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Abstract: Pedestrian attribute recognition in surveillance scenarios is still a challenging task due to the inaccurate localization of spe-
cific attributes. In this paper, we propose a novel view-attribute localization method based on attention (VALA), which utilizes view in-
formation to guide the recognition process to focus on specific attributes and attention mechanism to localize specific attribute-corres-
ponding areas. Concretely, view information is leveraged by the view prediction branch to generate four view weights that represent the
confidences for attributes from different views. View weights are then delivered back to compose specific view-attributes, which will par-
ticipate and supervise deep feature extraction. In order to explore the spatial location of a view-attribute, regional attention is intro-
duced to aggregate spatial information and encode inter-channel dependencies of the view feature. Subsequently, a fine attentive attrib-
ute-specific region is localized, and regional weights for the view-attribute from different spatial locations are gained by the regional at-
tention. The final view-attribute recognition outcome is obtained by combining the view weights with the regional weights. Experi-
ments on three wide datasets (richly annotated pedestrian (RAP), annotated pedestrian v2 (RAPv2), and PA-100K) demonstrate the
effectiveness of our approach compared with state-of-the-art methods.
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1 Introduction

With the expansion of surveillance technology, video
surveillance systems have been widely used in many do-
mains, e.g., security, criminal investigation, and traffic.
Therefore, pedestrian attribute recognition in video sur-
veillance has great potential, facilitating the evolvement
of person retrieval and person re-identification. Pedestri-
an attribute recognition aims to make predictions for a
group of attributes, e.g., gender, age, wearing a dress. Re-
cently, methods [1, 2] based on convolutional neural net-
works (CNN) have achieved great success in recognizing
pedestrian attributes.

However, some difficulties and challenges in pedestri-
an attribute recognition still exists, such as multi-view
change, low resolution, low illumination, and occlusion in
complex backgrounds. A solution is to guide the recogniz-
ing process via prior knowledge. Previous works[2™ at-
tempt to take body parts or pose information as prior
knowledge. Bourdev et al.l3] proposed a body-part detect-
or to assist attributes recognition units. Similarly, Li et

Manuscript received June 20, 2021; accepted December 3, 2021;
published online January 7, 2022

Recommended by Associate Editor Ming-Ming Cheng

Colored figures are available in the online version at https://link.
springer.com/journal/11633

© Institute of Automation, Chinese Academy of Sciences and
Springer-Verlag GmbH Germany, part of Springer Nature 2022

al.[l employed human posture as the prior knowledge to
recognize attributes of body parts. However, these meth-
ods highly depend on external human body detectors,
which bring in extra inferring time and computational
cost.

Since images are recorded by monitoring cameras,
multi-view change becomes the most severe challenge un-
der dynamic scenarios. Several associated problems can
be caused by viewpoint change, such as, region change
problem for the same attribute of the identical pedestri-
an from different views. As depicted in Fig.1, for the
same pedestrian identity, the spatial areas of the hat at-
tribute (group (b)) are larger from the side views (the 3rd
and the 4th rows) than that from the front view (the 1lst
row). On the contrary, the shoulder bag attribute in
group (a) occupies a larger spatial area from the front
view. Thus, there is a relationship between a specific ped-
estrian attribute and different image views. We can util-
ize this relationship to guide the attribute recognition
process and alleviate the viewpoint change problem.
Therefore, besides taking body parts as prior knowledge,
view information can be considered another efficient clue
to guide the training process to focus on a specific attrib-
ute. Furthermore, since the importance of each view is
different for a specific attribute, we can utilize view in-
formation by giving a big weight to the most important
view and a small weight to the less important view.
Moreover, the weights are predicted by the view predic-
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Fig.1 Images of the same pedestrian identity from different
views. Example images are from the RAPv2 datasetl, and
typical attributes including shoulder bag, shoes and hat are
marked by pink bounding boxes.

tion branch in our paper.

When the same pedestrian attribute of images is un-
der different views, corresponding regions of the attrib-
ute are different. Therefore, though the training process
can concentrate on recognizing a specific attribute
through leveraging view information, it is still necessary
to obtain the attribute spatial location information for
better recognizing performance. Attention mechanism[6-8]
is introduced to localize attribute-related regions and give
the weights for different spatial locations in recent meth-
ods. These methods usually yield the attention masks
from feature layers and then multiply attention masks
with the corresponding feature maps to get the position-
al weights of the attributesl” 8. Giving a region a bigger
weight denotes that the region is most likely to include
this attribute, and weights can be visualized like Fig.2.
As shown in Fig.2(b), the learned attention mask at-
tends a broad region and points out shirt, backpack, and
jeans attributes. However, the attention mask is inaccur-
ate for localizing a specific attribute and mixes the re-
gions of different attributes to deal with spatial informa-
tion and channel inter-dependencies insufficiently. Later
studies demonstrate the decisive capabilities of channel
attention and spatial information to generate attentive
weighted regionsl® 10, Concretely speaking, squeeze and
excitation networks (SE-Net)[ received cross-channel re-
lationships in feature maps by learning modulating
weights per channel. This was followed by convolutional
block attention module (CBAM)!IY which accomplished
channel attention and spatial attention in two processes
to enrich attentive regions. As illustrated in Figs. 2(c) and
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Fig. 2 Visualization of attribute attentive areas produced by
different attention modules. The example image is from the
RAPv2 datasetP], and (b)—(d) visual attention-related regions of
the jeans attribute are generated by a single baseline (refer to
ResNet50(1) here), SE-Net modulel’), CBAM modulel’?) and our
VALA module respectively.

2(d), when recognizing jeans, attentive regions produced
by SE-Netl) and CBAMMIY focus on specific positions.
Nevertheless, SE-Netl? only considers the importance of
channel attention, and SE-Net and CBANI: 19 reduce the
channel dimension. Hence, these two modules are more
likely to cause information loss, and the generated atten-
tion areas have deviations to some extent. To avoid fea-
ture loss and preserve spatial attribute information, our
attention branch considers fusing the two processes from
CBAMU into one process to localize and generate attent-
ive weights for different regions of specific attributes from
different views.

A novel method is proposed in this paper, namely
view-attribute localization based on attention (VALA),
which exports view prediction and attribute inference of
pedestrian images recorded by surveillance cameras. By
making full use of the importance of different views for
each specific attribute, the view information is adopted as
prior knowledge to guide the training process to focus on
specific attributes. The view prediction branch is de-
signed to utilize view information by predicting view
weights as the confidences for attributes from different
views. Additionally, view information is holistic, so the
view predictor is placed in shallow layers, and predicts
four view weights (including front, rear, left and right) for
low-level attribute features. Subsequently, the view
weights are combined with shallow features to form spe-
cific view-attributes. The joint process of views and at-
tribute features makes it easy to identify the attributes
associated with one of the views when the images are in
this view. Since the spatial locations of a specific attrib-
ute are different in different views, regional attention is
proposed to acquire attribute location information and
localize precise attribute-related regions. The regional at-
tention branch restricts the pedestrian position into a
frame first, and then localizes view-attribute regions to
output regional weights. Specifically, the regional atten-
tion is divided into three small branches: height branch,
width branch, and ratio-balance branch. The first two
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branches are responsible for embedding spatial attribute
information of feature maps along height dimension and
width dimension, and channel inter-dependencies are cap-
tured after aggregating spatial information from two spa-
tial dimensions. Then two attention maps are generated
as regional weights. After balancing the ratio of the two
attention maps by the ratio-balance branch, a fine attrib-
ute-related region and regional weights are generated. Fi-
nally, the evaluating result is obtained by multiplying the
view weights by the regional weights.

The contributions of this paper are presented as fol-
lows:

1) We establish an end-to-end trainable framework
that takes view information as prior knowledge to com-
pose specific view-attributes in deep network supervision.

2) We propose regional attention to further localize
specific view-attributes rather than classify attribute re-
gions from different views by manual operation.

3) We conduct extensive experiments on three public
pedestrian attribute recognition datasets, i.e, richly an-
notated pedestrian (RAP)[!2] richly annotated pedestrian
v2 (RAPv2)6l and PA-100K[3l, which clearly illustrate
the competitive generalization ability and potentiality of
our method.

2 Related work

2.1 Pedestrian attribute recognition

Pedestrian attribute recognition can be considered as
a kind of mid-level task of pedestrian analysis in video
surveillance, which may provide important information
for high-level person related tasks, such as person reiden-
tification[4-16], pedestrian detection[l7], person trackingl!8],
person retrievalll® 201 video action recognition(2!-24 and
action segmentation[25-28],

Early pedestrian attribute recognition methods such
as histograms of oriented gradients (HOG)RY, support
vector machines (SVM)BY focus on hand-crafted features,
but the performance produced by these conventional
methods is far from satisfactory. With the rapid develop-
ment of convolution neural networks, recent methods
based on CNNs have achieved great success.

These methodsl! 2: 4, 6, 8, 31-35] can be classified into five
categories:

Global-based. Attributes convolutional net (ACN)!
used a CNN model to jointly learn attributes and calcu-
lated the loss for each attribute. DeepMARBY regarded
the attribute learning process as a multi-label task and
computed the loss of all attributes via sigmoid cross-en-
tropy loss. However, global-based methods are out of ap-
plication due to a lack of consideration of local fine-
grained features.

Part-based. Pose guided deep model (PGDM)2l ad-
opted a pose estimation model to obtain information
about auxiliary human body-parts. Localization guided

network (LG-Net)4 applied EdgeBoxesi36 to generate re-
gion-proposals for local attribute features. Deep template
matching with attribute-wise keypoints (DTM+AWK)[B2
leveraged pose key points as auxiliary information to help
the main module locate proper attribute regions. These
part-based methods that capture local body parts and
posture features improve the performance significantly,
but bring extra inferring time and computational cost
from external part localization modules.

Relation-based. Joint recurrent learning (JRL)[3]
exploited the inter-dependencies among attributes to con-
duct joint recurrent learning using a CNN-RNN model.
Grouping recurrent learning (GRL)[ explored the intra-
group and inter-group relationships of attributes and then
divided all attributes into several groups to recognize.
These methods improve performance by extracting the re-
lationship between attributes, but the modules of these
methods are usually complicated, and the parameters are
hard to control.

Attention-based. DIAAIY introduced multi-scale at-
tention to deal with the problem of attribute imbalance.
Distraction-aware human attribute recognition (Da-
HAR)[®l carried a coarse-to-fine attention mechanism to
reduce irrelevant areas and improve the discriminative
power for attribute recognition. As mentioned in Section 1,
attention-based methods are always influenced by com-
plex backgrounds and surroundings, making attention
masks fail to obtain the position of a specific attribute.

Attribute-based. Attribute localization module
(ALM)B3 induced a localizing method for specific attrib-
utes to discover the most discriminative attribute regions.

Later studies are dedicated to solving the problems in
pedestrian attribute recognition, but it is still likely to
have many aspects of improving the recognition perform-
ance in the future. Presently, the attention of investigat-
ors gradually diverts from localizing generic attributes to
specific attributes. Our method proposes regional atten-
tion to localize composed specific view-attributes and ob-
tain more precise attribute regions to achieve a greater
attribute recognition effect.

2.2 Multi-view information

Besides occlusion and blurring, viewpoint change
problem is difficult to handle under dynamic scenarios.
Since the importance of different views to each specific
attribute is different, it seems to have a relationship
between attributes and views. Therefore, by making full
use of the relationship, visual clues are available to be
used as auxiliary supervision to help with attribute recog-
nition. Some methodsB™39 already attempt to leverage
viewpoint information in different fields. As views are
global, partial view-specific information may be ignored
during feature extraction stages. Feng et al.37 offered a
view-specific deep network, which extracted view clues
more comprehensively to verify the great performance of
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the view-feature model in the re-identification field.
Multi-view information is also considered in the face veri-
fication domain. Farfade et al.38 proposed a deep and
dense face detector to detect faces in a wide range of
views and discovered that different views could help face
detection to handle the occlusion problem and capture
more facial features to some extent. In sentiment analys-
is research, Sadr et al.39 decided to aggregate features
extracted from heterogeneous neural networks by using
multi-view classifiers, which enhanced the overall per-
formance of document-level sentiment analysis. Our
method takes view information as prior knowledge in the
pedestrian attribute recognition field. View information is
leveraged in our paper by a view prediction branch,
which can guide the deep feature extraction process to fo-
cus on specific attributes.

2.3 Attention localization

When observing an object in daily life, people are al-
ways involved in its relevant resource, but ignore the ir-
relevant areas. Originating from human visual behaviors,
an attention mechanism is introduced to pay more atten-
tion to related regions. Zhu et al.40 first applied the at-
tention mechanism to the pedestrian attribute recogni-
tion field and revealed that the core of the attention
mechanism is to find the most representative attribute-re-
lated regions by giving the largest weight4l. Liu et al.[!3]
carried an attention module to fuse multi-scale features
from multiple levels to yield attention maps. Thus, atten-
tion maps from higher blocks can cover more extensive
attribute regions, and lower blocks can concentrate on
smaller attribute regions of the input images. However,
complex surroundings and backgrounds always prevent
usual attention methods localizing related regions accur-
ately. To alleviate the challenge, Yaghoubi et al.["] intro-
duced a coarse attentive body segmentation module,
which multiplies features and attention masks to discrim-
inate between the foreground and the background.
Whereas, their attention masks fail to take into consider-
ation the attribute-specific context, so Yaghoubi et al.[]
find that coarse attention is not as helpful as their ex-
pectation. When the attention mechanism needs to local-
ize specific attributes, a helpful solution is to embed
inter-channel and spatial information of specific attribute
feature maps. SE-Netl9 squeezed each 2D feature map to
efficiently build inter-dependencies among channels.
CBAMU further advanced this idea by encoding spatial
information and handling channel extraction and spatial
encoding in two independent processes. However, SE-Net
only considers the importance of channel attention, and
CBAM does not consider the correlation between the
channel and spatial information. These two methods are
apt to cause information loss. Since the related regions of
a specific attribute are different in each view, we apply an
attention mechanism to localize more precise regions.
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Taking inspiration from CBAM, two processes are ag-
gregated into one in our regional attention branch, which
captures channel inter-dependencies and preserves spa-
tial information with the help of global max pooling and
global average pooling.

3 Proposed method

The overall framework of VALA is illustrated in Fig. 3.
VALA consists of the main network, a view prediction
branch, and a regional attention branch. The main net-
work is built to accomplish feature extraction first. Then,
the view prediction branch utilizes the features from shal-
low network layers to predict four view weights for specif-
ic attributes from different views. View weights are then
fed back to shallow layers to compose view-attributes. To
obtain the related regions of a specific view-attribute, the
attention branch named regional attention is introduced
to output regional weights for the view-attribute from dif-
ferent spatial locations. Finally, the attribute recognition
outcome is gained by multiplying the view weights by re-
gional weights.

3.1 Network architecture

During the process of pedestrian attribute recognition,
global attribute feature extraction relies on large convolu-
tional kernels, while local attribute feature extraction is
dependent on small convolutional kernels. Therefore, In-
ception-v412 is adopted as our primary network, which
possesses different sizes of convolutional kernels for differ-
ent scales of features in the same layer to obtain both
global and local features simultaneously. Meanwhile, In-
ception-v4 is sufficiently deep for extracting semantically
stronger features and has a more uniform simplified archi-
tecture with more inception modules than Inception-
v1-3[43-45]

Inception-v4 mainly consists of Stem, Inception-A, Re-
duction-A, Inception-B Reduction-B and Inception-C
blocks. Inspired by Google-Net (Inception-v143), which
has two auxiliary classifiers, those two auxiliary branches
are replaced with the view predictor and the regional at-
tention respectively in the proposed method, but the posi-
tions of our two branches do not correspond to the origin-
al locations in Google-Net. Furthermore, the average
pooling layer, the dropout layer, and the final softmax in
the original network are eliminated. A batch normaliza-
tion (BN) layer is used to normalize the final attribute re-
cognition units directly instead.

Since the Inception-v4 network tends to be very deep,
it is natural to combine inception architecture with resid-
ual connections, which can accelerate the training pro-
cess of the inception network and explore deeper feature
layers simultaneously. Therefore, the Inception-ResNet-
v2[42] network can be considered to replace Inception-v4
in training to speed up the inference process of our model.
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Fig.3 The overall framework of the VALA method. The primary network follows the structure of Inception-v4[42l, and Inception-
ResNet-v2[42 network can be considered to replace Inception-v4 in training for rapid training speed. View prediction branch is
constructed after Inception-A to gain four view weights, while the regional attention is built after Inception-C to localize attribute-
corresponding regions. Eventually, the result is obtained by the above two branches via multiplication and summation. Different

modules are annotated in different colors in the framework.

3.2 View predictor

When monitor cameras are working, the positions of a
specific attribute from recorded images vary across differ-
ent views. Therefore, the relationship between views and
attributes exists, which can be utilized to help the recog-
nition process focus on specific attributes. Based on the
shared feature maps output by Inception-A blocks, a view
prediction branch is designed to utilize the view informa-
tion in our method, and the architecture of the view pre-
diction branch is shown in Fig.4. As shown in Fig.4, for
input feature maps F; € R3¥4*17X17 pooling and convo-
lution layers are added to remove redundant information
firstly. Subsequently, the convolution layer is followed by
an adaptive average pooling layer which down-samples
the feature maps to the intermediate variable
F' € R128%1X1 I our view predictor, we apply the con-
volution and adaptive average pooling layers to reshape
feature maps instead of allowing one convolution to res-
ize directly. This operation can help the feature extrac-
tion process explore a larger receptive field. Then, F’ is
passed through two fully-connected layers to output four
view weights (including front, rear, left and right) as the
confidences for specific attributes from different views.
Let Yip1 = [f,b,1,7] € R*™'™™! denote predicted view

weights, mathematically, Y,p1 can be represented by the
following equation:

Yopr = 0(Wyez - (Wyer - F')) (1)

where o is the sigmoid function, and “-” means the dot
product of two matrices. Wy, and Wyeo are the weight
matrices of the two fully-connected layers. Activated by a
sigmoid function, the channel dimension of the view
weights is then scaled to C, which is equal to the channel
dimension of the input feature maps F7 through a
designed view parameter. Based on the theory of neural
architecture search(4, the view parameter is designed to
expand the ratio of these four view weights without
changing the value of weights, so the Y,,1 can be fed
back to Inception-A blocks to combine the extracted
features in Inception-A for composing specific view-
attributes. The joint process of attribute features and
view weights makes specific attributes associated with
their related views, making the view-attributes easier to
identify when the input images are in the related view.
Moreover, the composed view-attribute participates in
further deep feature extraction to construct the relevance
of shallow and deep layers and supervise the network to
focus on specific attributes.
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Fig. 4 Module architecture of the Inception-A block with
embedding view prediction. Scaling contains the up-sampling
operation.

Meanwhile, view weights are also delivered to the fi-
nal classification units as the contribution of the view
prediction branch to guide the attribute recognition pro-
cess. Replacing the activation function of Y,,1 with a
softmaz function to generate Yypo. Let Y2 € R¥X1X1
denote the delivered view weights, and it can be formu-
lated as

’

Yop2 = softmax(Wyea - (Wyer - F)). (2)

3.3 Regional attention

Since the same attribute lies in different related re-
gions from different views of images, the attention mech-
anism is applied in our paper to acquire attribute loca-
tion information and localize precise attribute-related re-
gions. Later studies® 10 have confirmed that inter-chan-
nel dependencies and spatial information of the input at-
tribute features have an influence on the accuracy of spa-
tial channel integration and attribute-related areas local-
ization. It concretely shows that obtaining the spatial at-
tribute locations benefits the attribute recognition, and
adjusting the inter-channel dependencies of different at-
tribute features can handle the attribute imbalance prob-
lem. However, previous methodsl® 19 using channel atten-
tion and spatial attention do not achieve better performance.
For example, CBAMI[!0] has difficulty in handling the re-
lationship between channel attention and spatial atten-
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tion since these two processes are computed independ-
ently. Inspired by the method of constructing spatial at-
tention(l% | we propose an attention mechanism called re-
gional attention to utilize global max pooling and global
average pooling for preserving spatial information and
channel interaction simultaneously.

The structure of our regional attention is shown in
Fig.3. The feature maps output by Inception-C blocks are
taken as the input of the regional attention, and the re-
gional attention is factorized into three small branches.
Since the pedestrian is shown in a standing posture from
the input image, which is not flipped, the whole position
of the pedestrian occupies the largest pixels in the height
direction. Therefore, before localizing a specific view-at-
tribute, it needs to eliminate background interference and
determine the pedestrian position in the height orienta-
tion.

Global pooling is often used to encode spatial informa-
tion, but it squeezes both height and width dimensions in
a square shape. However, for the rectangular shapes of
pedestrians, using global pooling is prone to causing signi-
ficant information loss. To get spatial attribute interac-
tions more thoroughly, we apply a spatial extent of ad-
aptive kernels to embed local spatial information along
the height dimension. The adaptive kernel is the global
max pooling (GMP) which has the capability to extract
texture features and eliminate redundant data. Since re-
lated regions of different attributes distribute in different
pedestrian positions along the width direction, the width
branch is built to find a certain region position for a spe-
cific attribute. For the width branch, an adaptive global
average pooling (GAP) is conducted to capture the spa-
tial information of a specific attribute and localize a
coarse related region along the width direction. Concrete
localizing operation examples implemented by the height
and the width branches are displayed in Fig.5. The out-
put feature maps from these two small branches can be
formulated as follows:

GMP (z) = max., (z (h, 7)) (3)
GAP (2) = 22> (@ (j.w) )

The operation of aggregating spatial information from
the above two branches does not reduce any channel di-
mension and keeps as much spatial information as pos-
sible. Unlike the previous shrinking operation® 19, retain-
ing the channel dimension can reduce the attribute in-
formation loss. Subsequently, we integrate the outputs of
the two branches along spatial dimensions to comple-
ment spatial attribute information. The integrated result
is then passed through a convolution to output the inter-
mediate result F’ € R @)X which is activated by a
h-swish function”l. Based on the ReL.U6 function, the h-
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Fig. 5 Examples of localizing operation by height and width
branches. Images are from the RAPv2 dataset’], and red regions
are produced in the height dimension, while green regions are
generated in the width dimension.

swish function eliminates latent precision loss and im-
proves the efficiency in the deep network particularly.
The intermediate output can be represented by the fol-
lowing equation:

F' = h-swish (f( concat(GMP (z) ,GAP (z)))) (5)

where f stands for the convolutional operation. Then, we
split the intermediate vector F’ back to two attribute
feature vectors Fy € R and F» € R®*™%, In order
to modulate the inter-channel dependencies for a specific
attribute, another two convolution transformations are
utilized to augment the channel dimension into C, which
represents the class number in the final attribute
recognition units. Through a sigmoid activation layer,
two attention maps are gradually generated as the
regional weights of a view-attribute from different spatial
regions. However, for localizing the related region of a
view-attribute, the required proportion of regional
weights in height and width direction is different.
Therefore, the third branch, named the ratio-balance
branch, is constructed to balance the ratio of the regional
weights. And all three branches are aggregated together
via multiplication. Set Y, as the adjusted regional weights
and Y, can be written as

Yo =0 (f3 (F)) x o (f1 (F1)) x o (f2 (F2)) (6)

where o is the sigmoid function, F; and F> are the split
feature vectors from the intermediate vector F’ in the
height and width dimension, respectively, while F' is the
initial input attribute features from Inception-C blocks.
fi,fo and f3 represent the convolution operations to
handle Fi, F> and F.

3.4 View-attribute attention localization

To utilize view information, we use the view predic-
tion branch to predict view weights to describe the im-
portance of each view for a specific attribute. The num-
ber of the view weights Y., channel is four, and the value
of the channel dimension represents the weights occupied
by four different views, respectively. Subsequently, the

view weights are used in two places. We firstly deliver
view weights back to the shallow feature layers to com-
pose view-attributes. Such operation is equivalent to fix-
ing the corresponding view for a specific attribute. Then,
the view weights are also fed into the final recognition
units to combine with the attribute spatial information.

Moreover, for view-attributes, the related regions are
different in different views; we apply the regional atten-
tion to capture the spatial location information of view-
attributes. The regional attention takes the deep features,
which include view features as the input, and this re-
duces the impact of changing views on positional localiza-
tion. After inter-channel dependencies encoding and spa-
tial information preservation, the regional attention local-
izes precise attribute-related regions and outputs regional
weights for view-attributes from different spatial loca-
tions. Then, the regional weights are fed into the final at-
tribute recognition units as the contribution of regional
attention.

The final result is obtained by multiplying view
weights of attributes from different views with regional
weights of view-attributes from different spatial locations.
This can be performed as a weighted sum function that
view confidences are used as weights. To multiply each
view weight for convenience, we get four portions of re-
gional weights. Next, we let every portion of regional
weights Y, € RE*#*W and one of the view weights
Yy € R conduct element-wise multiplication, and
then sum the whole four multiplied results together. Fi-
nally, a BN layer is applied to normalize and estimate the
prediction of attributes. Then the attentive location of a
specific view-attribute can be realized.

4 Experiments

We assess our method on three public datasets, in-
cluding RAP[2, RAPv2[2, and PA-100K[3l. Specifically,
our experiments are separated into five parts: 1) compar-
ative experiment in the RAP and RAPv2 datasets,
2) transfer learning of the view predictor in the PA-100K
dataset, 3) complexity analysis of the modified Inception-
v4 backbone in the RAP dataset, 4) ablation study in the
RAP and RAPv2 datasets, 5) pedestrian attribute recog-
nition experiment in real surveillance scenarios.

4.1 Datasets

RAP dataset1? is collected from real indoor surveil-
lance scenarios, and 26 cameras are selected to acquire all
41 585 samples. Each image of this dataset is annotated
with 72 fine-grained attributes and extra contextual
factors, including viewpoints, occlusion, and body parts.

RAPv2 datasetls) comes from a realistic surveillance
scenario in a shopping mall, and all 84 928 images that
contain 2 589 person identities are captured by 25 camer-
as. The viewpoint attribute is also contained in the
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RAPv2 dataset.

PA-100K dataset[!3] has become known as the largest
dataset in the pedestrian attribute recognition domain,
with 100 000 images in total captured from 598 real out-
door surveillance cameras. According to a ratio of 8:1:1,
the PA-100K dataset is randomly split into training, val-
idation, and testing sets, and each image is labeled with
26 attributes.

The RAP and RAPv2 datasets have peculiar view-
point labels, and the labeling rates of the same attribute
are different from different views. As shown in Fig.6, the
labeling rate of the backpack attribute in the rear view is
significantly higher than that in the front view in the
RAPv2 dataset. Therefore, utilizing the viewpoint labels
of the RAP and RAPv2 datasets, we construct the com-
parative experiment to verify the performance of our en-
tire model. The PA-100K dataset lacks viewpoint labels
but has a large abundance of samples, so we realize trans-
fer learning in the PA-100K dataset to verify the reliabil-
ity of our view prediction and formed view-attributes.

| Front ® Rear m Left nght

83
|82 74|7777

Backpack

100

80

60 r

40 |

Labeling rate (%)

20

LongHair Dress
Attrlbute

Fig. 6 Labeling rates of some typical attributes from different
views in the RAPv2 datasetl®l. Typical attributes are LongHair,
Hat, Dress, and Backpack.

4.2 Evaluation metrics

Two types of evaluation metrics are adopted in our
experiments.

1) Label-based: the mAMSl criterion can be formu-
lated as

M
1 TP, TN,
mA_mv;(Pi Ni) Q

where N and M are the numbers of examples and
attributes, respectively. T'P; and T'N; are the numbers of
correctly predicted positive and negative samples of the i-
th attribute, respectively. P; and N; are the numbers of
positive and negative samples, respectively.

2) Instance-based: the criteria of accuracy, precision,
recall, and F; scorel!2l are adopted, which are defined as
follows:
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TP; +TN;
ACCuTaCy = (W) (8)
. TP;
Precision = (7TPZ- n FPi) (9)
TP;
Recall = (W) (10)

(11)

[ 2 x Precision X Recall
e Precision + Recall

where F'P; and FN,; are the numbers of incorrectly
predicted positive and negative samples of the i-th
attribute, respectively.

4.3 Loss function

Two types of cost functions are adopted in the train-
ing process of the entire method. The first relates to view
prediction, and the second relates to attribute recogni-
tion. For the first cost function, the following negative
log-likelihood is used.

Mw

3

=1

AN
==

Lossyp = —

T
Z k llOngl (12)

B
Il

1t

where L and K denote the numbers of images and
attributes, respectively. T' is the number of views, here is
equal to 4. th,l indicates the ground truth label of the
i-th view of the k-th attribute in the [-th image, and ‘7,:\1
is the assumed prediction of the view information.

The following weighted cross-entropy lossBl is util-
ized as the loss for attribute recognition.

i (i slog (0(7i5))+

1 N M
Lossq, = — — Zl Zl
— yi,5)log(1 — (ym ) (13)

(1

i

1—r;, .
o fe "
e, if Yi,j = 0

where N and M denote the numbers of images and
attributes, respectively, ¥i,; indicates the ground truth of
the j-th attribute in the i-th image, and ¥, ; € {0,1} is
the predicted attribute result. w; in (14) denotes the
weight for the j-th attribute to alleviate the imbalanced
distribution problem of positive and negative samplesl?],
and r; is the proportion of positive samples of the j-th
attribute.

The final loss function is a weighted combination of
these two loss functions.
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Loss = aLossyp + fL0SSa (15)

where o and 8 are hyper-parameters to balance the two
different losses.

4.4 Implementation details

In our experiments, the average pooling layer, the dro-
pout layer, and the final softmax from the original Incep-
tion-v4l42l structure are eliminated, and a BN layer is ad-
ded to the final attribute recognition units to balance the
change. Without other tricks, only the random crop
strategy is employed to augment data for avoiding data
unbalanced and over-fitting. During the training process,
images are resized and normalized into 256x192, and the
stochastic gradient descent (SGD) optimizer is utilized
with a batch size of 64, a momentum of 0.9, and a weight
decay of 5x1075. Our model is trained on four NVIDIA
2080Ti GPUs based on the Pytorch environment. When
handling shallow view features, the learning rate is set to
0.1, while in the deeper training, the learning rate equals
to 0.01.

4.5 Comparative experiment

We compare our VALA approach on the RAP data-
setll?l with a great number of state-of-the-art pedestrian
attribute recognition methods, e.g., ACNI, deep learning
based on multiple attribute recognition (DeepMAR)Bl,
view-sensitive pedestrian attribute (VeSPA)49  hy-
draplus-Net (HP-Net)3], JRLBP3, GRLBY, PGDMMA,
ALMBI], Da-HAREl, and DTM+AWKIB2l. These PAR al-
gorithms place emphasis on different aspects, including
global-based, part-based, attention-based, relation-based,
and attribute-based. The comparative results of our
VALA and other methods on the RAP dataset are dis-

played in Table 1. The best results are highlighted in
bold, and the second-best results are underlined.

The results show that our proposed method achieves
competitive performances under both label-based and in-
stance-based metrics on the RAP dataset. As for the F
score, VALA surpasses all state-of-the-art methods with
80.32%. Though in terms of accuracy and precision, the
proposed method wins the second-best results, its scores
lag only 0.69% and 0.31% behind the best methods
ALMBS and ACNUI respectively. Compared with previ-
ous methods relying on multi-attribute joint prediction,
our proposed method can reach a significant improve-
ment due to the consideration of specific attribute con-
cerns. Our method performs a higher mA matric, about
4.02%, than that the part-based method PGDM2l has,
which demonstrates the effectiveness of taking view fea-
tures as the prior knowledge. Meanwhile, we find that our
VALA achieves better gains than VeSPAMI which also
belongs to the view prediction method and classifies the
training dataset according to different views. The main
reason is that our regional attention is utilized to localize
specific attributes from different views rather than distin-
guish different view images to find attributes manually.
Better performances of our VALA can be seen from the
comparison between these two methods on the PA-100K
dataset. Moreover, more recent methods have begun to
focus on the attention mechanism or attribute-specific
localization. However, our proposed method still gets a
comparable result for the capability to trace more precise
attribute-corresponding regions by regional attention
branch.

The comparative experiment is also conducted on the
RAPv2 datasetl]. Since the RAPv2 dataset is not as uni-
versal as the RAP datasetl!?, we only compare our meth-
od with some recent works, including DIAAIS], visual at-

Table 1 Comparison of our method and some state-of-the-art works on the RAP dataset[!2. All methods are classified into five

categories.
Metrics
Method Category
mA Accuracy Precision Recall Fy
ACNL] 69.66 62.61 80.12 72.26 75.98
Global-based: Multi-attribute joint prediction
DeepMAR/[31] 73.79 62.02 74.92 76.21 75.56
PGDME 74.31 64.57 78.86 75.90 77.35
Part-based: Pose estimation as the auxiliary supervision
DTM+AWKI32] 82.04 67.42 75.87 84.16 79.80
33
JRLE 74.74 - 75.08 74.96 74.62 Relation-based: Joint recurrent learning of attribute
GRILB4 81.20 _ 7770 80.90 79.29 context and correlation by LSTM module
HP-Netl13] 76.12 65.39 77.33 78.79 78.05 Attention-based: Multi-scale attention mechanism
Da-HARI 84.28 59.84 66.50 84.13 74.28 Attention mask prediction
VeSPAI9 77.70 67.35 79.51 79.67 79.59 Attribute-based: Visual prediction
ALMIBS] 81.87 68.17 74.71 86.48 80.16 Attribute related-region localization
Our VALA 78.33 67.48 79.81 20.84 80.32 View predictor + Attention mechanism + Attribute

related-region
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tention conmsistency (VAC)BY, ALMBS and strong
baselinel®l]. Results of these methods are collected from
the re-implementation of [51], and our experiments adopt
the same setting as these works for a fair comparison. As
shown in Table 2, our VALA obtains the best result in
the mA metric, the recall metric, and the Fj score, which
illustrates the comparability and potential of our method
in recent pedestrian attribute recognition.

Table 2 Comparison of our method and some recent works on
the RAPv2 datasetl5l. Results * of DIAAISl, VACE9, and ALMI35]
are collected from the re-implementation of [51].

Machine Intelligence Research 19(2), April 2022

Table 3 Transfer learning results of our view predictor on the
PA-100K dataset[13]

Metrics
Method
mA  Accuracy  Precision Recall Fy

DeepMARB! 72.70 70.39 82.24 80.42 81.32
HP-Netl[13] 74.21 72.19 82.97 82.09 82.53
VeSPALI8 76.32 73.00 84.99 81.49 83.20
PGDM 74.95 73.08 84.36 82.24 83.29
LG-Net 76.96 75.55 86.99 83.17 85.04
ALMB 80.68 77.08 84.21 88.84 86.46
DTM+AWKI?2] 81.63 77.57 84.27 89.02 86.58
MT-CASPB2 77.20 78.09 88.46 84.86 86.62
Our VALA 80.08 78.14 87.60 86.73 87.16

Metrics
Method
mA  Accuracy Precision Recall Fi

DIAAI6]* 77.87 67.19 79.03 79.79 79.04
VACB* 76.74 67.52 80.42 78.78 79.24
ALMBs* 78.21 66.98 78.25 80.43 78.93
Strong Baselinel’!!  77.34 66.12 81.99 75.62 78.21
Our VALA 78.30 67.00 79.10 81.03 80.05

4.6 Transfer learning analysis

Owing to the unique viewpoint annotations of the
RAP[I2] and RAPv2P datasets, we use the viewpoint la-
bels as the ground truth to train our view predictor. To
verify the applicability and transferable capability of view
prediction and the benefit of view-attribute supervision,
we fix the parameters of the view prediction branch
trained on the RAP dataset!!2], and retrain the attribute
recognition part to implement transfer learning on the
PA-100K dataset!!3l. Moreover, we complement LG-Netll
and MT-CAS[B2 as comparative methods.

As shown in Table 3, the proposed method achieves
better performances on the PA-100K dataset compared
with existing state-of-the-art methods. Our proposed
method outperforms all previous methods in terms of ac-
curacy and F) score, improving 0.05% and 0.54% upon
the second-best method MT-CAS[2, respectively. Mean-
while, our VALA also wins the second-best result with an
87.60% precision criterion. And VALA has a comparable
mA matric, which is not much worse than the method[32: 35]
recently presented. These better performances benefit
from our handling of the influence of viewpoint change on
the attribute recognition process by utilizing view inform-
ation to focus on specific attributes and fixing the corres-
ponding view for a specific attribute. Notably, VALA
manifests a more competitive performance compared with
the single visual model by a significant margin. This
consequence attributes to the benefit of our regional at-
tention, which embeds inter-channel dependencies and
preserves spatial attribute information to localize attrib-
ute-corresponding regions from different views. The im-
provement of transfer learning results on the PA-100K

@ Springer

dataset illustrates the strong transferable capability of
the view prediction branch to deal with the view change
problem and the stable ability of composed view-attrib-
utes to contact shallow with deep features to guide the
process of deep feature extraction.

4.7 Complexity analysis

Inception-v4 is suitable to become the main feature
extraction network, since Inception-v4 is sufficiently deep
and possesses different convolutional kernels to capture
both shallow global features and deep local features.
However, the enormous parameters produced by the In-
ception-v4 structure and other branches are inevitable.
When sophisticated parameters are deployed on devices,
the speed of the training process may drop, and the time
of the inference process may increase.

Therefore, it is necessary to explore the influence of
the modified Inception-v4 baseline complexity on the ap-
plicability of the overall model. Keeping other settings
unchanged, we only replace the Inception-v4 network
with a series of other inception backbones*2745 and Res-
Net50[1l. We place our view prediction branch and re-
gional attention branch at suitable positions in other
backbones as much as possible to reduce the impact of
different network positions on the effect of model
branches. The parameters and Fi scores in Table 4 are
produced by the whole models.

As depicted in Table 4, we find that the proposed
VALA module has a certain number of parameters that
are mainly caused by the Inception-v4 baseline. Neverthe-
less, the modification of removing the average pooling,
dropout, and the final fully-connected layer decreases the
number of parameters to some extent without perform-
ance reduction. Moreover, the view prediction branch and
the regional attention branch only account for few para-
meters and increase slightly the training time, and the
generated F score is 80.32%. When retraining our VALA
on ResNet50!!l], the number of parameters declines, but
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Table 4 Complexity results of the modified Inception-v4
backbone on the RAP dataset[12]

Table5 Ablation study results on the RAPv2 dataset[]. Here,
RA is our regional attention.

Method Backbone Parameters  F1
ResNet50 29.4M 78.51
GoogleNet 16.3M 76.62
BN-Inception 17.2M 77.35

Our VALA

Inception-v3 50.7M 78.93
Modified Inception-v4 46.1M 80.32
Modified Inception-ResNet-v2 46.1M 80.48

Metrics
Method
mA  Accuracy Precision Recall P
Baseline 74.32  62.97 77.02 76.58 76.80
Baseline+VF 75.92  64.33 77.10 77.92 77.51

Baseline+VF+3VP 75.98  64.52 77.21  78.03 77.62
Baseline+VF+4VP 76.20 64.74 77.21 7834 TT.77
Baseline+RA 76.32  65.30 77.93 78.50 78.21

the performance has a serious drop to 78.51% in the F}
metric, which is 1.81% lower than our model with the In-
ception-v4 produces. Similarly, the F) scores are as low as
76.62% and 77.35% when the backbone of our model is
replaced with GoogleNet[*3] and BN-Inception*4, respect-
ively. The main reason for this phenomenon is that the
above three backbones are not sufficiently deep for view
features to contact deep feature information and for the
regional attention to conduct deep localization. However,
Inception-v345] has a large number of parameters that are
even more than Inception-v4 has and is inclined to be
deeper. However, the performance that the model with
Inception-v3 produces is worse than that of our method
because Inception-v4 has a more uniform simplified archi-
tecture and more different sizes of convolutional kernels
for extracting different features.

Residual connections are apt to aggregate shallow net-
works and make the information flow between network
layers, which benefits for conducting view prediction and
helping view-attributes contact shallow with deep fea-
tures. We replace the Inception-v4 backbone with Incep-
tion-ResNet-v2[42 to reap the benefit of residual connec-
tions and retain the advantage of the inception network
concurrently. We retrain the model on the Inception-Res-
Net-v2 baseline to get a slightly higher F} score and
quicker training speed. Although the model with Incep-
tion-ResNet-v2 gains better performance and computa-
tional efficiency, our method with the modified Inception-
v4 network is still comparable for having the same quant-
ity in parameters and a closely similar effect without re-
sidual connections.

4.8 Ablation study

The ablative experiment is set to justify the contribu-
tion of each block in our method, and every component is
appended gradually. As shown in Table 5, starting with
the single Inception-v4 baseline, we construct several
variants to compare our method.

The capability of prior view information. The
view feature supervision (Baseline+VF) is added first
based on the baseline, and an impressive promotion is
found, which demonstrates the capability of the view fea-
tures to construct the relevance of shallow and deep lay-

Baseline+VF+ .
AVP+SEY] 76.31  65.34 78.01  78.51 78.26
Baseline+VF+4VP+

CBAM 76.39  65.38 7812 78.52 78.32

Baseline+VF+

AVP+RAH 75.90  64.79 77.72 7840 78.06

Baseline+VF+

AVP+RAW 76.88  65.83 78.19 79.34 78.76

Baseline4+VFB+

AVPB+RA 76.98 65.90 78.22 78.91 78.56

Baseline+VF+

4AVP+RAB 76.51  65.67 77.83 78.80 78.31

VALA (Ours) 77.38 66.23 78.80 79.80 79.30

ers and supervise the network to focus on specific attrib-
utes. Moreover, the operation that makes specific attrib-
utes associated with their related views helps the view-at-
tributes be identified easier. Then, three view weights
(namely, abandon the right view) are added to the final
attribute recognition units (Baseline+VF+3VP). An ob-
vious improvement is gained, which illustrates the feasib-
ility of considering view information as prior knowledge
to guide the final attribute recognition. Then, the aban-
doned right view is set back for the purpose of supplying
full views (Baseline+VF+4VP, namely, the same view
setting as our VALA). Since an input image is not
flipped, attributes from the right view can be regarded as
the mirror flipping for attributes from the left view to
augment data. The four views module still has compar-
able performance considering the view completeness,
though relatively few improvements are yielded by the
additional right view.

The capability of the regional attention. On the
basis of acquiring visual clues as the auxiliary supervision,
we create regional attention to further assist attribute re-
cognition by acquiring attribute location information and
localizing precise attribute-related regions. To evaluate
the capability of our regional attention to obtain attrib-
ute-related areas for view-attributes, we replace the re-
gional attention with SE-Netl (Baseline+VF+4VP+SE)
and CBAMU (Baseline+VF+4VP+CBAM) as comparis-
ons. When SE-Net and CBAM capture view feature maps
from the stacking Inception-C blocks, their effects of loc-
alizing regions are reasonably equivalent, but far from the
effect performed by our regional attention. This fact veri-
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fies that embedding inter-channel dependencies and pre-
serving spatial information in one process truly have an
important impact on the aspect of attribute-correspond-
ing region localization, which is crucial for a more precise
attribute recognition process. Furthermore, the contribu-
tion of internal branches of the regional attention is also
explored, and we construct two variants for comparison.
Compared to our VALA, the Fj score drops to 78.06%,
with a 1.24% margin when the width branch is removed
(Baseline+ VF+4VP+RAH), while the F} score of that
without the height branch (Baseline+VF+4VP+RAW) is
lower than our method with a 0.54% margin. The reason
for this phenomenon is that capturing the spatial inform-
ation of a specific view attribute plays a more significant
role in attribute-related region localization.

The contribution of two branches in the whole
method. In this experiment, we evaluate the contribu-
tion of the two branches, and each branch is appended
gradually. Compared with the model without viewpoint
component (Baseline+ RA), the result of our VALA is
explicitly improved in all evaluation criteria with 1.06%
in mA, 0.93% in accuracy, 0.87% in precision, 1.30% in
recall, and 1.09% in F} score. The greater result demon-
strates the feasibility of utilizing view information to
handle the viewpoint change problem in the attribute re-

BlackHair Jacket

Original

Baseline

View

Regional
attention

LongTrousers
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cognition process. When regional attention is removed
(Baseline+VF+4VP), a more severe drop has happened
even though the other setting is kept unchanged, further
explaining that visual attribute localization is significant
for recognizing a specific attribute. Regarding the above
two variants with either view information or regional at-
tention, we find that the performance improvement pro-
duced by regional attention is higher than that generated
by the view prediction. The remarkable evaluation indic-
ates that it is still necessary to accurately localize the
view-attribute after capturing it for a better recognition
effect. Visualization of some attribute attentive areas in
Fig. 7 shows the contribution of two modules specifically.
The layers to export features for two branches.
In our original implementation, we get shallow feature
maps for the view prediction from the output of stacking
Inception-A blocks, while deep feature maps are expor-
ted from stacking Inception-C blocks. According to the
empirical thought, the Inception-A and Inception-C lay-
ers in the entire inception network are thought to be
either shallow or deep enough for view extraction and at-
tention localization. However, it is still necessary to ex-
plore the feature maps from which layer can meet the
more satisfying demand. Therefore, we rearrange the pos-
ition of the view prediction branch to the end of the In-

Calling Attach-Other BodyFat

Fig. 7 Attention heat maps generated by the single baseline, view supervision, and regional attention. The example images are from
the RAPv2 datasetls], and the attributes to be located are BlackHair, Jacket, LongTrousers, Calling, Attach-Other, BodyFat in each

column.
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ception-B blocks and keep the attention branch position
unchanged (Baseline+VFB+4PB+RA). Compared with
our original setting, a dropping result indicates that fea-
ture maps in Inception-A are more holistic and appropri-
ate for extracting global view information. Referring to
the first experimental result, the position of the view pre-
diction is retained, but the regional attention is assigned
to the end of the Inception-B blocks (Baseline+VF+
4VP+RAB). The performance of our VALA still sur-
passes that of the variant, which confirms that the encod-
ing channel and spatial attribute information of feature
maps in relatively deeper layers can reach a better attrib-
ute region localization.

To sum up, ablation studies show that it is important
to consider the view information as an effective prior
knowledge, which is conducive to improving of the pedes-
trian attribute recognition model performance. Mean-
while, the capability of the regional attention to localize
precise attribute-related regions increases the fine-grained
and overall performance of the attribute recognition.

4.9 Pedestrian attribute recognition in
surveillance

In order to verify the actual recognition effect of our
VALA model, we select pedestrian images from real video
surveillance scenarios to test our model. Our model is
pretrained on the RAP[2 dataset, and some of the rep-
resentative results are shown in Fig.8. The results illus-
trate that even though no positioning information is in-
cluded in the pedestrian images, the VALA model is also
able to accomplish the identification of the same attrib-
ute from different views. For example, the view of the
glasses attribute is side-view in Fig.8(a) and front-view in
Fig.8(c), but both are successfully identified. Moreover,
some local attributes such as BlackHair have also been re-
cognized, which displays the accuracy for fine-grained
classification by our model.

The VALA model adopts a multi-task learning frame-
work as a whole, improving the identification perform-
ance of all attributes. It forecasts the pedestrian perspect-
ive through the view prediction, and then practices specif-
ic view-attribute recognition units. Compared with the
localization of body parts, the view prediction based on
global view features is easier to train, and the calculation
cost is lower. Moreover, attribute -classification units
leverage the channel and spatial attention mechanism to
focus on the most representative view-attribute positions,
so that the attribute recognition performance is effect-
ively improved.

5 Conclusions

We propose an attention-based pedestrian attribute
recognition model, which can predict view information to
compose view-attributes with the view predictor and loc-

Predicted Ground truth
Agel7-30 Agel7-30
BodyThin BodyNormal
BlackHair BlackHair
Glasses Glasses
Shirt ShortSleeves
Shorts
SportShoes SportShoes
Attach-Other Attach-Other
" Female Female
Agel7-30 Agel7-30
BodyThin BodyThin
LongHair LongHair
BlackHair BlackHair
Tshirt Tshirt
Jeans LongTrousers
SportShoes CasualShoes
Attach- Attach-

SingleShoulderBag SingleShoulderBag

1 Attach-umbrella

Agel7-30 Age31-45
BodyThin BodyThin
BlackHair BlackHair
Glasses Glasses
Tshirt Tshirt
LongTrousers TightTrousers
SportShoes Ci 1Shoe:

Attach-Umbrella

Fig. 8 Attribute recognition results of pedestrian images in
real video surveillance scenarios. Correct predictions are marked
in bold font and brown, missed attributes are in blue, incorrect
predictions are in red underline format, and ground truths are in
black.

alize specific regions of view-attributes by the attention
mechanism. The view prediction branch is trained using
the unique view tags of the RAP and RAPv2 datasets
and the shallow convolutional features of the inception
network. To construct view-specific attribute recognition
units, we introduce a channel and spatial attention mech-
anism to enhance feature discrimination and localize spe-
cific view-attributes to ameliorate the recognition per-
formance. In the comparative experiment on the RAP
and RAPv2 datasets, multiple indicators of the VALA
model reach comparable results, which confirms the over-
all better performance of our model. Furthermore, on the
PA-100K dataset, the applicability and stability of the
view prediction and the view-attribute supervision are
verified by evaluating transfer learning. In future re-
search, we will pay more attention to the deployment
possibilities of the pedestrian attribute recognition net-
work model based on the framework of this article on mo-
bile devices to achieve greater practical application
valuel53],
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