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Abstract:   Knowledge mining is a widely active research area across disciplines such as natural language processing (NLP), data min-
ing (DM), and machine learning (ML). The overall objective of extracting knowledge from data source is to create a structured repres-
entation that allows researchers to better understand such data and operate upon it to build applications. Each mentioned discipline has
come up with an ample body of research, proposing different methods that can be applied to different data types. A significant number
of surveys have been carried out to summarize research works in each discipline. However, no survey has presented a cross-disciplinary
review where traits from different fields were exposed to further stimulate research ideas and to try to build bridges among these fields.
In this work, we present such a survey.
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1   Introduction

Automatic  extraction  of  knowledge  from  diverse

sources  of  data  is  a  challenging  task  across  different

fields.  For  example,  in  natural  language  processing

(NLP), research  on  the  extraction  of  structured  know-

ledge bases from natural language text has received much

attention  due  to  its  applications  (e.g.,  automatically

building these knowledge structures from biomedical text

to  understand  drug-drug  interactions).  In  data  mining

(DM), a wide area of research has focused on mining rules

from structured  databases  that  can  help  people  discover

novel  associations  between  items  or  features  and  make

decisions in  diverse  contexts  such  as  business  or  educa-

tion. Furthermore, in the field of machine learning (ML),

plenty  of  effort  has  been  advocated  towards  extracting

knowledge,  mainly  in  the  form  of  logic  rules,  from  both

machine  learning  system′s  predictions  and parameters  in

order  to  build  an interpretable  representation that  helps

to  explain  the  system′s decisions  (the  so-called  inter-

pretability problem);  a  scenario  highly  sought  in  medi-

cine, for example.

Extracting or mining knowledge from data (be it  un-

structured,  structured,  or  behavioral  data)  is  an  open

problem  that  has  been  tackled  across  different  research

fields.  This  wide  scenario  has  not  only  led  to  different

definitions and ways to represent the construct of know-

E = ((ei, ej), · · · ,(em, en))

R = (r1, · · · rn)

(ri (ei, ej))

ledge (and consequently, to define the task of knowledge

mining), but it  has also resulted in diverse research per-

spectives,  which  seem  to  use  different  methodologies  to

extract  knowledge  and  different  metrics  to  evaluate  the

consistency  of  the  knowledge  extracted.  For  example,

Fayyad et al.[1] operationalize knowledge as a pattern ex-

tracted  from  data  that  surpasses  some  interestingness

threshold  (a  domain-dependent  metric  characteristic  in

the data mining field) such as a rule or a linear compon-

ent in  a  regression  model  characterizing  a  subset  of  fea-

tures  in  a  database;  in  this  way,  Fayyad  et  al.[1] define

the term of knowledge discovery in databases (KDD), an

interchangeable  concept  with  knowledge  mining,  as  the

process of  mining  databases  to  discover  useful  (or  inter-

esting)  knowledge  in  the  form of  patterns.  On the  other

hand, in the NLP field, a knowledge base is usually rep-

resented  as  a  tensor  structure  where  each  entry  usually

corresponds to a probabilistic assignment of the belief  of

a  fact.  (For  example,  in  [2], a knowledge  base  is  opera-

tionalized  as  a  matrix  where  rows  represent  different

pairs of entities, , and columns

represent  different  relation  types, ,  which

can be applied to entity pairs; thus, a cell  in the matrix

can be interpreted as a confidence score of a fact: confid-

ence of .) Thus, knowledge in this case is oper-

ationalized  as  a  particular  piece  of  concrete  information

(factual knowledge),  and  the  task  of  extracting  such  in-

formation is that of mining such entity pairs and their re-

lations from text.  Finally,  in  the  field  of  machine  learn-

ing, the  problem  of  knowledge  mining  has  been  motiv-

ated by  the  problem  of  trying  to  understand  and  valid-

ate  ML  systems  which  due  to  their  complexity  are  not
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easy  to  be  inspected  manually.  Similarly,  the  choice  of

the  representation  of  knowledge  has  been  constrained  to

be  understandable  by  humans,  where  a  widely  common

and accepted representation in this area are logic rules[3].

From this  brief  overview  of  knowledge  mining  across

fields, we can observe the diversity of objectives and con-

structs and  the  wide  scenario  we  claimed  at  the  begin-

ning, which leads us to the questions:  How is knowledge

mining  characterized  across  research  fields?  What  are

their  proposed  approaches  and  shared  traits?  And  how

can  we  consolidate  them?  We  note  that  while  there  are

already several in-depth surveys in the literature of each

field  showing  the  methods  and  algorithms  to  extract

knowledge, to the best of our knowledge, there is no sur-

vey that jointly traverses  these research areas  to answer

the above questions. Furthermore, the importance of min-

ing knowledge has permeated different fields and has also

impacted the industry. Therefore, we believe that a cross-

disciplinary literature review, in a landscape-oriented ap-

proach,  that  encompasses  all  these  varying  degrees  of

freedom  underlying  the  problem  of  mining  knowledge

from data is on the call.

In  this  paper,  rather  than  surveying  a  plethora  of

methods  and  previous  works  across  these  three  research

areas,  we  intend  to  overview  the  nuances,  and  attached

idiosyncrasies, of  the  approaches  taken  to  extract  know-

ledge from a target data source. Hence, this paper advoc-

ates for  an  additive  overview  of  the  problem of  extract-

ing knowledge  across  the  fields  of  natural  language  pro-

cessing, data mining and machine learning to show their

key objectives,  methods,  and evaluations,  and how some

previous works have made links among these areas for the

task of knowledge mining.

The final  aim  of  this  paper  is  to  stimulate  and  pro-

voke  new  ideas  and  research  agendas  among  researchers

from the different disciplines so that new bridges among

the areas surveyed can emerge to further advance in the

task  of  knowledge  mining.  Following  this  approach,  we

avoid  providing  a  single  definition  of  knowledge  and

knowledge mining,  and  rather  present  how  these  con-

structs have  been  embraced  across  fields.  Thus,  we  de-

part  from a common starting  point  across  fields.  We fix

the choice of knowledge representation to that of logic, or

logic-like formulas, which is a representation highly used

across these  fields.  Based  on  this  knowledge  representa-

tion,  in  Sections  2−4,  we will  walk  through the different

goals and key approaches of each field, in a problem-ori-

ented  perspective,  to  gain  a  refined  insight  into  how

knowledge mining is embodied and what traits we find in

these research  areas.  Finally,  in  Section  5,  we  will  sum-

marize these approaches and their shared traits, and pin-

point  some  examples  of  previous  efforts  in  forging  a

bridge among  the  three  fields  while  closing  with  a  pro-

posed future research direction. We believe this paper will

contribute  to  creating  future  research  directions  for  the

task  of  knowledge  mining  that  encompass  the  three,  so

far unlinked, research areas of NLP, DM, and ML. 

2   Knowledge extraction from natural
language text

Extracting relational knowledge from text written in a

natural  language  such  as  English  means  automatically

identifying spans of text that correspond to named entit-

ies, classifying them into their corresponding entity types,

and classifying the type of relation holding between these

entities (if any). The outcome of this process is informa-

tion stated as logic predicates1 [5, 6]. For example, from a

newspaper  text,  we  aim  to  automatically  detect  the

people and organizations the text is referring to and save

that information as logic formulas — grounded predicates —

such as person(Joe Biden), organization(United Nations),

or country(USA). Another piece of information we aim to

extract  from the  text  is  possible  relations  between  these

entities, such as president_of(Joe Biden, USA), which are

also represented in the form of logic predicates. A collec-

tion of these relational facts structured into a database is

known as  a  knowledge  base2 (KB). The  task  of  recover-

ing the  targeted  factual  knowledge  from  text  is  com-

monly known as information extraction (IE) in the NLP

community.

In  what  follows,  we  provide  preliminaries  of  state-of-

the-art  methods  and  models  in  NLP  in  Section  2.1.  We

introduce the  most  common  learning  approaches  for  in-

formation  extraction,  namely  supervised  learning  (classi-

fication and sequence labeling),  distant  supervised learn-

ing,  and  unsupervised  learning  in  Section  2.2.  Then,  we

provide an account of the two IE problems that have re-

ceived  much  attention  in  the  NLP  community,  namely

named entity  recognition  in  Section  2.3  and  relation  ex-

traction in Section 2.4,  as  well  as  the methods to evalu-

ate  how  well  an  NLP  system  performs  at  any  of  these

tasks in Section 2.5. Finally, we review some current chal-

lenges in NLP related to the problem of IE in Section 2.6. 

2.1   Preliminaries

In this  section,  we briefly introduce notation and ba-

sic notions of the most popular machine learning models

used for the task of information extraction. Then, in Sec-

1 First-order  logic  (FOL)  allows  us  to  represent  facts  (objects

and their relations) through predicates[4]. In this way, a predicate

accounts for a relation type, and a predicate symbol refers to the

name of a relation. The arity of a predicate indicates the number

of  arguments  it  can  receive.  Representing  factual  knowledge

using  FOL  not  only  aligns  with  the  traditional  way  of

representing  knowledge  in  artificial  intelligence[4],  but  it  also

satisfies  some  useful  characteristics  of  a  representation  for

natural  languages  such  as  verifiability,  avoidance  of

unambiguity, inference, and expressiveness among others[5].
2 Usually, knowledge bases contain several thousands of semantic

relation types.
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tion 2.2,  we  will  briefly  introduce  the  learning  ap-

proaches for these models.

The  current  literature  on  IE  is  dominated  by  neural

approaches, i.e.,  neural  networks  (NNs).  An  early  ex-

ample  of  NN  is  the  feed-forward  model,  or  multi-layer

perceptron, classifying an input into a class label. This in-

put,  in the form of  a vector,  is  processed through layers

of  hidden  neurons  (usually  one  or  two  layers)  where  a

non-linear function, such as the tanh or sigmoid function,

is applied at each neuron after a weighted linear combina-

tion of the input signals to the neuron. At the last layer

of  the  NN,  a  probability  distribution  over  the  possible

classes is computed.

Recent  models  use  feed-forward models  as  a  layer  on

top  of  another  type  of  neural  network,  a  representation

learning model or neural encoder; this type of NN works

as an encoder of input information rather than as a classi-

fier  leaving  the  job  of  classification  to  a  feed-forward

model. More  concretely,  the  neural  encoder  models  re-

ceive a vector representation of a portion of text as input

(usually at the word-level or sentence-level) and, through

layers  of  non-linear  hidden  neurons,  encode  (transform)

the input  into  a  hidden  vector  during  the  training  pro-

cess  of  the  NN (or  during  the  test  process  for  some NN

models). This vector may contain information of the con-

text of the input, e.g., lexical information from the words

surrounding  the  current  input  word.  We  exemplify  this

idea  with  the  two NN models  most  used  for  IE,  namely

the  long-short  term memory  (LSTM)[7] and  bidirectional

encoder  representations  from  transformers  (BERT)[8]

models.

An  LSTM  is  a  type  of  recurrent  neural  network

(RNN)  that  is  able  to  process  an  input  sequence  one

token at a time with the capability of remembering (and

forgetting) long-range dependencies between the tokens in

the sequence. On the other hand, BERT is a recent lan-

guage model built from transformer networks, which pre-

trains vector  representations  of  words  from  a  large  cor-

pus. The input of BERT can be a single sentence, or two

sentences  (separated  by  a  [SEP]  mark),  where  the  first

token is usually a classification mark ([CLS]). During pre-

training, it randomly masks some words, and the goal is

to predict the original word. BERT is jointly pre-trained

through  two  supervised  tasks:  masked  language  model

and next  sentence  prediction.  Different  from  other  em-

bedding models, BERT representations can be fine-tuned

on downstream NLP tasks, such as text classification, by

adding an additional output layer; thus, the resulting vec-

tor representations are called contextualized. 

2.2   Learning approaches

Supervised  learning. In  this  learning  approach,  a

machine learning model is trained to learn patterns from

a set of labeled data, i.e., a model is trained to correlate a

set  of  input  features  to  a  target  output  by  tuning  its

parameters until it learns patterns relevant for this correl-

ation. The type of output varies according to the task. In

a classification task, the output is a label symbol indicat-

ing  a  class  in  a  domain.  For  example,  given  the  named

entities Eiffel Tower and Paris, a classifier can predict the

relation type (class  label)  that  best  applies  to  those  two

entities, namely located_in. In a sequence labeling task, a

classifier′s output is a sequence of labels given a sequence

of words as input (one label for each word). An example

of  this  can  be  seen  in Fig. 1.  In  this  way,  a  trained  ML

model can classify relations or named entities from texts

that were not part of the training procedure (a test data-

set).

  
The University of Oxford is located in the UK.

O B-ORG I-ORG E-ORG O O O O B-LOC
 
Fig. 1     Example  of  the  named  entity  recognition  task.  For  a
given  sentence  in  a  natural  language,  the  objective  is  to  label
each  of  the  tokens  according  to  the  type  of  entity  they
correspond to (in the case where a token does not correspond to
any  entity,  the  special  label  O  is  given).  In  order  to  do  the
labeling,  a  special  tagging  scheme  is  used  (in  this  figure,  the
BIOE  tagging  is  used).  In  this  example,  there  are  two  named
entities, namely University of Oxford and UK. The first entity is
composed of three tokens; thus, the first token receives the label
B-ORG, which means that it is the beginning of the entity type
organization since universities are considered as such; the second
and third tokens receive the I-ORG and E-ORG labels signaling
the  interior  and  end  parts  of  the  entity. The  second  entity,  a
single token, receives one label indicating its type, a location.
 

Distant  supervised  learning. This  is  a  type  of

semi-supervised  learning  where  the  supervision  signal

does  not  come  from  a  manually  annotated  dataset  but

from an  external  source  such  as  a  knowledge  base:  In-

stances  from  the  knowledge  base  are  automatically

aligned to portions of unannotated text from a corpus. In

this  way,  the  text  is  automatically  labeled  according  to

the target task and the type of knowledge in the KB.

Unsupervised  learning. In  this  approach,  there  is

no need  for  an  annotated  text  to  train  a  classifier.  In-

stead, an algorithm can automatically find patterns or es-

timate  probability  distributions  based  on  the  unlabeled

data.  The  most  common  unsupervised  algorithms  are

clustering algorithms, which group instances into a set of

clusters  based  on  their  feature  similarity  according  to  a

similarity function. 

2.3   Named entity recognition

Named  entity  recognition  (NER)  is  a  two-fold  task:

First,  we need to  find spans  of  text  in  a  document  that

are  mentions  of  particular  entities;  some  entities  may

span  over  one  or  more  tokens3,  such  as  the  entity  John

Smith, which refers to one person; after that, we need to

classify  each  of  the  entities  found  into  their  type  (John

Smith is a person). The result is a logic-based representa-

3 A token can be a word or a punctuation mark.
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tion  of  the  concrete  information  about  entities  that  we

found  in  a  piece  of  text  (e.g.,  person(John  Smith)).

The  types  of  entities  to  be  predicted  for  each  text  span

candidate  depend  on  the  dataset  used  to  train  and  test

the  classifiers.  One  of  the  most  widely  used  datasets  in

the  literature  is  CoNLL2003[9] which  consists  of 1 393

news articles split into training (946), development (216),

and test (231) sets. The news articles in this dataset are

split into  sentences,  where  each  token  is  annotated  ac-

cording to the type of entity it represents. There are four

types of  target  entities  in  this  data,  namely  person,  or-

ganization,  location,  and  miscellaneous  names.  Another

NER dataset frequently used is OntoNotes 5.0[10].

Overall, NER  is  a  task  mainly  delimited  by  two  di-

mensions: The way the input information (a sentence) is

encoded and the type of approach used to process the in-

put (the machine learning model and its training regime).

Next,  we  will  structure  our  survey  of  previous  works  in

NER according to these two dimensions.

Encoding an input sequence. In most of the early

works  in  NER, the  input  sequence  was  encoded through

hand-crafted features accounting for lexical and syntactic-

al information of the tokens, which could help an ML sys-

tem distinguish between a target named entity and an or-

dinary  token.  For  example,  some  previous  works[11] en-

coded each token in a sentence into a set of features (usu-

ally binary features) denoting whether the token was cap-

italized or not (which can help to detect proper names),

the shape  of  the  token  (number  of  characters  and  posi-

tion of capital letters if any), and prefixes and suffixes of

varying  length  (which  can  help,  for  example,  detecting

English verbs in past tense that end in ed); furthermore,

lexical  resources  such  as  gazetteers  and  databases  of

people names,  organization  names  or  geographical  entit-

ies have  been  used  to  complement  the  hand-crafted  fea-

tures where each token,  or sequences of n tokens (an n-

gram),  in  the  input  sequence,  can  be  compared  against

the entries of these lexical resources also to obtain a bin-

ary feature (the current n-gram is in the database or not)

which can help in the decision of labeling a token[11, 12].

Recent  approaches  to  NER have  used  so-called  word

embeddings as input features. A word embedding is a dis-

tributed vector representation of a word; thus, each word

in a  vocabulary  corresponds  to  a  unique  vector  of  con-

tinuous  numbers  where  the  dimensionality  is  manually

chosen. This representation can be automatically learned

either  extrinsically,  in  an  unsupervised  way  on  a  large

corpus of texts, or intrinsically, as a part of the training

process of the neural encoder used for a downstream task

such  as  the  NER  task.  Furthermore,  pre-trained  word

embeddings  (those  learned  extrinsically)  can  be  used  as

the  input  for  neural  encoders  (as  explained  in  Section

2.1). These features, although they can be complemented

with hand-crafted  features,  usually  replace  previous  fea-

tures  from  the  literature.  Nevertheless,  previous  works

such as [13] have used lexicons to inject some lexical in-

formation  into  word  embeddings.  Overall,  many  of  the

latest approaches to NER use neural encoders with word

embeddings as input features.

Supervised  based  approaches. Along  our  second

dimension characterizing  the  task  of  NER,  the  main ap-

proach for building NLP systems that uncover named en-

tities  from  text  is  supervised  learning,  where  methods

range from classification to sequence labeling (with a sig-

nificant focus on the latter),  as explained in Section 2.1.

Nevertheless,  some of  the  earliest  approaches  focused  on

building hand-crafted rules to identify and predict the en-

tities  on text.  For  example,  Appelt  et  al.[14] used trigger

words  and  finite-state  machines  to  recognize  lexical  and

syntactic  patterns.  However,  rule-based  approaches  have

the  problem  of  low  recovery  due  to  their  inflexibility  in

uncovering  named entities  whose  features  lie  outside  the

enclosure  of  the  rules.  Despite  their  acceptable  precision

performance,  their  overall  score  is  usually  low compared

to  supervised  approaches.  (Nevertheless,  domain-depend-

ent rule-based NER models can still be found as applica-

tions[15].)

wi−1

wi

fi = 0

Classifiers, such as support vector machines (SVMs)[16]

or  feed-forward  neural  networks[12],  were  preferred  over

rule-based models due to their ability to generalize to new

cases,  which  were  relatively  different  from  those  in  the

training data,  where  input  sentences  were  usually  en-

coded  using  hand-crafted  features  and  lexical  resources.

However,  this  supervised  approach  encountered  some

problems.  First,  feature  hand-crafting  implies  laborious

annotator work, which may be either unscalable to large

corpora  or  expensive  due  to  the  huge  amount  of  human

work required.  Second,  some  lexical  resources  can  con-

tain  entities  that  can  be  ambiguous;  e.g.,  according  to

[11],  the  word China can be extracted from a lexicon as

either a location, as a string that forms part of an organ-

ization, and even as a person′s name. A final  problem is

how these classifiers predict a label for a given token. La-

beling one  word  is  done  independently  of  any  surround-

ing words; nevertheless, the label assignment of a word at

time t−1 can help the classifier to predict the best label at

time t (for  example,  once  a  classifier  has  predicted label

B-ORG for token , it is unreasonable to predict the

same  label  for  token ).  Even  though  fixing  the  last

problem, using the classifier as a sequence labeling model,

reduces to providing the classifier with features from sur-

rounding tokens to the token to be labeled, hand-crafted

features remain  an  open  problem since,  as  explained  be-

fore,  it  may  be  expensive  to  obtain  them.  The  resulting

feature  vectors  will  be  sparse  (most  of  the  features  will

have value  since only a few of these are found in a

given sentence), which may hinder the training process of

the classifier.

Mainstream approaches to NER use sequence labeling

models, where  neural  encoders  have  been  widely  pre-

ferred.  Suitable models to encode an input sequence and

to  decode  a  sequence  of  labels  are  conditional  random
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fields  (CRFs)[17],  a  type  of  discriminative  probabilistic

model,  and  recurrent  neural  networks  (RNNs)  (mainly

neural encoders). While early works used CRFs solely for

the NER task[18], recent approaches have used a combina-

tion of both CRFs and RNNs[19−21] since it has been seen

that this combination yields significantly better perform-

ance. For example, Ma and Hovy[20] used two of the most

common types of RNNs, namely LSTMs4 and Bi-LSTMs

(Bidirectional LSTMs). In that work, each token from the

input  sequence  was  encoded  using  the  concatenation  of

two representations,  namely  word  embeddings  and char-

acter embeddings5. These representations served as input

to an LSTM, which encoded them via its hidden units. In

this  way,  a token  will be represented with a new hid-

den vector representation, , from the LSTM, where in-

formation from the left  tokens (  to )  is  passed and

encoded in the representation of token . In the case of a

Bi-LSTM,  signals  from  the  right  context  of  the  current

token are  encoded  in  another  hidden  vector  representa-

tion  of  token ;  then,  both  learned  representations

(left and right) are concatenated to serve as the final vec-

tor representation of  the  current  token.  This  representa-

tion is then passed to a CRF layer which uses it to pre-

dict  the label  for  the token.  (We note  that  in  the latest

works,  only  learned  representations  are  passed  to  the

CRF layer;  however,  a  combination  of  these  representa-

tions  with  hand-crafted  features  is  possible.)  Thus,  the

CRF layer  computes  the  posterior  probability  of  a  se-

quence  of  labels  given  the  input  sequence,  namely

.

yi ti
yi−1

The type of CRF used is a linear chain, which means

that in order to compute the posterior probability across

output  sequences,  this  model  aggregates  local  feature

functions, which  can  use  the  information  from  the  cur-

rent label predicted  for token , the previous label pre-

dicted  and the  input  sequence.  In  addition,  to  ob-

tain the best  possible  sequence,  a  dynamic programming

algorithm is used, Viterbi algorithm being the most popu-

lar:

Ŷ = arg max
y

p (y|X) . (1)

Parameters of  both the Bi-LSTM and the CRF layer

are trained via stochastic gradient descent. As mentioned

before, word vector representations can either be learned

from a random initialization or be fine-tuned if using pre-

trained word embeddings.

We note that the latest approaches to NER have used

contextualized embeddings. This type of vector represent-

ation  (at  either  the  character  or  word  level)  of  a  lexical

unit is fine-tuned with information from context units in

the  same  input  sequence  which  means  that  the  vector

representation of a unit depends on its surrounding units.

Notable  contextualized  embedding  models  for  NER  are

BERT  (Section  2.1),  the  contextual  string  embeddings

model[23], and the pooled contextualized embeddings mod-

el[24],  which are currently the state-of-the-art with an F1

score  of  over  0.93  points.  Similar  to  the  case  of  a  Bi-

LSTM, these embedding models can use a CRF layer at

the top to jointly infer labels of named entities.

Furthermore,  recent  approaches  aim to  handle  noisy-

labeled entities. For example, Liu et al.[25] propose a con-

fidence  estimation  method  with  calibration  for  noisy-

labeled named entity  recognition.  Furthermore,  they  ap-

ply  local  and  global  independence  assumptions  on  an

LSTM-CRF  model  and  further  integrate  a  self-training

framework,  which  brings  strong  performance  gains  in

both general  multi-lingual  noisy  settings  and  distant  su-

pervision settings. 

2.4   Relation extraction

n = 2

Relation  extraction  (RE)  is  the  process  of  extracting

relations from an unstructured (e.g.,  text)  or  semi-struc-

tured (e.g., HTML table) source. For example, the task of

RE in a text could be learning that a person is born in a

particular city,  a  piece  of  relational  knowledge  represen-

ted  as  a  grounded  logic  predicate  (of  arity )  as  in

Fig.  2.  A wide variety of methods have been applied for

learning to recover this information from text: From un-

supervised  methods,  such  as  clustering  words  appearing

between target  entities,  to  supervised,  distantly  super-

vised  methods  (such  as  convolutional  neural  network-

based encoders[26]), and open relation extraction methods

that may  fall  under  either  of  the  three  previous  ap-

proaches.

Popular datasets to train and evaluate RE systems are

the  New  York  Times  corpus  (NYT)[27] which  contains

around 1.8 million articles from the period 1987−2007; the

TAC  Relation  Extraction  Dataset  (TACRED)[28],  which

targets  relation  types  from  the  TAC  KBP  task[29] and

consists of almost 120 000 instances; the Automatic Con-

tent Extraction (ACE) dataset[30, 31] where the latest ver-

sion  comprises 10 000 documents  across  different  genres

including news and weblogs; and the SemEval 2010 Task

8 dataset[32] where relation types correspond to semantic

relations  such  as  cause_effect  or  product_producer.  In

what follows, we will survey key works of relation extrac-

tion.

Supervised  based  approaches. Extracting rela-

tions from sentences through a learning-based framework

over hand-labeled examples is done following the classific-

ation  approach  presented  in  Section  2.2.  Given  features

from  a  sentence  (including  the  target  entity  types),  a

classifier will predict a relation label.

We categorize  this  approach into  two main  methods,

4 Probably, the earliest work for NER using an LSTM is that of

[22].
5 Character embeddings can be pre-trained on a corpus and then

fine-tuned  on  the  target  dataset  via  a  convolutional  neural

network.
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namely  non-neural  and  neural.  The  non-neural  method

includes  traditional  relation  extraction  approaches.  Here

an  RE  system  extracts  instances  of  the  target  relations

from  a  corpus  for  which  there  are  already  given  names

and labeled examples of the relations[33]. Within the non-

neural  method,  we  also  find  modern  approaches  which

use lexical features like those used for training NER sys-

tems (see Section 2.3), part-of-speech (POS) tags (such as

noun, adjective,  or  adverb)  for  each  token,  and  depend-

ency parse trees (a syntactic representation of a sentence)

to  design  a  learning  framework to  classify  relation  types

between  pairs  of  entity  mentions  in  a  corpus.  However,

one  of  the  shortcomings  of  leveraging  syntactic  features

such as dependency trees is that the accuracy of the RE

system heavily  depends  on  the  accuracy  of  the  depend-

ency tree parser. A variety of machine learning and prob-

abilistic models are used for the learning framework, such

as  kernel-based  approaches  like  support  vector

machines[34−36] with  results  on  an  early  version  of  the

ACE  dataset  slightly  above  the F1=0.55  points,  and

models using conditional random fields[33] which extract a

large fraction of relations by relying on only a small set of

POS tags  patterns  in  the  English  language.  In  addition,

there  are  methods  like  [37] that  provide  a  joint  frame-

work to extract both named entities and relation types at

the same  time  through  a  linear  chair  CRF  (which  pre-

dicts the entities) and a maximum entropy model (to ex-

tract the relation between such entities) with an F1 score

of  0.521  points  on  a  latter  version  of  the  ACE  dataset;

however, in fact, this method suffers from high computa-

tional complexity.

Recent works in RE mainly tend to apply neural net-

works  for  extracting  relations.  A  variety  of  neural-based

RE  methods  exist;  e.g.,  they  integrate  information  from

the input sequence and its corresponding dependency tree

using Bi-LSTM encoders[38, 39]. Alternatively, other meth-

ods  consider  the  interaction  of  not  only  pairs  of  entity

mentions with their relations but also those between rela-

tion  types  which  have  common  entity  mentions,  as  in

[40], where a Bi-LSTM sentence encoder and graph con-

volutional networks are learned to encode pair-wise word

features and both linear and dependency structures to en-

hance relation extraction, where results reach up to 0.619

F1-points on the NYT corpus. In other approach, the RE

task  is  mapped  to  another  task  like  Question

Answering[41] to  extract  both  entities  and  relations  by

asking the NLP system questions like Who is mentioned

in  the  text?  In  this  approach, F1-scores  slightly  surpass

the 0.60 points on the latest version of the ACE corpus.

Latest  approaches  to  RE  exploit  pre-trained  neural

encoder models (including BERT and Sci-BERT[42]).  For

example,  Zheng  et  al.[43] decompose  the  RE  task  into

three subtasks: relation judgement, entity extraction, and

subject-object  alignment  and  propose  an  end-to-end

framework  (PRGC),  which  leads  to  a  performance  gain

against  a  variety  of  baselines.  On  the  other  hand,

Lai  et  al.[44] leverage pre-trained  language  models  to  en-

code entities  which are  acronyms,  specialized terms,  and

abbreviations. On the other hand, Wang and Lu[45] design

two distinct  encoders  (table-sequence  encoders)  to  cap-

ture information about the entity name and the relation

information,  respectively,  where  the  two  encoders  help

each  other  in  learning  the  representation;  this  approach

addresses  the  issue  that  a  single  encoder  may  not  be

enough to capture all the relevant information when two

different tasks do not share the same space.

A shortcoming of supervised approaches is that produ-

cing  a  labeled  training  dataset  is  always  expensive  and

thus  limited  in  quality[46].  In  this  section,  we  survey

works  where  there  is  no  need  for  manually  annotated

datasets to build an RE system.

ri
(ei, ej)

ri(ei, ej)

ri(ei, ej)

(ei, ej)

Distant supervised approaches. This approach, as

proposed by [46], holds the assumption that a relation 

between two named entities  in a knowledge base is

likely  to  express  the  relation  between  those  entities

whenever they appear in a sentence, i.e., the fact 

is assumed to hold true. Based on this assumption, given

a corpus C to be used for creating a training dataset and

a  knowledge  base  (KB)  including  a  fact ,  for

every  appearance  of  the  mentions  of  the  named  entities

 together  in  the  corpus C,  the  relation ri is as-

signed to these entities as their relation6.  After that, the

same techniques used in the supervised approaches can be

used to train a classifier. The big-scale training data gen-

erated makes distant supervision an attractive option for

extracting relations not only at the sentence-level but also

at the document-level[47].

However,  distant  supervision  through  a  KB  might

produce incorrect  labeling (noisy data)  or  noisy patterns

in the resulting training set, since it is a strong assump-

tion[26]. A relation between two entities in an already ex-

isting knowledge base that was either heuristically gener-

ated  from  texts  or  generated  from  manual  annotation

(such  as  crowdsourcing)  may  not  convey  all  the  topics

that those entities may share in their co-occurrences.  As

noted  in  [48],  when  using  Freebase  as  the  KB  and  the

 

Sentence 1: Actor John Smith, who was born in London, will visit Germany next month.

Sentence 2: Actor John Smith, a native of London, will travel to Germany next month.

Target relation: born_in (John Smith, London)

Fig. 2     Example  of  the  task  of  relation  extraction. Both  sentences  encode  the  same  relation  between  the  entities  John  Smith  and
London, namely that this person was born  in London. Despite the difference  in the textual patterns, an RE system has to predict  for
both instances the label of the true target relation type, namely born_in.
 

6 Negative  instances  can  be  generated  by  pairing  entities  that

have no relation in the knowledge base, assigning them the label

no-relation,  and  extracting  features  from  sentences  where  these

two entities co-occur.
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NYT corpus as the target text, the distant supervision as-

sumption is violated in 38% of the cases for the relation

nationality in  a  sample  of  100  sentences  containing  en-

tity pairs corresponding to this relation type.

(ei, ej)

ri

(ei, ej)

ri

ri(ei, ej)

The problem  of  noisy  data,  which  always  accompan-

ies training  data  in  distant-supervised  approaches,  de-

creases the  performance  of  this  method;  to  this  end,  se-

lecting valid sentences may be a solution for that. Multi-

instance learning[49] is a way of dealing with such a prob-

lem, in which the training data consists of many labeled

bags,  each  bag  containing  many  unlabeled  instances.  A

bag, in this case, is the set of sentences where a target en-

tity pair  occurs, and the label of a bag is the tar-

get relation  observed in a KB[50].  For example,  Riedel

et  al.[48] proposed  to  predict  whether  relation  mention

candidates, in sentences where the entity pair  oc-

curs,  encode  the  target  relation  type, , which  is  ob-

served in the knowledge base applied to the target entity

pair . The underlying assumption is that at least

one sentence  in  the  corpus  will  express  the  target  rela-

tion. Thus, it is assumed that some bags of instances con-

tain  at  least  one  positive  instance.  This  method  allowed

[48]  to  reduce  prediction  error  by  31%,  going  from  a

Precision score of  87% when using the standard distant

supervision approach to a score of 91% on the NYT data-

set using Freebase as the KB. Zheng et al.[26] also treated

distant  supervised  RE  as  a  multi-instance  problem  and

designed  an  objective  function  at  the  bag-level  to  deal

with the resulting wrong labels in training data while us-

ing piecewise convolutional neural networks to automatic-

ally  extract  features  from  the  sentences.  Recent  works

like  [50, 51]  have  taken  further  advantage  of  NNs  to

provide  sentence-level  attention  models  which  can  learn

weights for sentences in a bag and thus select more than

one  valid  sentence.  In  addition,  using  sentences  from an

external  knowledge  base  (e.g.,  Wikipedia)  that  describe

the entities can also provide better entity representations

for these attention models[50].

Other  recent  works  use  attention  models  at  both

levels, inter-bag and intra-bag, to cope with noise present

in bags and their instances[52]. On a further level, Xiao et

al.[47] used  pre-trained  models  to  denoise  the  document-

level distant supervision data.

In a related line of work, Wang et al.[53] took advant-

age  of  the  knowledge  graph embedding  model  TransE[54]

and  encoded  head  (h)  and  tail  (t)  entities  of  a  relation

triple in a knowledge graph to generate (t−h) as the rela-

tion  (r)  which  is  derived  from the  translation  law  (h +

r ≈ t) in KG embedding models[54−56]. Indeed, this line of

work  distantly  supervises  the  learning  process  through

(t−h) instead of using a hard relation label (r), and then

trains  a  sentence  encoder  by  the  margin  loss  between

(t−h) and a sentence embedding.

Unsupervised based approaches. Unsupervised re-

lation extraction aims at automatically detecting the un-

derlying semantic structure linking entities in a large text

corpus without manually-labeled data and existing know-

ledge bases. Thus, opposed to supervised or distant super-

vised approaches, this approach does not require any lex-

ical  database  or  manual  annotation  and can be  used for

detecting new relation types.

There  have  been  some  promising  solutions  over  the

past decades. The first approach[57, 58] relies on a cluster-

ing  algorithm  and  the  assumption  that  named  entity

pairs  from  the  same  cluster  share  similar  context  words

between each co-occurrence and thus represent a relation

type.  More concretely,  Hasegawa et al.[57] used a trained

NER system to detect named entities in the NYT corpus.

Then, specific entity-pair types were defined, such as per-

son-organization.  After  that,  entity  pair  mentions  under

those entity-pair types were searched for in the corpus to

extract their contexts (the sequence of tokens in-between

the  two  named  entities).  For  example,  the  NER system

would label the named entity pair (Albert Einstein, Prin-

ceton  University)  as  person-organization;  then,  target

sentences  containing  this  entity  pair  would  be  searched

for, such  as  “Albert  Einstein  taught  at  Princeton  Uni-

versity”, “Albert Einstein, who had a teaching position at

Princeton  University, ···”,  or  “Albert  Einstein  worked  in

Princeton  University  between  the  years ···”. The  con-

texts  between  this  entity  pair  across  sentences  are  then

aggregated  in  a  context  vector  using  a  bag-of-words

strategy  where  each  word  is  weighted  by  its  TF-IDF

(term frequency − inverse document frequency). This pro-

cess is carried out for other named entity pairs under the

same  domain  of  person-organization,  e.g.,  for  (Stephen

Hawking, University  of  Cambridge).  Once  context  vec-

tors  are  obtained,  a  hierarchical  clustering  algorithm,

namely  complete  linkage,  is  applied  to  obtain  groups  of

named entities where cosine similarity is used as the sim-

ilarity function. Finally, the most frequent context words

in  a  cluster  are  taken  as  representative  of  the  topic  of

that cluster which is then used as a label for the relation

type. A manual evaluation of the NYT dataset shows the

effectiveness of this approach in two domains: person-gpe

(F1=0.82) and company-company (F1=0.77). On the oth-

er hand, Rosenfeld and Feldman[58] proposed a single-link-

age  hierarchical  clustering  algorithm  with  a  novel

threshold  selection  technique,  which  outperforms  other

clustering algorithms.

Other clustering  techniques,  such  as  generative  ap-

proaches[59, 60],  have  also  been  proposed.  For  example,

Yao et al.[59] used three generative models (similar to top-

ic models) for modeling tuples of entity mention pairs and

their  syntactic  dependency  path  between  them. Recall

scores  using  Freebase  as  the  source  of  ground  truth  on

which  to  align  and  compare  the  resulting  clusters  vary

from  46.9%  to  74.2%  according  to  the  target  relation

type:  author_of  and  film_director,  respectively.  On  the

other hand, Yao et al.[60] proposed a sense-LDA model in

order  to  overcome  sense  ambiguation  issues.  Moreover,

with the aid of various knowledge sources and an effect-
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ive  multi-membership  clustering  algorithm  (MMCluster-

ing),  an  ensemble  method[61] was  developed  for  tackling

polysemy and synonymy problems, which are widely used

frequently on the web.

More  recently,  while  Marcheggiani  and  Titov[62] pro-

posed  a  discrete-state  variational  autoencoder  (VAE),

which  uses  entity  prediction  (reconstruction)  as  training

signals to train a relation predictor, Tran et al.[63] proved

that relation types can be induced by using named entit-

ies.  In  addition,  the  ability  of  language  models  has  also

been explored  for  extracting  text  representations.  In-

spired  by  state-of-the-art  architectures  (specifically,

BERT), as well as Harris′ distributional hypothesis on re-

lations,  Soares et al.[64] built task-agnostic semantic rela-

tion  representations  from  the  entity-linked  text  (entities

in a corpus that have been linked to identifiers) by mask-

ing a pair of named entities in a sentence with the object-

ive  of  learning  the  vector  representation  of  the  relation

between such pair, across sentences, which leads the lan-

guage model to recover the observed entity pair; this ap-

proach has been proved useful not only for the task of re-

lation extraction (classifiers tuned on relation representa-

tions obtained F1-scores of 0.895 and 0.715 for the data-

sets  SemEval  2010 and TACRED, respectively)  but  also

for other closely related tasks such as exemplar-based re-

lation extraction.

Open  relation  extraction. Efforts  carried  out  in

open RE can be divided into two parts, namely, open in-

formation extraction (Open IE) and relation discovery[65].

Open IE aims to generate a structured representation of

information from plain text in the form of relation tuples;

for  example,  given  the  sentence  “Born  in  Tupelo,  Elvis

Presley  was  an  American  singer”,  an  Open  IE  system

tries to extract (Elvis Presly, born_in, Tupelo). An Open

IE  system  is  usually  domain-independent  and  does  not

rely on a pre-defined ontology schema, and typically the

relation′s  name  is  just  the  text  linking  two  arguments.

Accounting  for  early  approaches  in  the  literature,  Yates

et  al.[66] proposed  the  first  Open  IE  system  by  using  a

self-supervised  learning  approach;  Fader  et  al.[67] lever-

aged POS tag patterns; Del Corro and Gemulla[68] decom-

posed a sentence into clauses, and Stanovsky et al.[69] cre-

ated the first annotated corpus by an automatic transla-

tion  from  the  Question-Answer  Meaning  Representation

dataset  and  developed  an  Open  IE  system  using  a  Bi-

LSTM with a BIO tagging scheme. More recently, Ro et

al.[70] included two classifiers for predicate and arguments;

they use hidden states of a BERT model to extract pre-

dicates, and then the concatenation of predicate average,

BERT hidden sequence, and position embedding are used

as inputs for multi-head attention blocks for argument extrac-

tion.  Wang et  al.[71] proposed  a  text-to-triple  translation

framework that includes generating and ranking steps; it

uses Beam search over BERT attention score to generate

relevant triples and then rank the generated results using

a contrastive pre-trained model. On the other hand, rela-

tion  discovery  aims  at  discovering  unseen  relation  types

from unsupervised data; e.g., [72] is a recent work in the

literature  that  casts  the  task  of  relation  discovery  as  a

clustering task. 

2.5   Evaluation

The most  common  metric  to  evaluate  the  perform-

ance of NER systems is F1, which is defined as the har-

monic  mean  of  two  metrics,  namely Precision (P)  and

Recall (R):

F1 =
2× P ×R

P +R
(2)

P =
true positive

true positive + false positive (3)

R =
true positives

true positives+false negatives . (4)

On the one hand, Precision measures the ability of a

system to  get  a  correct  prediction  by  computing  the  ra-

tio of correctly predicted positive labels and all the labels

predicted  as  positive  (including  false  positives).  On  the

other  hand, Recall measures the  ability  to  recover  cor-

rect labels  by  computing  how  many  correct  positive  la-

bels the system recovered from all the gold labels.

These metrics  target  the  evaluation  of  positive  in-

stances,  different  from  the Accuracy metric  which

weights the importance of both positive and negative in-

stances  the  same.  Thus, F1 is  mainly  used  for  imbal-

anced  datasets  where  the  number  of  negative  instances

greatly  surpasses  that  of  positive  instances.  In  addition,

this  metric  is  used  when  there  is  a  manually  annotated

test set  of  instances  with  gold  labels  on  which  to  com-

pare the predictions of a system.

We note that the evaluation of an NER system is not

at the word-level, but rather at the entity-level[5]; i.e., F1

scores show the precision and recall abilities of the NER

system  under  evaluation  to  detect  full  named  entities

rather than to label single tokens.

ri(ei, ej)

In  the  case  of  RE  systems,  the F1  metric  is  used

whenever  there  exists  a  manual  annotation  of  a  corpus

(the supervised scenario).  In  the  case  of  distantly  super-

vised approaches,  there are two options.  The first one is

to manually check if every positive prediction is indeed a

true positive (for example, if the system predicts that the

relation  holds as true, then an annotator would

corroborate this fact), which is done on a sample of pre-

dictions.  The  second  option  is  to  pick  a  set  of  relation

types from a knowledge base and hold out half of the in-

stances (for every target relation type) from the training

set to check if the RE system correctly extracts them at

test time (similarly, a portion of documents from the cor-
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pus are not used at training time so they can be used for

testing);  in  this  case, Precision at  different Recall

levels[5] can be computed7:

P =
# of correctly predicted relations
total # of predictions in a sample . (5)

In  the  case  of  unsupervised  RE,  different  approaches

for evaluation can be taken. For example, a manual eval-

uation of the resulting clusters using an annotated data-

set can lead to using the F1 metric. Other evaluation ap-

proaches are 1) to compute Recall scores from a KB, 2)

to use a gold clustering model  and compute the Jaccard

coefficient  to  measure  the  similarity  of  the  resulting

clusters against the golden model, or 3) to rely on a KB

as  the  ground truth  on  which  to  align  and  compare  the

resulting clusters. 

2.6   Current challenges

Traditional NER datasets such as CoNLL 2003 or On-

toNotes are mainly used to train and test NER systems′
abilities to detect and label flat entities, i.e. entities which

do not overlap with, or are nested within, other entities.

For example, in the sentence “the Bank of England closed

its doors this morning”, the entity England, a country, is

nested  within  the  organization  entity  Bank  of  England.

This scenario  is  not  considered  in  the  NER  task  de-

scribed  in  Section  2.3,  making  it  a  new challenge  in  the

NLP community. The recent approach of [73] tackles this

problem  inspired  by  a  computer  vision  method  used  to

detect nested objects  in  images.  First,  text  span candid-

ates of  named  entities  are  generated  from  the  input  se-

quence, filtered to keep only those that are more likely to

contain entities. Second, the boundaries of the remaining

text spans are adjusted to better locate the target entit-

ies. Finally,  a  classifier  labels  each  of  the  entity  candid-

ates. This work used the datasets ACE 2004, ACE 2005,

KBP17 and GENIA, on which state-of-the-art results are

obtained  where  the  lowest  score, F1=0.805,  is  on  the

GENIA dataset.

Challenges in  RE  are  varied  and  have  been  docu-

mented  in  [65].  More  concretely,  Han et  al.[65] provide  a

review  on  RE  and  analyze  two  key  challenges,  namely

learning from text or names and datasets towards special

interests,  while  targeting  more  complex  RE  scenarios.

They also propose further required efforts in RE, such as

the need for high-quality training data,  performing more

efficient learning, extracting inter-sentence and inter-doc-

uments relations, transferring from pre-defined based RE

frameworks to  automatically  extracting  undefined  rela-

tions in open domains.

A wider  open  challenge  in  the  NLP  field  is  the  cre-

ation and leverage of language models that can better aid

in the task of information extraction. Pre-trained dynam-

ic models such as BERT have been proven to be success-

ful  for  knowledge  extraction  (as  we  saw  in  Section  2.4).

Primarily,  compared  with  static  embeddings  such  as

Word2Vec[74] and GloVe[75], dynamic models aim to cap-

ture contextualized semantic information as dynamic em-

beddings,  which  provides  an  effective  solution  to  the

problem of  polysemy.  Moreover,  deep  pre-trained  net-

works can capture higher-level information like long-term

dependencies, anaphora, and negation, which is crucial for

enhancing performance  on  a  series  of  knowledge  extrac-

tion downstream  tasks.  In  addition,  traditional  know-

ledge induction  systems  only  find  rules  within  a  know-

ledge base,  while  recent  autoregressive  pre-trained  mod-

els such as GPT[76] and T5[77] bring rich, expressive abil-

ity via generative ways[78]. 

3   Knowledge mining from transactional
databases

We saw in Section 2 that information extraction aims

to find, or recover, relational knowledge from text such as

named  entities  and  different  types  of  relations  between

such  entities.  Automatically  recovering  this  information

saves us  effort  and  time  while  helping  us  build  a  struc-

tured representation (a knowledge base) on which to op-

erate  for  other  purposes  like  industry  applications.

However, often, our objective is to discover, or mine, nov-

el  patterns  (patterns  difficult  to  spot  at  first  glance  by

manually inspecting the data) rather than recovering ex-

plicit knowledge from a source of data.

diapers→ beer

A popular problem in the data mining field is to mine

association rules  from  databases  —  the  so-called  associ-

ation  rule  mining  problem  —  being  the  market  basket

analysis  a  well-studied  example  of  this  problem.  In  the

market  basket  analysis  scenario,  we  aim  to  mine  novel

purchasing patterns from a transactional  database;  these

patterns take the form of association rules8. A classic ex-

ample  in  the  literature  of  a  novel  pattern  is  the  rule

 which tells us that people who bought di-

apers  tended  to  very  frequently  buy  beer  as  well.  Even

though  at  first  glance  it  is  difficult  to  think  of  a  strong

reason for  this  purchasing  pattern,  let  alone  to  come up

with  this  pattern  by  pure  intuition,  methods  from  data

mining allow us to not only discover this type of surpris-

ing  patterns  but  also  to  have  confidence  that  this  is  a

7 Recall,  as  shown  in  (4)  in  Section  2.5,  cannot  be  computed

since we do not know all the instances from which relation labels

are to be recovered. In order to alleviate this problem, different

Recall levels are proposed for increasingly bigger samples where

predictions  from  the  system  are  firstly  ranked  from  higher  to

lower confidence scores.

diapers →
beer buys (X, diapers) → buys (X, beer)

8 Association rules extracted from transactional data are a type

of Boolean association rules where an item either appears or does

not appear in the rule. In turn, we can see these types of rules as

FOL-like  rules.  For  example,  the  association  rule 

 can  be  written  as ,  as

noted in [79].
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strong and interesting pattern and is not due to chance9.

A→ B

Mining association  rules  from  a  transactional  data-

base (see Fig. 3 for an example) can be framed as a two-

step task: Finding frequent itemsets and generating asso-

ciation  rules[81, 82].  An  itemset  refers  to  a  set  of  items

(products)  from  a  transaction  (the  basket  of  products

purchased by a person); thus, finding frequent itemsets is

the task of extracting sets of items that appear at least a

certain number of times across different transactions in a

database[80].  Based  on  the  itemsets  extracted,  we  aim to

generate  association  rules  of  the  form  where  we

can have more than one item in both the antecedent (A)

and the consequent (B) of the rule as long as both sets of

items are  disjoint.  However,  not  all  candidate  rules  that

we could generate will necessarily be interesting or useful

for us. Thus, methods for pruning and evaluating candid-

ate rules are necessary, which we show in Section 3.3.

 
 

Transaction ID

1
2
3
4
5
6
7
8

Items purchased

{Eggs, Water, Chicken}
{Water, Soda, Diapers, Food_for_baby}
{Chicken, Water, Beer, Diapers}
{Diapers, Food_for_baby, Soda, Beer, Milk, Ham}
{Milk, Eggs, Bread, Ham, Beer}
{ Beer, Chicken}
{ Food_for_baby, Diapers, Milk, Bread, Beer}
{Eggs, Beer, Soda, Diapers, Food_for_baby}

 
Fig. 3     An  example  of  a  transactional  database.  Each  row
represents a transaction.
 

The main challenge  in  mining both frequent  itemsets

and association rules lies in the exponential complexity of

the  search[82],  and  thus  in  the  capacity  of  the  main

memory of a computer to perform the corresponding com-

putations since typical transactional databases tend to be

extremely  large  in  the  number  of  transactions.  In  what

follows,  we  survey  some  methods  from  the  data  mining

field to efficiently mine the knowledge expected. 

3.1   Frequent itemset generation

Frequent itemset generation is the problem of finding

all the  sets  of  items — itemsets  — that  occur  more fre-

quently  than  a  given  count  threshold  in  a  transactional

database. Then, in a posterior step, we can extract associ-

ation  rules  with  high  confidence  from  the  database.  We

refer to these frequent sets of items as frequent itemsets,

to their  frequency of  occurrence in the database as their

support  count  and  the  count  threshold  as  the  minimum

support.

k

The main  challenge  of  this  problem  is  the  computa-

tional  complexity  involved.  In  a  database  containing 

2k − 1

items, a brute-force search in the space of the items can

generate  frequent-itemset  candidates[82]. Further-

more, to  check which candidates  are  frequent,  each can-

didate  needs  to  be  searched  for  across  all  transactions

(every time a candidate is found in a transaction, its sup-

port  increases  by  one),  an  operation  with  exponential

complexity.  Numerous  techniques  have been proposed in

order to improve the efficiency of frequent itemset genera-

tion, mainly from three perspectives: Reducing the num-

ber  of  frequent-itemset  candidates,  reducing  the  number

of  comparisons  of  each  candidate  against  a  database  to

obtain  its  support  count,  and  reducing  the  number  of

transactions[82].  In  what  follows,  we  survey  some  of  the

main approaches to the problem of frequent itemset gen-

eration.

Lk−1

level = k − 1

level = k

Ck

Lk−1

k − 2

li lj

Lk−1

ci ∈ Ck

l1 = {i1, i3, i5} l2 = {i1, i3, i7}
c1 = {i1, i3, i5, i7}

c1

Lk−1

{i1, i3, i5} {i1, i3, i7} {i1, i5, i7} {i3, i5, i7}
Lk−1 c1

Lk

Lk

Apriori. The Apriori algorithm[83] is an efficient way

to  reduce  the  number  of  candidate  itemsets,  which  is

based on the principle that any subset of a frequent item-

set must also be frequent. Apriori applies a level-wise al-

gorithm that traverses the transactional database search-

ing for  frequent  itemsets,  from 1-itemsets  (itemsets  con-

sisting  of  one  item)  to  the  frequent  maximum-itemsets;

i.e., it uses the frequent itemsets  generated at a pre-

vious level ( ) as the seed for the actual level

( ) candidate generation, namely candidate item-

sets . In order to obtain this set of candidates, the al-

gorithm joins the itemset  with itself across all item-

sets which share  items[79]. Thus, from each join op-

eration of  two frequent itemsets  and  (both itemsets

in ),  the  size  of  the  resulting  candidate  itemset

 will be bigger by one item than each of the item-

sets joined by appending the items shared with those not

shared;  for  example,  assume  the  frequent  3-itemsets

 and ; after joining them, we

obtain  the  candidate  itemset .  After

generating  the  candidate k-itemsets,  Apriori  employs  a

support-based pruning  approach  known  as  the  genera-

tion-and-test strategy to efficiently eliminate invalid can-

didate  itemsets  without  counting  the  actual  support  of

these  itemsets;  from  the  previous  example,  all  the k−1-

itemsets which are a subset of the candidate  are com-

pared  against  the  set  of  frequent  itemsets ,  namely

, , , ; if any of these

itemsets  is  not  part  of ,  then,  candidate  is dis-

carded because, due to the Apriori principle, a k-itemset

to be frequent requires all its k−1-itemsets to be frequent.

After  that,  the  candidate k-itemsets  not  pruned  in  the

previous step need to have computed their support count

to check if it is above the minimum support; in order to

do  so,  the  algorithm  needs  to  traverse  the  database  to

count the frequency of occurrence of each candidate. Can-

didates with a support count surpassing the threshold are

inserted  into  the  list  of  frequent k-itemsets,  namely .

This  process  iterates  again,  taking  the  itemsets  as  seeds

in  to obtain k+1-itemset candidates. At the end of the

diapers → beer

9 As a note,  a plausible explanation behind the association rule

 seems  to  be  due  to  a  change  of  activities  of

people  who  used  to  frequent  bars  but  cannot  do  so  anymore

because  they  have  now  the  activity  of  parenting.  Thus,  these

people  purchase  now the target  product  in  supermarkets  rather

than in a bar[80].
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k ≥ 2process, we obtain a list of frequent k-itemsets for ,

which will be used to mine association rules.

FP-growth. The FP-growth algorithm[84] is proposed

to further eliminate the number of candidate itemsets and

reduce  the  number  of  comparisons  by  implementing  a

novel frequent pattern tree (FP-tree) structure and an ef-

ficient  FP-tree-based  mining  method.  An  FP-tree  is  a

condensed prefix-tree  data  structure  that  stores  a  com-

pressed  representation  of  the  data  (transactions);  it  is

constructed by traversing all the candidate itemsets, then

mapping  every  itemset  onto  a  path  in  the  FP-tree  in

which  each  node  represents  an  item  and  also  holds  the

support  of  the  item;  this  method  only  needs  one  pass

through the data and is  much more efficient when there

exists much overlap  between different  itemsets.  Further-

more,  for  mining  frequent  itemsets,  it  proposes  an  FP-

tree-based pattern fragment growth mining method and a

partitioning-based, divide-and-conquer method, which sig-

nificantly reduces the search space.

Eclat. Different  from  Apriori-like  or  FP-tree-based

methods which rely on horizontal  data layout,  the Eclat

(equivalence class transformation) algorithm[85] relies on a

vertical  database  layout  where  each  item  is  represented

by  a  tidset  (set  of  transaction  ID);  the  benefit  of  this

format  is  that  the  size  of  a  tidset  represents  its  support

count,  hence  infrequent  itemsets  can  be  discarded  in  a

single  data  pass.  The  main  challenge  that  Eclat  faces  is

the  intersection  from  current  tid-lists  to  next  level  tid-

lists;  approaches  such  as  bottom-up  search,  top-down

search or hybrid search are employed with vertical to ho-

rizontal transformation on-the-fly.

HUI-Miner. Previous approaches  generate  a  consid-

erable number of invalid candidates itemsets which causes

a  high  computational  complexity.  The  HUI-Miner[86],

which stands for high utility itemset miner, introduces a

novel concept called utility; it is used to estimate the im-

portance  of  an  itemset  and  other  concepts  derived  from

utility  to  provide  heuristic  information  during  pruning.

Besides a transaction table, a novel structure named util-

ity-list is  proposed  in  order  to  store  utility  relevant  in-

formation. An initial  version of  a  utility-list  can be con-

structed  by  only  scanning  the  database  twice.  With  the

help of the initial utility-lists and a novel pruning meth-

od,  the  HUI-Miner  can  efficiently  mine  all  high-utility

itemsets.

PrePost. The PrePost algorithm[87] proposes a novel

data structure called N-list for itemset representation. An

N-list is achieved via constructing a PPC-tree where each

node  comprises  five  types  of  information:  item-name,

count,  children-list,  pre-order  and  post-order;  thus,  the

N-list is another form to represent information stored in a

PPC-tree. On the  other  hand,  the  efficiency  of  the  min-

ing method remains  a  challenge;  the PrePost  adopts  the

single  path  property  of N-list  as  pruning  strategy  while

the next version PrePost+ uses superset equivalence; nev-

ertheless,  both  of  them  have  been  proved  to  be  faster

than traditional mining methods including the FP-growth

algorithm.

DPT. Opposite  to  FP-growth-like  approaches,  which

take a considerable amount of time on constructing sever-

al conditional prefix trees, the DPT (dynamic prefix tree)

algorithm[88] only needs one prefix tree as well as to intro-

duce  a  novel  concept  named  post-conditional  database.

When  DPT  traverses  each  node  in  the  prefix  tree  in  a

depth-first  way,  the  post-conditional  database  of  a  node

(itemset) can be constructed simultaneously, which is the

key technique that ensures an efficiency improvement. 

3.2   Association rule mining

X ⇒ Y X Y

A highly desirable type of pattern to be discovered by

methods in data mining is a set of association rules as in-

troduced  in  [83].  Considering  a  table  in  which  each  row

includes a transaction, and each transaction consists of a

set  of  items,  an  association  rule  is  an  expression

( ), where  and  are sets of items[89]. Returning

to the example from the beginning of Section 3, consider

a large dataset of transactions in a supermarket, where a

considerable  number  of  customers  who  buy  diapers  also

buy beer; the following rule (hidden relationship) can be

extracted:

{diapers} → {beer} (6)

where,  indeed,  it  provides  a  suggestion  to  the

supermarket  owner  that  there  might  be  a  relationship

between  the  sale  of  diapers  and  beer.  There  have  been

plenty  of  efforts  in  this  field  of  study,  especially  since

massive amounts of transaction data have been collected

and stored in databases due to the use of computers and

automated data collection tools[90]. In this section, we aim

to provide the roots and fundamental principles of mining

association rules.

{i1, i3, i7}
{i1, i3} → i7 {i1, i7} → i3 {i3, i7} → i1

i1 → {i3, i7} i3 → {i1, i7} i7 → {i1, i3}

A→ B

p (A|B) A

B

The  seminal  and  influential  work  of  [83],  namely  the

Apriori  algorithm,  generates  association  rules  on  top  of

the frequent itemsets discovered in the first step of the al-

gorithm, as discussed in Section 3.1. Apriori considers all

possible association  rules  formed  by  combining  all  pos-

sible subsets  of  a  frequent  itemset.  For  example,  assum-

ing the frequent itemset , the possible rules gen-

erated  are: , , ,

, , .  Nevertheless,

not all  candidate  rules  will  be  considered  a  strong  pat-

tern; thus, a confidence threshold is manually proposed to

filter weak rules (similar to filtering infrequent itemsets).

Each rule candidate  is thus associated with a con-

fidence  value  computed  as  the  conditional  probability

, which is obtained through counting items  and

 in the transactional database[79].

Given the  simplicity  and  efficacy  of  the  Apriori  al-

gorithm in generating association rules,  most of the sub-
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sequent  studies  in  association  rule  mining  adopted  an

Apriori-like approach[91].

For example, Srikant and Agrawal[89] extracted associ-

ation rules  between  items  at  any  level  of  a  given  tax-

onomy (is-a hierarchy). Instead of finding rules at a single

level,  Han  and  Fu[90] proposed a  multiple-level  associ-

ation  rule  mining  method.  On  the  other  hand,  Agrawal

and  Srikant[92] introduced  sequential  patterns  mining,

where  each  sequence  is  a  list  of  transactions  ordered  by

transaction-time.  Srikant  and  Agrawal[93] later general-

ized the sequential patterns mining by adding some time

constraints,  a  user-specified  time  window,  and  allowing

sequential patterns to include items across all levels of a

given user-defined taxonomy (is-a hierarchy).

We note that many of the early studies in association

rule extraction such as [94] focused on Boolean attributes

to  discover  interesting  associations  between  items,  such

as:

(Pizza = Yes) AND (Coke = Yes) ⇒ (Potato = Yes) .
(7)

However, in addition to Boolean attributes, databases

in the  real  world  may  have  numeric  attributes.  To  ac-

count for this problem, Fukuda et al.[95] proposed associ-

ation  rule  mining  for  numeric  attributes,  and  later  they

proposed a  method  to  generate  two-dimensional  associ-

ation  rules;  this  method  is  able  to  find  a  rule  for  more

than two attributes, like:

((Age,Balance) ∈ P )⇒ (Cardloan = Yes) (8)

where P is  a  planar  region.  Later,  while  Lent  et  al.[96]

proposed  a  geometric-based  algorithm  to  cluster  two-

dimensional  association  rules,  Yoda  et  al.[97] investigated

the problem of finding useful regions for two-dimensional

association  rules,  multi-dimensional  association  rules

mining by [98], and quantitative association rules by [99]. 

3.3   Evaluation of association rules

Given the  high number  of  candidate  rules  that  could

possibly be generated by an algorithm, it is necessary to

filter out those rules that are neither strong nor interest-

ing. As we saw before, a strong rule is one that has sup-

port  and  confidence  values  greater  than  minimum-sup-

port  and  minimum-confidence  thresholds,  respectively,

where the support is evaluated during the frequent item-

set generation step10, and the confidence is computed dur-

ing  the  rule  generation  step.  Nevertheless,  this  measure

by itself is not enough to properly evaluate the final use-

fulness  of  a  rule[79, 82].  Thus,  several  other  metrics  have

been proposed to evaluate the interestingness of an asso-

ciation  rule.  These  metrics  provide  an  estimate  of  how

correlated or  associated  are  the  antecedent  and  con-

sequent  itemsets  of  an  association  rule. Table  1 shows

some of the most common or basic metrics[79, 82, 100].

 
Table 1    Some of the most basic metrics to evaluate the

interestingness of association rules

Metric name Metric expression

All_confidence min (p (A|B) , p (B|A))

Max_confidence max (p (A|B) , p (B|A))

Kulczynski 1
2
(p (A|B) + p (B|A))

Cosine p (A,B) /
√

p(A)p(B)

Jaccard p (A,B) /(p (A) + p (B)− p (A,B))

 

A→ B B → A

As  we  can  see  from Table  1,  all  the  metrics  involve

probability  scores  from  the  antecedent  and  consequent

itemsets in a rule as a form to evaluate a degree of associ-

ation  between  the  two.  One  of  the  simplest  metrics  is

All_confidence  which  measures  the  minimum  confidence

level  of  a  rule,  i.e.,  it  computes  a  confidence  score  for

each  of  the  two  possible  forms  of  an  association  rule,

namely  and , and returns the lowest of the

scores  to  provide  a  lower-bound  on  the  confidence  of  a

rule.

A B

A B

p (A, B) /p (A) p (B)

A B

Lift (A,B) = 1

A B

A  slightly  more  complex  metric  is  the  Cosine  which

provides a score on the similarity or relatedness of item-

sets  and  by computing co-occurrence scores  (in the

extremes,  a  score  of  0  indicates  no  relationship  between

the two itemsets  and a score of  1 indicates  a perfect  re-

latedness of these two). This metric is similar in form to

another  popular  metric,  namely Lift[100],  which computes

the ratio of the co-occurrence of  and  to no co-occur-

rence, i.e., ; thus, Lift provides an es-

timate of how independent are itemsets  and . Perfect

independence  is  indicated  with  a  score

meaning  that  the  joint  probability  equals  the  factorized

marginal probabilities (a score less than one can be inter-

preted as a negative correlation while a score greater than

one as  a  positive  correlation).  However,  Lift,  as  opposed

to Cosine (and any of the metrics in Table 1) is not null-

invariant, which means that it is affected by the number

of transactions in which neither  nor  appear making

it a sensitive metric.

While  other  desirable  properties  for  metrics,  besides

null-invariance,  have  been  proposed  in  the  literature

(see [100] for a thorough review), as well as other metrics

based on information theory,  such as  [101], it  is  import-

ant to manually assess which metric to use based on the

final objective of the user, since different metrics have dif-

ferent behavior and different interpretations. p (A ∩B)

10 The  support  count  of  an  itemset  can  be  seen  as  the

unnormalized support of a rule. Formally, the support of a rule

can be computed as the joint probability of  the itemsets in the

antecedent and consequent of the rule: .
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3.4   Current challenges

Frequent  itemset  generation  has  received  significant

attention in the DM field since it is the bottleneck prob-

lem for  mining  association  rules.  As  a  result,  several  ef-

forts  have  been  directed  towards  proposing  algorithms

that can reduce the computational complexity of recover-

ing  frequent  itemsets  from  databases.  Nevertheless,  two

open and  current  challenges  are  receiving  increasing  at-

tention, namely  deriving  a  small  set  of  high-quality  fre-

quent itemsets that are highly representative of the data-

base under study[102, 103] and handling uncertain (probab-

ilistic) databases[103, 104].

As we  saw  in  Sections  3.1  and  3.2,  traditional  tech-

niques of frequent pattern mining have been successful in

mining high-quality patterns. However, the importance of

patterns  is  often  measured  not  only  by  their  frequency

but  also  by their  utility,  interestingness,  weight,  risk,  or

profit.  In  order  to  address  the  limitations  of  traditional

algorithms, Gan et al.[105] proposed an efficient algorithm,

high  utility  occupancy  pattern  mining  (HUOPM),  for

mining  high-utility  occupancy  patterns  in  transactional

databases. Moreover, they designed two novel data struc-

tures,  frequency-utility  tree  (FU-tree)  and  FU-table,  for

efficiently  pruning.  Furthermore,  [106]  is  the  first  work

that  works  on  mining  potential  high  utility-occupancy

patterns in uncertain databases. The proposed algorithm,

named high-utility-occupancy  pattern  mining  in  uncer-

tain databases  (UHUOPM),  measures  support,  probabil-

ity, and utility occupancy as user preferences. A series of

pruning methods and data structures are also applied to

enhance efficiency  and  reduce  the  consumption  of  com-

puting resources. Since most of the mining algorithms of-

ten  return  a  large  number  of  pattern  candidates,  Vo  et

al.[107] aim  at  tackling  the  inefficiency  issue  of  mining

closed potential  high-utility itemsets (CPHUIs) from un-

certain databases.  The  proposed  CPHUI-List  outper-

forms previous work (CHUI-miner) for real-life databases

in terms of running time and memory cost. 

4   Knowledge extraction from machine
learning systems

In  Sections  2  and  3,  we  surveyed  methods  to  mine

knowledge from  two  types  of  data,  namely  natural  lan-

guage  text  and  transactional  databases.  These  methods

allow us  to  recover  concrete  information  (factual  know-

ledge) or novel patterns in the form of logic formulas that

help us both better understand the data and draw some

conclusions.  However,  another  direction  of  knowledge

mining is oriented towards extracting a logical rationale,

in the  form  of  logic  rules,  of  how  trained,  complex  ma-

chine learning systems make a prediction.

Therefore, the  objective  in  this  scenario  is  to  under-

stand the decision process of ML systems. Many of these

systems consist  of  a big set of  parameters (sometimes in

the order  of  millions  of  parameters)  that  process  the  in-

put  information  through  non-linear  functions;  this  setup

makes the decision process of these systems difficult to be

interpreted by a human. Thus, understanding how an ML

system  transforms  an  input  instance  into  the  observed

output  remains  a  big  challenge.  Nevertheless,  the  logic

behind  the  decision  process  of  practical  applications  of

ML systems in critical areas such as medicine, credit risk

assessment,  or  education  needs  to  be  clearly  understood

by its users, who can then validate the output of the sys-

tem and decide whether to use it or discard it. This prob-

lem can be framed as  the problem of  extracting human-

understandable  knowledge  from  complex  ML  systems,

which is known as the task of Interpretability11.

In this way, the final objective of the interpretability

problem is that the knowledge extracted from an ML sys-

tem, grounded  in  logic  rules,  faithfully  mimics  the  pre-

dictive behavior of this system. This means that, ideally,

the logic rules will encode in human-comprehensible way

characteristics  or  patterns  of  the  system  so  that  a  user

understands how the system transformed an input to the

observed output; thus, we assume that the logic rules will

be  able  to  mirror  every  correct  and  incorrect  prediction

from the system under study.

In this section, we present different approaches to ex-

tracting the knowledge learned by complex ML systems,

also  known  as  black-box  systems,  due  to  their  un-inter-

pretability. Similar  to  previous  sections,  we  mainly  tar-

get works  in  the  literature  where  the  knowledge  extrac-

ted is  in  the  form of  logic  rules  (this  is  one of  the  most

popular types  of  knowledge  representation  in  the  inter-

pretability literature).  Most of  the black-box systems we

review  in  this  section  are  neural  networks  due  to  their

wide  acceptance  and  use  in  ML  and  related  fields.  As

noted in [108−110], the problem of interpretability can be

characterized  across  several  dimensions:  The  type  of

methodology used to extract  the knowledge (pedagogical

VS.  decompositional);  the  scope  of  the  interpretation

(global  VS.  local);  the  choice  of  how  to  represent  the

knowledge  extracted  (e.g.,  logic-based  representations  or

probabilistic  representations);  the  comprehensibility  of

the knowledge extracted (i.e., how easy it is for a person

to understand the working logic of the black-box system

via the knowledge extracted); the algorithmic complexity

of  the  knowledge  extraction  method;  the  user  expertise

(this varies according to the background knowledge of the

user,  from inexperienced to expert);  and the form of  the

ML system to be studied. We identify two dimensions as

the  most  important  dimensions  for  this  survey  paper,

namely the methodology type used for knowledge extrac-

tion and the type of target system.

The  two  most  common  approaches  to  extracting

knowledge, in the form of logic rules, from a trained ML

11 Sometimes also referred to as explainable artificial intelligence

(xAI).
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system are the pedagogical and decompositional methods.

The former method can take either a supervised or unsu-

pervised  learning  approach  to  learn  a  set  of  logic  rules

from an ML system′s behavioral data. The latter method

requires to manually open the black-box system to char-

acterize  at  the  parameter-level12 (neuron-level if  the  tar-

get system is an NN) the internal functioning of the sys-

tem  through  a  set  of  logic  rules  (usually,  one  rule  per

parameter or set of parameters[111]). In both scenarios, the

extracted  logic  rules  serve  as  a  proxy to  understand the

decision  process  of  the  ML  system.  From  now  on,  we

shall  refer  to  this  set  of  rules  as  either  the proxy or  the

interpretable model.

In the dimension of  type of  target  system, we distin-

guish between two types of neural networks, namely feed-

forward  (or  multi-layer  perceptron)  networks  and neural

encoders, similar to those described in Section 2.1.

In Sections 4.1 and 4.2, we provide a survey of previ-

ous works across the two dimensions described above. 

4.1   Pedagogical approach

xi

ŷi
(xi, ŷi)

(X, Ŷ )

In  this  approach,  it  is  necessary  to  collect  behavioral

data  from  the  target  ML  system  to  induce  the  proxy

model.  If  the system is a classifier (a very common type

of system), building a behavioral dataset reduces to show-

ing an input instance  to the black-box system, record-

ing  its  output  in  order  to  build  a  training  instance

 for the proxy model, and repeating this operation

across a set of instances . In this way, we can ob-

tain a training set  that shows the predictive behavior of

the target  system  and  on  which  to  learn  the  inter-

pretable  model.  In  what  follows,  we  show  examples  of

previous work under this type of approach for both feed-

forward networks and neural encoders.

Feed-forward  networks. An example  of  the  ped-

agogical  approach  in  the  literature  is  the  seminal  work

of  [112]  which  introduces  the  algorithm  TREPAN.  This

algorithm  induces  a  decision  tree13 as  a  global14 proxy

model  for  understanding the  predictive  behavior  of  feed-

forward NNs15. The training data to induce the tree is ob-

tained  by  having  the  target  neural  network  relabel  the

class label of each of the instances used to train it. In this

way,  the  decision  tree  is  expected  to  represent  the

concept learned  by  the  NN  and  thus  learns  to  label  in-

m− of − n

m

n

a b c

m = 2

ni 2− of − {a, b, c}

stances in the same way as the NN. A salient feature of

TREPAN with  respect  to  other  tree  learning  algorithms

in  the  literature,  such  as  classification  and  regression

trees (CART)[116], is its ability to learn expressions of the

type  for each internal  node of  the tree.  This

expression  indicates  that  constraints are  to  be  satis-

fied out of  Boolean conditions. Taking an example from

[112],  given  three  Boolean  features , ,  and ,  with

, the expression to satisfy at a given internal node

 of  the  decision tree  is  which is  equi-

valent  to  satisfying  the  expression  (a AND b)  OR  (a

AND c) OR (b AND c).

Similar pedagogical approaches have been proposed in

the  literature.  For  example,  Ribeiro  et  al.[117] aim  to

provide local  explanations  by  perturbing  a  target  in-

stance to obtain a training set in the vicinity of such an

instance to  train  a  proxy  model,  that  can  include  de-

cision trees and linear models. Domingos[118] extracts pro-

positional logic rules from an ensemble of ML systems by

expanding the original  training set  used to  train the en-

semble  with  behavioral  data  from the  ensemble.  On  the

other hand, d′Avila Garcez showed that while pedagogic-

al  approaches  are  sounded,  their  complexity  is  usually

greater than that of decompositional approaches.

Neural encoders. Some of the first works to extract

logic rules  from  neural  encoders,  similar  to  those  re-

viewed in Section 2, are the works of [119, 120], where the

target system is a matrix factorization system, similar to

that  of  [2], which  learns  vector  representations  for  rela-

tions  and  pairs  of  entities  from a  knowledge  base.  More

concretely, the  objective  of  this  ML  system  is  to  popu-

late a knowledge base (based on the observed facts from

this  KB);  this  system  is  represented  as  a  matrix  where

rows correspond to named entity pairs and columns to re-

lation types.  Thus,  a prediction in this  system (a cell  in

the matrix) corresponds to a probability score of the like-

lihood of a fact being true; e.g., given the pair of entities

(Beijing,  China)  and  the  relation  locatedIn,  a  prediction

from this system would be p(locatedIn(Beijing, China)) =

fi = valuei fj = valuej fk = valuek

class_label = ŷ fi fj fk

12 Or set-of-parameters-level.
13 As noted in  [113, 114],  a  decision tree  can be converted into

IF-THEN logic  rules  where  each  internal  node  of  the  tree  in  a

path from top to bottom represents an antecedent (the IF part

of  the  rule),  and  leaf  nodes  deciding  on  the  class  label  of  an

instance  represent  consequents  (the  THEN  part  of  the  rule).

Thus,  a  path  on  a  decision  tree  has  a  logic  rule  counterpart  of

the  form  IF  AND  AND 

THEN , where ,  and  represent features of

the input space.

14 We note that the scope of a proxy model can either be at the

local or global level. While a local explanation of an ML system

targets a single prediction, a global explanation aims to account

for  the  predictive  behavior  of  the  black-box  system  across  a

collection  of  instances;  thus,  a  global  proxy  model  can  explain

the  system′s  behavior  for  any  input  instance.  Choosing  one  or

the  other  explanation  type  usually  corresponds  to  the

algorithmic complexity of the method to extract the proxy model

(global  explanations  may  be  NP-Hard  to  compute  in  some

cases[115]).
15 It  is  assumed  that  each  input  neuron  in  a  neural  network

receives  an  input  value  (a  feature)  that  is  human-

understandable. For example, if the concept that the target NN

learns is to classify houses as cheap or expensive, possible input

features  are  the  number  of  rooms  in  a  house,  the  age  of  the

house, or the size of the house in square meters.
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A (x, y)⇒ B (x, y)

x y

t ≤ 0.5

A B

A (x, y)⇒ B(x, y) B (x, y)⇒ A (x, y) .

⇒
⇒

0.99  indicating  that  the  confidence  of  the  system in  the

fact  locatedIn(Beijing,  China)  being  true  is  very  high16.

To explain  how  this  system  reaches  a  prediction,  Sanc-

hez  Carmona  and  Riedel[120] extracted  logic  rules  of  the

form  where  the  predicate  symbols A

and B represent  relation  types  and  the  arguments , 

represent  named  entities.  The  extraction  of  these  rules

was  done  via  unsupervised  learning:  Predictions  in  each

cell  of  the  matrix  were  binarized  to {0,  1} with  a

threshold  which yielded a binary matrix of predic-

tions. Each column in the matrix was taken as the sample

of an independent variable, and the label of that column

(the relation type) bounded a logic predicate symbol. To

generate logic rules, a similar method to generate associ-

ation rules from Section 3 was taken: Each possible pair

of  columns ,  generate  two  candidate  rules,  namely

 and  In order to ac-

cept a candidate rule, mutual information (support meas-

ure)  and  conditional  probabilities  (confidence  measure)

are computed for each pair of columns; if  both measures

surpass a threshold, a rule is accepted. To explain a pre-

diction of the ML system, the application of modus-pon-

ens (a type of logic inference) is carried out on the set of

extracted rules where observed facts from the knowledge

base  used  to  train  the  ML  system  act  as  triggers  by

bounding antecedents of a subset of rules until the target

rule  containing  the  predicted  fact  as  a  consequent  is

bounded. For example, the above prediction could be ex-

plained  through  the  observed  fact  capitalOf(Beijing,

China)  and  the  rules {capitalOf(x, y)  cityOf(x, y),

cityOf(x, y) locatedIn(x, y)}.
However,  in  the  work  of  [120], the  logic  rules  pro-

posed were  not  capable  of  faithfully  mimicking  the  de-

cision  process  of  the  black-box  system  due  to  both  the

complexity  of  such  system containing  around 4 000 rela-

tion types across thousands of entity pairs and the prob-

abilistic  nature  of  the  system.  The  best  interpretable

model  found to  mimic  this  system was  a  tree-structured

Bayesian network, a type of probabilistic model that can

compute  the  joint  probability  of  all  random  variables,

with Precision scores  over  70%  across  different Recall

levels.

(A→ B)

Other works  in  the  literature  have  been proposed af-

terward.  For  example,  based  on  the  approach  of  [119],

Peake  and  Wang[121] extracted the  same  type  of  associ-

ation  rules  using  the  Apriori  algorithm  where

the target system was also a matrix factorization system

used as a recommendation system. Thus, in this case, the

consequent  of  a  rule  is  an  item  recommended  by  the

black-box  system,  and  the  antecedent  corresponds  to  an

item with which the user previously interacted with.  On

the other hand,  Gusmão et  al.[122] proposed a system-ag-

nostic method to extract weighted Horn rules from neur-

al encoders similar to the one used in [119], where entit-

ies and relations are mapped to vector embeddings. 

4.2   Decompositional approach

x1 ∈ [a1, b1] x2 ∈ [a2, b2]

xn ∈ [an, bn] xi

[ai, bi]

Feed-forward networks. The seminal work of [111]

proposes an  early  method  for  extracting  global  explana-

tions in  the  form  of  logic  rules  from  feed-forward  net-

works17 (though this method can be applied to RNNs as

well).  This method extracts classification IF-THEN rules

of  the  form  IF  AND  AND ···
AND  THEN class C=k where  each  cor-

responds to an input variable, each interval  corres-

ponds  to  a  real-valued  interval,  and C corresponds  to  a

class  label  predicted  by  the  NN.  To  induce  a  set  of  IF-

THEN rules that globally account for the behavior of the

target  NN,  Thrun[111] used  a  mathematical  procedure

called validity interval analysis[123].

[ai, bi]

yi

i = [ai, bi]

max ai min bi
yi ≥ ai yi ≤ bi

This procedure can be seen as a search in the space of

intervals  of  the  form ,  where  the  activation  value

(output)  of each neuron in a neural network (including

input,  hidden,  and  output  neurons)  is  bound  to  its  own

interval .  The  objective  is  to  find  the  tightest

interval for the activation value of  each neuron; i.e.,  the

procedure  aims  to  find  the  and  con-

strained to  and . Since the final goal of this

search is to find maximum and minimum values for each

interval  subject  to  linear  constraints,  Thrun[111] set  this

search as a linear programming problem. In this way, the

problem of rule extraction from a NN reduces to generat-

ing the  set  of  IF-THEN  rules  with  antecedents  corres-

ponding to  a  set  of  valid  intervals  characterizing the in-

put  space  that  map  to  an  output  from  the  NN.  A

strategy to find this set of rules is to start a search with

rules that under-partition the input space and to gradu-

ally  find  the  set  of  valid  intervals  (rules  antecedents)

through the validity interval analysis that correctly map

a  set  of  input  instances  to  the  corresponding  NN′s pre-

dicted class label.

Other algorithms to extract rules operate in a similar

principle; they extract rules from each neuron (or sets of

neurons)  where  features  or  activation  values  (outputs

from a  neuron)  are  used  as  antecedents  and/or  con-

sequents in each rule;  e.g.,  in the work of [124], this ap-

proach  is  used  to  extract  interpretable  rules  from  deep

neural  network  classifiers  trained  on  several  types  of

datasets (including vision datasets). For other similar de-

compositional approaches, we refer to the works of [125, 126].

Neural  encoders. An early  decompositional  al-

gorithm to induce logic rules from neural encoders is the

work of [127], where neural encoders are similar to those

reviewed in Section 2 (the neural encoders learn vector or

matrix  embeddings  for  both  relations  and  entities).  The

proposed  algorithm  aims  to  find  Horn  rules  of  the  form
16 This  system  makes  a  prediction  by  applying  a  sigmoid

function  to  the  dot  product  of  the  vector  representations

corresponding to an entity pair and a relation.

17 We hold the same assumption as in Section 4.1, namely that

the input features of a neural network are human interpretable.
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B1 (a, b) B2 (b, c)⇒ H (a, c) B1

B2 H

H B1

B2

bi ∈ B1 ◦ bj ∈ B2

⇒
⇒

 AND ,  where  predicates ,

,  correspond to relation types  and their  arguments

correspond to entities. To do so, the algorithm first pro-

poses  three  sets  of  relations,  one  of  the  head  predicates

( ), one of starting relations ( ), and one of ending re-

lations ( ). After that, the algorithm seeks for head rela-

tions  similar  (according  to  the  Euclidean  metric)  to  the

composition  of  pairs  of  body  relations, ,

where the composition function can be a vector addition

or matrix multiplication according to the form of the rela-

tion representation. Candidate rules are pruned by rank-

ing them according to their similarity to target head rela-

tions.  Furthermore,  to  constrain  the  search  space,  the

types  of  the  entities  are  taken  into  account  to  avoid

wrong entity  types  grounding  arguments  of  the  predic-

ates; e.g., the predicate born_in(a, b) can only take entit-

ies of type person and country, respectively. Examples of

rules  extracted  are  athlete_play_in_team(a, b)  AND

team_play_sport(b, c)  athlete_play_sport(a, c),

born_in_location(a, b)  AND  location_in_country(b, c) 

nationality(a, c). Evaluation of the rules extracted shows

Precision scores to degrade as the number of entity pairs

and relation types increase with Precision scores between

30%−40% when the number of  predictions  is  around the

tens of thousands.

Another  example  of  a  decompositional  approach  for

neural encoders is the work of [128], where the target ML

system is  an  LSTM used for  sentence  classification.  The

first step  of  the  proposed  method  is  to  analyze  the  im-

portance of each word in a phrase to the final classifica-

tion done by an LSTM. The hypothesis is that the target

system may learn a different importance weight for each

word,  thus  contributing  in  a  different  way  to  the  final

output.  For  example,  for  a  sentiment  classification  task,

the system may classify the sentence “the movie was hor-

rible”  with  the  class  label  Negative  mainly  due  to  the

presence of the word horrible. In order to extract the im-

portance weights, each input to the system is analyzed in

the context of the internal components (more concretely,

the  cell  states  and  forget  gates)  to  factorize  the  output

according to such weights. The second step of the meth-

od applies  a  rule-based classifier  on top of  the extracted

patterns to mimic the predictive behavior of the LSTM.

As we  can  see  from  the  works  surveyed,  decomposi-

tional approaches are ad-hoc to the type of model under

study;  thus,  specific  algorithms  must  be  developed  for

each system. Furthermore, as noted in [3], decomposition-

al  approaches  tend  not  to  be  as  sounded  as  pedagogical

ones, though their complexity tends to be lower than that

of pedagogical approaches. 

4.3   Evaluation of the knowledge extracted

The most common evaluation is the measure of fidel-

ity or faithfulness (how well the proxy model mimics the

predictive  behavior  of  the  black-box  system),  which  is

usually  evaluated  through  the F1  metric  (and  in  cases

where  the  dataset  is  balanced  through  accuracy  scores),

as explained in Section 2.5. However, the evaluation may

depend on the type of task carried out by the black-box

system.  For  example,  in  [119], the  fidelity  of  the  inter-

pretable  models  was  evaluated  using Precision-Recall

scores  (similar  to  the  evaluation  of  distant-supervised

models from Section 2; see Section 2.5) since part of the

task of the black-box system is to rank the predicted rela-

tions. Regardless of the metric used to evaluate the faith-

fulness of an interpretable model, this model is tested on

an unseen test  set  where,  in  the  same way as  the  train-

ing set, the instances are not labeled by a human annot-

ator but by the black-box target system.

Generalization  ability  is  another  type  of  evaluation,

where  the  proxy  model  is  evaluated  on  a  test  set  where

labels come from human annotation. In this way, the F1

score of the proxy model is compared against that of the

target system; if the proxy model is faithful to the target

system,  similar F1  scores  and generalization  abilities  are

to be seen[120].

Manual evaluation of the induced rules, which may be

followed  by Precision scores, is  another  type  of  assess-

ment  though  this  is  the  less  frequent  type  of  evaluation

due to the human effort and time required. Nevertheless,

as we will  see in Section 4.4, this type of evaluation has

recently received an increasing attention. 

4.4   Current challenges

While most of the recent efforts in interpretability are

focused  on  developing  new  methods  for  computing  local

explanations  (e.g.,  using  game  theory  theorems[129], in-

formation theory principles[130], or a case-based reasoning

approach[131]),  one of  the biggest challenges is  evaluating

both the faithfulness of extracted knowledge and the use-

fulness  of  such knowledge for  humans to understand the

black-box model′s decision process[132].

Evaluating how faithful the extracted knowledge is to

the true black-box model′s knowledge is challenging, since

such  true  knowledge  is  often  unknown[133].  Recent  work

has provided testbeds and benchmarks to measure the fi-

delity of the extracted knowledge, especially for local ex-

planations,  where  mimicking  the  behavior  of  the  black-

box system is more challenging since only one behavioral

data  point  is  considered  for  the  target  explanation.  For

example, Sippy et al.[133] evaluated local explanation meth-

ods by corrupting  in  a  controlled  way part  of  the  train-

ing data of three text classification datasets, which indu-

ced the expected wrong behavior of the black-box system.

In this way, it was measured to what extent the explana-

tion methods could recover such a wrong behavior. Simi-

larly, Bastings et al.[134] induce a bias in a dataset by aug-

menting it with instances that contain this bias; local ex-

planation  models  are  then  evaluated  on  their  ability  to

recover such a bias by comparing them on two scenarios:
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One where  the  explanation  model  extracts  an  explana-

tion  from  the  black-box  system  trained  on  the  original

dataset,  and  another  one  where  the  target  system  is

trained  on  the  augmented,  biased  dataset.  Results  from

both  [133, 134]  have  revealed  conflicts  among  different

explanation  methods  suggesting  further  work  on  this

challenge.

Assessing the final use of the explanations, on the oth-

er hand, has received recent attention from the ML com-

munity.  Even though assessing how well  logic  rules,  and

other  interpretable  models,  convey  the  decision-making

process of a particular system to people has been investig-

ated  before[113],  until  recently,  more  studies  have  been

carried out. For example, Yuan et al.[135] investigated dis-

play  factors  that  optimize  the  way  IF-THEN logic  rules

can  be  displayed  for  people  to  better  understand  them.

Lage  et  al.[136] carried  out  controlled  experiments  using

crowdsourcing  to  investigate  which  factors  (such  as  the

size of the explanation) lead people to better understand

an explanation in the form of decision sets (a special type

of logic rules). 

5   Discussions and conclusions

Throughout Sections 2−4, we surveyed previous works

in each field for the problem of knowledge mining. Even

though the overall problem is similar across fields — ex-

tract knowledge from a data source and structure it into

a particular representation — some of their traits vary. In

Section 5.1, we provide an account of these traits. Then,

in  Section  5.2,  we  will  explore  previous  work  where  a

bridge has  been built  across  these  three  fields  to  further

stimulate forging new bridges. Finally, in Section 5.3, we

will  provide  what  we  believe  to  be  a  long-term research

direction for Knowledge Mining. 

5.1   Research traits across fields

We identify five dimensions that we believe character-

ize  the  knowledge  extraction  work  across  fields,  namely

objectives, methods, research orientation, data, and eval-

uations. In what follows, we provide a comparison of the

Knowledge  Mining  problem  for  the  NLP,  DM,  and  ML

fields across these five traits.

Objectives. At  a  high  level,  the  three  fields  share

this trait,  where the overall  goal is to extract knowledge

from a dataset in order to understand the data. However,

at a lower level, subtle differences arise across the fields.

In the NLP field, the target knowledge type is factual

knowledge in the form of grounded logic predicates where

predicate symbols correspond to relation types and argu-

ments correspond to named entities. Automatically build-

ing a knowledge base of facts from text is one of the main

goals  in  NLP,  and  it  has  the  fundamental  purpose  of

avoiding human effort towards recovering this explicit in-

formation.  Furthermore,  this  KB  is  intended  to  be  not

only helpful to understand the source text but also to be

used  in  subsequent  steps  of  a  bigger  decision  process,

such as the prediction of new facts in the biomedical do-

main.

On the other hand, for the data mining field, a highly

sought type of pattern is an association rule.  As we saw

in Section 3, this pattern allows us to represent relation-

ships  between  sets  of  items  in  a  transactional  database.

Moreover, association rules allow us to better understand

purchasing behavior  and  to  implement  effective  market-

ing strategies based on such knowledge.

In  the  case  of  the  ML  field,  most  of  the  recent  ML

models are  increasingly  complex,  and  obtaining  an  ex-

planation  of  their  decision  process  with  the  purpose  of

both validating their  knowledge and discovering possible

biases through a simple inspection of their parameters is

extremely difficult. As we showed in Section 4, a solution

to  this  problem  is  to  extract  the  knowledge  from  a

trained ML system and to structure it into logic rules so

it can be understandable to users. Thus, the main goal of

understanding behavioral  data  in  this  scenario  is  to  in-

spect and  verify  the  consistency  of  the  knowledge  en-

coded in a black-box system, a goal that is extremely im-

portant in fields such as medicine or education.

Methods. This  trait,  interestingly,  is  not  unique

across  fields;  we  find  an  overlap  between  NLP  and  ML

methods  and  the  beginning  of  another  one  between  DM

and ML methods that we believe to be an interesting fu-

ture research direction. As we saw in Section 2, the meth-

ods used in the NLP field to extract relational knowledge

heavily  rely  upon  machine  learning  and  probabilistic

models,  especially  neural  encoders  and  CRFs,  where  the

main learning paradigms used are supervised, distant-su-

pervised,  and unsupervised learning.  On the  other  hand,

methods in data mining to mine association rules mainly

rely on search algorithms to effectively discover both fre-

quent itemsets and associations among them. In the case

of  the  problem  of  interpretability,  the  machine  learning

field  has  made  use  of  two  methods,  machine  learning

models  and algorithms;  while  the  first  method is  mainly

used  in  the  pedagogical  approach  to  learning  a  proxy

model, the  second method  is  mainly  used  in  the  decom-

positional approach to search for logic rules that can ex-

plain the input-output behavior of a set of parameters of

the black-box system. Furthermore, as we saw in Section 4.1,

some works from the ML community used variants of the

Apriori  algorithm to  find  logic  rules  that  can  serve  as  a

proxy model.  We believe  research in  interpretability  can

take advantage of the search algorithms developed in the

data mining field to search for logic rules in a similar way

to how association rules are mined.

Research orientation. At this  point,  it  seems clear

that one of  the main directions in the NLP field for  the

task  of  information  extraction  is  towards  building  more

accurate machine learning systems that are better able to

generalize  to  different  text  domains  (such  as  finance,
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medicine, news,  etc.)  in  order  to  build  consistent  know-

ledge bases that accurately reflect the world′s true know-

ledge. As for the data mining field, the main efforts in re-

search are directed to designing algorithms with less com-

putational complexity that are more efficient in discover-

ing frequent itemsets and association rules. Also, other ef-

forts in data mining are directed towards better using dif-

ferent types of  computer memory to handle bigger data-

bases in less time. Finally, research efforts in the ML field

for interpretability are not only oriented towards improv-

ing  their  methods  —  obtaining  more  faithful  models  —

but also towards studying the usefulness of such methods

in helping people understand the decision process of com-

plex ML systems.

Data. The  type  and  nature  of  the  data  used  across

fields  for  the  task  of  knowledge  extraction  may  be  the

trait  that  better  allows  us  to  distinguish  from  each  of

them. The  NLP  field  is  mainly  focused  on  natural  lan-

guage  text  —  unstructured  data  —  to  extract  facts,

where  the  most  popular  datasets  for  both  NER and  RE

tasks are  mainly  collected  from  thousands  of  news  art-

icles spanning across years. On the other hand, the mar-

ket basket analysis problem (and its variants) from DM is

only concerned with transactions stored in a database —

structured data — where the size of a database can be in

the order of millions of transactions. Different to the NLP

and  DM  datasets,  the  ML  field  mainly  uses  predictions

from  complex  machine  learning  systems  —  behavioral

data — as the source from where to extract hidden know-

ledge,  where  the  size  of  these  behavioral  datasets  varies

according to the type of explanation sought: While glob-

al explanations require thousands of predictions, local ex-

planations are  usually  extracted  from  a  dozen  or  hun-

dreds  of  predictions  due  to  restrictions  on  the  nature  of

the problem18.

diapers→ beer

Evaluations. Evaluating  the  performance  of  NLP

systems reduces to assessing how well the system is able

to  both  recover  text  spans  that  refer  to  target  entities

and classify the type of the entities and their relationship.

This  evaluation  is  done  through  several  metrics  such  as

Precision, Recall,  and F1.  Evaluating  association  rules

mined  from  databases  can  be  done  by  measuring  how

strong and interesting are such rules through a myriad of

metrics such as support, confidence, Cosine, and Jaccard,

among others, that can provide us with a score for these

two properties.  A typical  example of  a strong and inter-

esting rule is the pattern , which allows us

to  see  an  unexpected  purchasing  behavior  that,  even

though it is highly frequent in a database, would be diffi-

cult to discover manually.  The main evaluation of  inter-

pretable models measures how faithful they are to the be-

havior of the black-box system to be explained. Similarly

to  the  evaluation  of  NLP  systems  described  above,  the

F1, Precision,  and Recall scores are  obtained  to  com-

pare the behavior of the interpretable model with that of

the  target  system.  However,  unlike  the  NLP evaluation,

the gold test set is not human-annotated but rather ma-

chine annotated, since we mainly care about how well the

proxy  model  matches  the  predictions  of  the  black-box

system. 

5.2   Intertwining three fields for know-
ledge mining: NLP, DM and ML

We have seen in previous sections the main works in

the literature and the main traits of the knowledge min-

ing research for each of the fields we target in this paper,

namely  NLP,  DM  and  ML.  We  surveyed  and  described

their main methods, goals, evaluations, and other charac-

teristics.  We  saw  that,  even  though  these  three  fields

have  the  same  high-level  goal  of  extracting  knowledge

from  a  source  of  data  to  better  understand  such  data,

each field has its own research approach (with some traits

shared  among  them,  such  as  evaluation  metrics  and

methods). However,  we  believe  that  it  is  not  only  pos-

sible to consolidate the knowledge extraction task across

these three fields but doing so is a new research direction

calling  to  build  bridges  with  the  aims  of  proposing  new

methods,  improving  evaluations,  exploring  new  frontier

problems,  studying  new  types  of  data,  building  more

complex and accurate  applications19, and ultimately,  ad-

vancing in the quest of accurately understanding the data

under study.

In this section, we pinpoint efforts in the literature to

intertwine the fields of NLP, DM, and ML for the task of

knowledge mining.

Early  works  have  tried  to  build  bridges  across  these

disciplines, such as [137, 138] where association rule min-

ing  methods,  similar  to  those  surveyed  in  Section  3,  are

proposed to extract  rules  from knowledge bases  that  are

automatically  built  from  text  using  methods  similar  to

those  presented  in  Section  2.  This  bridge  between  the

NLP  and  DM fields  can  provide  a  valuable  pipeline  for

applications in the medical domain to extract novel rela-

tionships  from  text  among  entities  such  as  diseases  and

symptoms.

In  a  related  line  of  work,  there  have  been  efforts  to

make  interpretable,  to  some  degree,  the  decision  process

of complex neural encoders, similar to those described in
18 As  we  saw  in  Section  4.1,  a  single  instance  is  perturbed  to

generate the behavioral dataset; thus, the number of predictions

obtained  will  be  proportional  to  the  number  of  perturbations

performed; however, some of the perturbations may yield out-of-

domain instances which may not be representative of the domain

where the black-box system was trained on; thus, these instances

may elicit an inconsistent behavior from the black-box system.

19 Domains  such  as  medicine  require  applications  to  extract

knowledge  such  as  gene  and  drug  entities  and  their  different

types  of  relations  from  biomedical  texts  or  explanations  from

machine  learning  systems  predicting  relationships  between

entities as accurately as possible.
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Section  4.1,  for  the  task  of  knowledge  base  completion

where given a knowledge base populated with some rela-

tional facts  (as  those  extracted  by  an  NLP  system  de-

scribed  in  Section  2),  the  aim  is  to  fully  populate  the

knowledge  base.  For  example,  Xie  et  al.[139] added  a

sparse attention mechanism to a neural encoder to allow

sharing knowledge between different relation embeddings

and interpreting  through  the  weights  learned  by  the  at-

tention  mechanism  to  what  extent  each  piece  of  latent

knowledge is shared by specific relation types.

Another type of bridge built between fields is solving

the  problem  of  extracting  logic  rules  from  knowledge

bases as those used in the NLP field. For example, in the

DM field,  Galárrage  et  al.[140] extracted  Horn  logic  rules

from knowledge bases through a search in the space of lo-

gic  predicates  (in  each  step  of  the  search,  a  predicate  is

added to the rule) which is  then evaluated through con-

fidence and support  scores;  these rules  can then be used

to predict  new  facts  or  to  better  understand  the  know-

ledge stored in the knowledge base. In the ML field, Yang

et al.[127] took a different approach in which the KB was

first  encoded  by  a  neural  encoder,  and  then  logic  rules

were  generated  from  the  vector  embeddings  learned  by

the encoder.

Another  example  is  the  work of  [119, 120]  (described

in Section 4.1) where the three fields, NLP, DM and ML,

are intertwined in a single work: An interpretable model

in the form of  logic  rules  is  used to understand the pre-

dictions of a neural encoder (similar to those described in

Section 2) which is learned under a pedagogical approach

(as described in Section 4) using a variant of the Apriori

algorithm (Section 3). As we can see in this example, par-

ticular  factors  of  a  research  problem  coming  from  the

three fields  are  intertwined:  The  need  for  an  interpreta-

tion (the problem) of a black-box system used for predict-

ing relations between entities (the subject of study) leads

to  extract  association  rules  from  this  system  (the

method).

The works  cited  above  are  some  representative  ex-

amples  of  bridges  built  so  far.  However,  we  believe  that

other  possible  ways  to  intertwine  these  three  areas  can

lead to other types of bridge that will  result not only in

new approaches  but  also  in  new directions  for  the  prob-

lem of knowledge mining. 

5.3   Future research direction

We believe  the  task  of  knowledge  mining  has  an  ex-

tensive set of choices for future research directions: From

short-term research directions such as proposing new ma-

chine learning  methods,  algorithms,  and  evaluation  met-

rics to middle-term research directions such as consolidat-

ing the three fields targeted in this paper (possibly follow-

ing and  extrapolating  from  the  trends  described  in  Sec-

tion  5.2).  In  this  section,  we  opt  to  briefly  focus  on one

possible  long-term  research  direction  aligned  to  the

golden  objective  of  artificial  intelligence  of  human-level

intelligent agents,  namely  knowledge  mining  as  a  com-

ponent of an intelligent agent.

As proposed in [141], an intelligent agent is composed

of two parts: A component that is able to understand hu-

man  language  and  store  information  in  its  knowledge

base,  and  a  component  which  can  retrieve  knowledge

from  large  amounts  of  different  types  of  data  (such  as

text and structured databases), make inferences with this

knowledge, and provide an explanation of such inferences.

It  is  in  the  second  component  where  knowledge  mining

plays a role. The research works surveyed in Sections 2−4
can be  used  as  the  building  blocks  to  achieve  this  com-

ponent.  Furthermore,  to  advance  in  the  capabilities  of

this component, and as proposed in [142], the component

embodied by a knowledge mining system will not only be

able  to  integrate  knowledge  from  various  types  of  data

sources in an interpretable and consistent way, but it will

also  be  able  to  generate  new  knowledge  which  may  be

achieved  by  extrapolating  from  the  patterns  extracted

from the data while abstracting it at a human conceptu-

al  level.  Ultimately,  we  believe,  knowledge  mining  will

play a significant role in such intelligent agents.

While  the  research  direction  proposed  here  may  rest

in the distant future, we believe the efforts from the fields

surveyed are contributing to this golden objective.

We hope this  paper  will  motivate future cross-discip-

linary  research  agendas  that  take  us  a  step  closer  to  a

new state-of-the-art in knowledge mining. 
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