module and tune others). We obtain the validation
accuracy (accval) of each architecture and accval comparison
is shown in Fig. 10. accval w/o params means the validation
accuracy of the architecture with the proposed nonparameter
connection and accval w/ params means the validation accuracy
of the architecture with 1×1 convolution.
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Fig. 10. Comparison between validation accuracy (accval acc) gener-
ated through nonparameter connections (accval acc w/o params, described
in Section III-D) and connections using 1 × 1 convolutions (accval w/
params). Architectures are obtained from all 30 generations of populations
in experiment of Section IV-B1, descendingly sorted by accval w/ params.

As shown in Fig. 10, using nonparameter connections can
keep and even strengthen the differential ability of our algo-
rithm. Specifically, for those better architectures (left end in
the x axis), both metrics (accval w/o params and accval w/
params) indicate better results, and vice versa. Besides, for
those architectures in the middle of the x axis, nonparameter
connections (accval w/o params) could lead to a better differ-
entiated status. Therefore, our nonparameter connection is not
only usable but a better fit for our search algorithm.

VI. CONCLUSION

This article presented ModuleNet, a novel NAS algorithm
to fully inherit existing knowledge and explore the new archi-
tecture design. We proposed that both the architecture and
trained parameters of an existing model should be used for
further exploration. By decomposing the existing architec-
tures into modules, we can use a uniform view to reorganize
and rediscover them. In order to connect different modules,
we proposed nonparameter connections (Channel Pool and
Channel DePool), reducing the computational consumption
of search significantly. Moreover, we proposed an effective
performance evaluation method to avoid falling into exist-
ing network architectures and invent equal opportunity among
architectures. In this way, we can make CNNs transfer quickly
among different tasks and datasets and always guarantee a
performance improvement.

In our experiments, we showed that the search architectures
by ModuleNet have the best performances not only in human-
designed existing models but also in NAS searched models
for CIFAR10, CIFAR100, and ImageNet classification tasks.
Moreover, we also conducted experiments to show the effi-
ciency of our score equation, EA, and connections between
modules. All of these show that existing knowledge is of great
importance, and ModuleNet has set up a new NAS scheme
for using them. Actually, there are also many directions to
improve ModuleNet further. For example, the score equation
can only indicate a relevance relationship, which can be bet-
ter if a linear relationship is reached. Some extensions may
be added to the search algorithm to fulfill other constrictions.
These interesting topics could be potential directions for future
studies.
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