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Abstract—Classification of hyperspectral images is an impor-
tant issue in remote sensing image processing systems. Hyperspec-
tral images have advantages in pixel-wise classification owing to
the high spectral resolution. However, the pixel-wise classification
result often introduces the salt-and-pepper appearance because
of the complex noise produced by atmosphere and instrument.
An effective way to overcome this phenomenon is to resort to
the spatial information. This paper proposes a method to solve
the above problem by using spatial similarity information. First,
in order to avoid the effect of noisy pixels and mixed pixels,
reliable seeds are selected in local windows according to the
agreement between the central pixel and its spatial neighbors.
Then, the information of the reliable seeds is propagated to their
spatial neighbors by a graph Laplacian. Specifically, the graph
Laplacian is designed to propagate information among spatial
neighbors with close similarity relationship so that some small
or long thin objects are identified. Through the seed selection
and local reliable information propagation, the problem of noisy
labels is solved elegantly. Experiments on three real hyperspectral
data sets with different spatial resolution, spectral resolution and
land covers demonstrate the effectiveness of our method.

I. INTRODUCTION

Nowadays, we can acquire images in very narrow spec-
trum such as 10 nanometers by the Airborne Visible/Infrared
Imaging Spectrometer (AVIRIS). Such high spectral resolution
makes absorption features of different land covers expressed,
which helps to identify objects. Thus, hyperspectral image
classification has been a hot topic for several years.

Generally speaking, the hyperspectral image classification
can be divided into two groups: pixel-wise classification and
spatial-spectral classification. For the pixel-wise classification,
each pixel with its wavebands recorded in hyperspectral images
is considered as a sample. Thus, the pixel-wise hyperspec-
tral image classification is addressed as a classical pattern
classification problem. Many traditional classification methods
have been introduced into this field, including the Maximum
Likelihood Classification (MLC) algorithm [1], the K-Nearest
Neighbor (KNN) classification algorithm [2] and the kernel
based methods [3]. Among these methods, kernelized Support
Vector Machine (SVM) has been proved to be very effective
in pixel-wise hyperspectral image classification, representing
the state-of-the-art approaches. It transforms the original data
into a kernel feature space, then finds the decision hyperplane
by maximizing the margin between different classes. The main
shortcomging of the pixel-wise classification is that the spatial
information is not utilized to help improve the performance of
classification.

Recently, the spatial information has been introduced into
hyperspectral image classification. One way to incorporate the

spatial information is in the feature level. Benediktsson et
al. [4] propose the Extended Morphological Profiles (EMP)
method to integrate the spectral information and the spatial
information together. They use the morphological transforma-
tion to construct a Morphological Profile (MP) on each of
the significant principal components for hyperspectral images.
Then, all the profiles are concatenated into one extended
MP, which is classified by a neural network. Mathieu Fauvel
et al. [5] fuse the EMP features and the original spectral
features together to build more informative features. Another
typical way to incorporate the spatial information is voting in
homogenous regions obtained by over-segmentations [6], [7],
[8], [9], which achieves high classification accuracy. However,
over-segmentation is still an un-solved problem.

Another family to combine the spectral information and the
spatial information is Markov Random Field (MRF) [10], [11].
Zhang et al. [10] provide a method to manage the trade-off
between the spectral contribution and the spatial contribution
in a MRF. Jia et al. [11] introduce a relative homogeneity
index to determine the suitable weighting coefficient of the
spatial contribution. Besides, other graph-based methods also
have been proposed to use the contextual information. For
example, Camps-Valls et al. [12] incorporate the contextual
information by a graph on the original labeled and unlabeled
data with {1, 0} form. Bai et al. [13] employ graph cut
theory to handle the classification of hyperspectral images.
They first implement the pixel-wise classification on the whole
image by SVM. Then, pixels with high label probabilities are
chosen as seeds in a MRF. Finally, the hyperspectral image is
segmented by graph cut algorithm. These graph based methods
utilize the contextual information on the {1, 0} labeled data.
An alternative way is to handle the pixel-wise probability
classification result by a graph, which is more accurate and
computationally efficient.

This paper presents a graph-based method based on the
probability estimates by SVM for hyperspectral image clas-
sification. Because of the high spectral resolution, the pixel-
wise classification of hyperspectral images is relatively reliable
except some noisy labels. Based on this point, we originally
employ graph Laplacian on the label probability map estimated
by SVM in hyperspectral image classification. First, each
pixel is assigned a probability for every class by SVM. The
pixels that have labels consistent with the labels of their most
spatial neighbors are considered as reliable seeds. Then the
probabilities of the reliable seeds propagate to their locally
spatial neighbors by a graph Laplacian. Through reliable label
probability propagation, the spectral information and the spa-
tial information are used at the same time. Finally, our model is
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Fig. 1: Flow chart of our algorithm.

optimized with a closed-form solution elegantly and efficiently
by solving a sparse linear equation system. Experiments on
three real hyperspectral data sets evaluate the effectiveness and
efficiency of our method. Specifically, the main contributions
of this paper are listed as follows:

• Graph Laplacian is constructed on the label proba-
bility map estimated by SVM in hyperspectral image
classification. The graph is designed locally with local
scaling parameters so that the similarity relationships
among local pixels are distinct;

• The pixels with estimated labels that are consistent
with most of their spatial neighbors’ are selected as
reliable seeds. The label information of these reliable
seeds is propagated to their neighbors with close
similarity relationship so that the propagation is more
reasonable and the noisy information is suppressed.

The remainder of this paper is outlined as follows. Sec-
tion II describes the model. The incorporation of spatial
information and optimization process for our model is also
described in this section. Experimental results are reported in
Section III. Finally, conclusions and future work are drawn in
Section IV.

II. MODEL

Given a scene of hyperspectral images consisting of N
pixel vectors, our task is to assign a class label within the c
classes of interest for each pixel vector. It is considered as a
reliable label probability propagation problem.

The whole flow chart of our scheme is shown in Fig. 1.
First, we use SVM [14], [15] to give the initial label probability
estimate for each pixel vector in hyperspectral images, i.e., the
probability estimate of each sample belonging to the assigned
classes. Then, reliable seeds are chosen in local regions, and
their label probabilities are propagated to the spatial neighbors
by a local smoothness prior. The details are listed as follows.

A. Local Smoothness Prior

Usually, the land covers are continuously distributed in real
world. A natural assumption is that the spatial neighbors those
are similar with each other in hyperspectral images should be
of the same objects.

Suppose two spatial neighborhood pixel vectors are xi ∈
R

d and xj ∈ R
d, their corresponding label probabilities are

yi ∈ R
c and yj ∈ R

c respectively, where the k-th element of
yi corresponds to the probability that xi belongs to the k-th
class. If xi and xj is near in the R

d space, then yi and yj

should be close in the R
c space. That is ‖yi − yj‖22 should

be small. In machine learning research, this character is often

called as local smoothness assumption [16]. This character
makes that the rightly classified pixel vectors can provide
beneficial information for the miss-classified spatial neighbors.
Therefore, we can employ it to obtain a more comfortable
thematic map when a relatively good pixel-wise classification
map has been obtained.

Denoting the similarity between xi and xj as wij , which
is defined as follows:

wij =

{
e−

‖xi−xj‖22
σ , if j ∈ N (i),

0, otherwise,

where N (i) denotes the i-th pixel’s spatial neighborhood
set that have relatively higher similarity with xi. σ is the
heat kernel parameter that is related to the local variation
information in this paper. These two characters make label
probability just propagate between the more similar pixel
vectors in local regions, which can retain long thin objects such
as roads in hyperspectral image. In order to make wij = wji,
we substitute their mean for wij and wji.

Then, the local smoothness assumption is described as the
following constraint,

N∑
i=1

∑
j∈N (i)

wij‖yi − yj‖22 =
∑
i,j

wij‖yi − yj‖22. (1)

In terms of matrices, (1) can be reformulated as

1

2

∑
i,j

wij‖yi − yj‖22 = Tr(Y(D−W)YT )

= Tr(YLYT ) (2)

where Tr(·) denotes the trace of a matrix and W ∈ R
N×N

is a sparse symmetric matrix with its element wij repre-
senting the similarity between the pixel vectors xi and xj .
D ∈ R

N×N is a diagonal matrix with the i-th diagonal element

as Dii =
∑N

j=1 wij . Y = [y1,y2, ...,yN ] ∈ R
c×N is the final

label probability matrix that needs to be computed. L is a
symmetric graph Laplacian matrix [17], which combines the
local smoothness and global information together.

B. Selection of Reliable Classified Pixels

The pixel-wise classification result of hyperspectral images
determined by SVM is not always reliable. Firstly, the hy-
perspectral image has complex noise produced by atmosphere
and instrument, which makes some clear pixel vectors obscure.
Secondly, mini-objects less than a pixel in hyperspectral image
and the border pixels between different land covers should
produce mixing elements, which makes it hard to determine
their exact labels. Since these pixel vectors are unreliable, a
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reasonable substitution is that their labels should be the same
as the labels of their similar spatial neighbors according to the
local smoothness assumption.

As in II-A, we assume that the pixel values of the hy-
perspectral image are continuous in local regions. Thus, their
labels should be locally smooth. The majority votes of labels
in a local region are considered reliable. We choose a 3 × 3
window to determine the reliability of the central pixel vector.
If the central pixel’s label is consistent with most of its eight
spatial neighbors’, then it is considered as the reliable pixel,
otherwise, it is seen as the unreliable pixel.

Let X = [x1,x2, ...,xN ] ∈ R
d×N collect all the N pixel

vectors in hyperspectral images, and P = [p1,p2, ...,pN ] ∈
R

c×N are the corresponding probabilities estimated by SVM,
where c is the number of classes, pi is the image vector of
xi, and the k-th element of pi corresponds to the probability
that xi belongs to the k-th class. Denote the final classification
result as Y = [y1,y2, ...,yN ] ∈ R

c×N , and an indicator vector
s = [s1, s2, ..., sN ]T ∈ R

N consists of 1 and 0, representing
whether the pixels are reliable or not respectively. Then, the
probability reconstruction error for all the reliable pixels is:

N∑
i=1

si‖pi − yi‖22 = Tr[(P−Y)S(P−Y)T ] (3)

where S ∈ R
N×N is a diagonal matrix and its diagonal vector

is s. The above equation represents the difference between
the probabilities estimated by SVM and the final computed
probabilities for all the reliable pixel vectors.

C. Local Label Probability Propagation

With the pixel-wise classification result P ∈ R
c×N ,the

seed selection matrix S and the local smoothness prior, our
model is

min
Y

Tr[(P−Y)S(P−Y)T ] + λTr(YLYT ) (4)

where λ is a trade-off parameter, which controls the reliability
between the probability estimates by SVM and the local
smoothness prior of labels. This also balances the weights
between spectral information and spatial information. The first
term makes the final classification map is close to the pixel-
wise classification map by SVM, which is determined by
the spectral information. The second term locally smoothes
the whole classification map, which depends on the spatial
information.

Denoting Eqn. (4) as F (Y), taking derivative of F (Y)
with respect with Y, then we obtain

∂F (Y)

∂Y
= 2(Y −P)S+ 2λYL.

Let
∂F (Y)
∂Y = 0, it follows

Y = PS(S+ λL)−1. (5)

The matrix S + λL is sparse, positive semi-definite and
symmetric, thus the global optimum value of Eqn. (4) can be
found efficiently by solving a sparse linear equation system.
Since we choose seeds in local regions and the probabilities of
the seeds propagate to their similar spatial neighbors, we call
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Trees

Asphalt

Bricks

Bitumen

Tiles

Shadow

Meadows
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(a) False-color image (b) Training (c) Ground Truth

Fig. 2: Center of Pavia image. (a) A three-band false-color
image. (b) Training set. (c) Ground Truth.

this process as Local Label Probability Propagation (LLPP).
The index corresponding to the largest entry in each column
of Y is considered as the final label of this column of sample.

Through the LLPP, we transform the pixel-wise classifi-
cation map of SVM to a more smooth and more accurate
thematic map. This process removes noise in the classification
map through locally reliable label probability propagation
using the spatial similarity property. From the perspective of
Random Walk [18], for a pixel vector xi with probability
pi, the one-step transition probability from pi to its spatial
neighbor’s probability pj is proportional to wij and is given
by pij =

wij

Dii
. That is, the label probability propagates from a

seed to its similar spatial neighbors, and the one-step transition
probability is proportional to the similarity between them.

III. EXPERIMENTS

To evaluate the effectiveness of our method, we compare
the following three methods:

• SVM1: Pixel-wise classification by SVM with Gaus-
sian Radial Basis Function (RBF) kernel [3], [15],
which represents the state-of-the-art approaches for
pixel-wise hyperspectral image classification.

• SVM/MV: Majority Voting within local regions on the
classification map of SVM. The label of each pixel is
determined by the majority labels in its 3×3 window
in our experiments.

• SVM/LLPP: Local Label Probability Propagation, our
method.

Three data sets acquired by two type of sensors are used in
our experiments. The data sets and classification results are
described in the following subsections.

A. Data Description

Center of Pavia image: the Center of Pavia image is cap-
tured by the Reflective Optics System Imaging Spectrometer
(ROISIS-03). A part of the image is used in our experiments,
which has 1096×492 pixels with a spatial resolution of 1.3m

1Available at http://www.csie.ntu.edu.tw/ cjlin/libsvm.
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Fig. 3: Indian Pines data. (a) A three-band false-color image.
(b) Ground Truth.
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Fig. 4: Moffett Field data. (a) A three-band false-color image.
(b) Training set. (c) Ground Truth.

per pixel. The spectral range in the original image is from
0.43μm to 0.86μm. After removing thirteen water absorption
and too noisy spectral bands, only 102 wave-bands are left.
A three-band false color image and the reference data are
shown in Fig. 2, where nine classes of interest are labeled:
water, trees, asphalt, bricks, bitumen, tiles, shadow, meadows
and bare soil. The number of training and testing samples are
shown in Table. I.

Indian Pines image: the Indian Pines image is recorded by
the Airborne Visible/Infrared Imaging Spectrometer(AVIRIS).
It has 145× 145 pixels with a spatial resolution of about 20m
per pixel. There are 220 wave-bands in the original recorded
image. After discarding water absorption and too noisy wave-
bands, only 200 wave-bands are used in the experiments. A
three-band false color image and the reference data are shown
in Fig. 3, where only nine classes with more samples are
labeled: corn-no till, corn-min till, hay-windrowed, soybeans-
no till, soybean-min till, soybean-clean till, grass/pasture,
grass/trees and woods. 25% of the samples for each class
from the reference data are randomly chosen as the training
samples. The remaining samples in the reference data compose
the testing set. The detail information is shown in Table. II.

Moffett Field Data2: the Moffett Field data is recorded
by the AVIRIS sensor. The image has 500 × 500 pixels. After
discarding water absorption and too noisy spectral bands, only
177 spectral bands are used in our experiments. Seven classes
of interest are labeled in the image, which are: large buildings,
wetlands, residential areas, roads, suburbs, industrial areas and
salt soil. A three-band false color image, the training data set
and the ground truth are all illustrated in Fig. 4. The number
of training and testing samples are shown in Table. III. More
information about the data can be found in [13].

2Available at http://aviris.jpl.nasa.gov/html/aviris.freedata.html.

B. Parameter Selection

Our model has two hyper-parameters: the regularization
parameter λ and the heat kernel parameter σ. The relationship
between λ and the overall classification accuracy is described
in Fig. 5. From Fig. 5, the performance of SVM/LLPP is stable
with respect to λ. It achieves good results when λ varies from
10−3 to 102. However, it would over smooth the image when
λ is too large, λ = 103 for example. Thus, in our experiments,
λ is set to be 10 for all the three data sets. The heat kernel
parameter σ affects the computation of similarity largely. In
our experiments, σ is determined by the average of the variance
of each dimension for the locally selected pixel vectors. The
computation of σ by local method can improve the similarity
distinction among local pixel vectors.

There are also two parameters in SVM, the regularization
parameter C and the RBF kernel parameter γ, should be set.
These two parameters are chosen by five-fold cross-validation.
The value of log form of C is selected from {2, 3, ..., 10}. The
candidate set for log value of γ is {−10,−9, ...,−2}.

C. Experiments on Center of Pavia Data

Firstly, we test our method on a benchmark data set, the
Center of Pavia data. According to III-B, the parameters of
SVM for the original pixel-wise classification are set: C =
28, γ = 2−4.

The classification results are listed in Table. I. As can be
seen from Table. I, our method performs best on Overall classi-
fication Accuracy (OA), Average classification Accuracy (AA)
and kappa coefficient (κ) [19] . Compared with SVM/MV, the
average classification accuracy of our method is about one
percent higher. This indicates that our method can combine
spectral information and spatial information effectively.

The classification maps of different methods are shown
in Fig. 6. Compared with pixel-wise classification by SVM,
the classification map of SVM/MV and SVM/LLPP are more
smooth. This benefits from the spatial information. Compared
with SVM/MV, some important details, such as thin long
roads, are kept well in our method. This is owing to the
local label probability propagation in our method, i.e., the
label probability propagation just occur among the local spatial
neighbors with closer similarity relationship. Some mini land
covers those consist of one pixel or only a few pixels are
also smoothed away in our method. They are replaced by their
relatively similar majority surroundings. The trade-off between
the spatial information and spectral information is not an easy
job when handling the hyperspectral image classification with
complex noise.

D. Experiments on Indian Pines Data

For the Indian pines data, the parameters of SVM for the
original pixel-wise classification are set: C = 27, γ = 2−5.

The classification accuracies are shown in Table. II. From
Table. II, the global and most of the class-specific classification
accuracies of our method are higher than that of the origi-
nal pixel-wise classification and SVM/MV. This demonstrates
the effectiveness of local label probability propagation. The
classification maps are depicted in Fig. 7. As can be seen
from Fig. 7, the classification results of the SVM/MV and
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Fig. 5: The performance of SVM/LLPP vs. parameter λ. The performance of SVM/LLPP is stable with respect to λ. It achieves
good results when λ varies form 10−3 to 102.

TABLE I: Classification accuracy on Center of Pavia image.
Classes of interest, number of training and testing samples, the
classification accuracies (%) by different methods are given.
In the last three rows, OA is overall accuracy, AA is average
accuracy, κ is kappa coefficient [19].

Class
Samples

SVM SVM/MV SVM/LLPP
Train Test

Water 745 64533 97.81 97.88 98.26
Trees 785 5723 92.89 94.29 95.35

Meadows 797 2108 95.11 96.44 96.25

Bricks 485 1667 78.22 83.86 87.46
Bare Soil 820 5729 94.97 96.82 97.99
Asphalt 678 6907 95.70 97.89 98.67
Bitumen 808 6479 96.03 98.77 99.04

Tiles 223 2899 99.69 100.00 100.00
Shadows 195 1790 99.75 99.80 99.80

OA - - 96.80 97.50 98.01
AA - - 94.46 96.19 96.98
κ - - 94.25 95.50 96.42

(b) SVM (d) SVM/LLPP (c) SVM/MV(a) Ground Truth

Fig. 6: Classification maps of Center of Pavia image. From
left to right: (a) Ground Truth, (b) SVM, (c) SVM/MV, (d)
SVM/LLPP.

SVM/LLPP have more continuities for most of the structures.
This benefits from the incorporation of the spatial information.
In the classification map of our method, most of the small
objects with tens of pixels are kept well and the isolated noisy
labels are replaced by their similar spatial neighbors at the
same time. These illustrate the effectiveness of locally reliable
label probability propagation.

TABLE II: Classification accuracy on Indian Pines data. Class-
es of interest, number of training and testing samples, the
classification accuracies (%) by different methods are given.
In the last three rows, OA is overall accuracy, AA is average
accuracy, κ is kappa coefficient.

Class
Samples

SVM SVM/MV SVM/LLPP
Train Test

Corn-no till 357 1071 84.03 95.89 98.32
Corn-min till 208 622 85.05 97.43 98.55
Grass-pasture 121 362 96.96 98.34 96.13

Grass-trees 183 547 97.99 99.45 100.00
Hay-windrowed 120 358 99.72 100.00 100.00
Soybean-no till 243 729 78.88 92.59 95.47

Soybean-min till 614 1841 89.08 97.07 99.78
Soybean-clean 149 444 89.86 97.75 99.10

Woods 317 948 99.47 99.68 99.89
OA - - 90.00 97.26 98.80
AA - - 91.23 97.58 98.58
κ - - 88.24 96.78 98.59

(b) SVM

(d) SVM/LLPP (c) SVM/MV

(a) Ground Truth

Fig. 7: Classification maps of Indian Pines data. From left to
right: (a)Ground Truth, (b)SVM, (c)SVM/MV, (d)SVM/LLPP.

E. Experiments on Moffett Field Data

For the Moffett Field data, parameters of SVM for the
original wave-band feature are set: C = 210, γ = 2−3.
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TABLE III: Classification accuracy on Moffett Field data.
Classes of interest, number of training and testing samples, the
classification accuracies (%) by different methods are given.
In the last three rows, OA is overall accuracy, AA is average
accuracy, κ is kappa coefficient.

Class
Samples

SVM SVM/MV SVM/LLPP
Train Test

Large buildings 457 838 69.69 79.47 85.56
Wetlands 522 567 88.18 91.01 92.77

Residential areas 666 8280 63.39 75.16 82.31
Roads 646 858 83.57 89.16 87.41

Suburbs 911 23877 83.48 91.84 95.27
Industrial areas 574 852 88.38 94.84 97.89

Salt soil 401 655 62.44 68.40 73.89
OA - - 78.34 87.27 91.50
AA - - 77.02 84.27 87.87
κ - - 60.58 75.54 83.27

(a) Ground Truth

(c) SVM/MV (d) SVM/LLPP 

(b) SVM

Fig. 8: Classification maps of Moffett Field data. From left
to right: (a) Ground Truth, (b) SVM, (c) SVM/MV, (d)
SVM/LLPP.

The classification accuracies are shown in Table. III. The
SVM/LLPP method performs the best global classification
accuracy from Table. III, which is more than 10 percentage
points higher than that of the original pixel-wise classification.
The classification maps are depicted in Fig. 8, from which the
long thin road in the left part of the image is retained well.
This illustrates that the SVM/LLPP method can keep long thin
objects while smoothing the noisy label image. The reason
behind this phenomenon is that the SVM/LLPP method only
propagates label to the spatial neighbors that are more similar
to the central pixel, but not include the spatial neighbors that
have relatively low similarities in the local region.

IV. CONCLUSION

In this paper, we have constructed a graph Laplacian on
the probability estimates by SVM in the hyperspectral image
classification. Through seed selection and locally reliable label
probability propagation, the spectral information and spatial
information are combined together. Moreover, our model can
be optimized efficiently by solving a sparse linear equation

system. Comparative classification experiments on different
hyperspectral images show that our method can achieve ac-
curate classification results. In the future, more sophisticated
features, such as Gabor feature, will be explored to improve the
performance of the pixel-wise classification in our model, and
more reasonable label propagation strategy for hyperspectral
image classification will also be explored.
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