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Abstract—Knowledge Graph Exploration is an interactive 
knowledge discovery process over the knowledge graph. Entity 
recommendation deals with the information overflow issue when 
exploring the large-scale unfamiliar knowledge graphs. The 
traditional personalized entity recommendation methods for 
knowledge graph explorations rarely consider the adaptive topic-
oriented long-term positive- and negative intent modelling. In this 
paper, we propose a topic-oriented entity recommendation method 
during the knowledge graph exploration. We build a Negative 
Feedback Memory Network model for obtaining the user’s long-
term negative intents. We propose a Transformer-based sequence 
encoder for the positive intents. We dynamically obtain the 
adaptive intents by aggregating the positive- and negative intents 
by the proposed Intent Attention mechanism. Experiments show 
that our method has advantages in TopK entity recommendations. 

Keywords- entity recommendation, knowledge graph, negative 
feedback, memory network, knowledge graph exploration.  

I. INTRODUCTION 
Nowadays, Knowledge Graphs (KGs) are widely used for 

introducing features of knowledge facts to enhance intelligent 
analysis and machine learning methods in many fields, e.g., data 
mining, recommender systems, fault reasoning, and reliability 
engineering. Knowledge Graph Exploration (KGE) [1] [2] is a 
knowledge discovery process over a KG. Taking Question 
Answering (QA) systems as an example, a conversation can be 
treated as a walk over a KG. The QA pairs are related to the 
corresponding entities of the KG [3] in this scenario. Another 
example is visual analytics, on which the user visually explores 
insights step-by-step over a KG with the help of algorithms [4].  

When exploring a large-scale unfamiliar KG, it is difficult 
for the user to effectively find the interesting entities. This is the 
information overflow problem of KGE. To address this issue, 
many studies worked on Personalized Entity Recommendation 
(PER) that can suggest contextually relevant entities of a KG for 
the given entities. PER for KGE is usually modelled as a 
prediction of the most valuable KG entities according to the 
given entities. The key of PER is to model the user's dynamic 
intents or desires along with the process of KGE [5].  

Previous studies mainly focus on the models based on the 
positive user behaviors [6], also known as the positive feedbacks, 
which explicitly or implicitly show the interests. The negative 
feedbacks, particularly the long-term negative feedbacks, were 
rarely considered for modelling the user’s intents. Besides, the 
previous methods rarely take the centrality of the session entities 
into account. During the process of KGE, the user usually 
focuses on a serial of centric topics. Each topic contains a few 
entities that form a tree-like subgraph of a KG. The topic 
represents the aggregation of strongly related entities, which is 
beneficial for PER. In addition, the previous work learns a fixed 
embedding of the input data to rank the candidate entities 
without considering the semantic relations between each input 
entity and candidate entities. These relations will improve the 
representation of the exploration intents in KGE. 

In this paper, for addressing the critical issues, we propose a 
PER method for KGE with the following contributions: (1) we 
model the long-term negative feedbacks with memory networks 
for representing the negative intents; (2) we propose the topic-
oriented graph structures for better modelling the positive- and 
negative intents; (3) we introduce intent attention mechanism for 
obtaining the adaptive positive- and negative intents; (4) we 
perform experiments to evaluate the benefits of our method. 

The rest of the paper is organized as follows. Section 2 
depicts the related work. Section 3 defines the problems and 
Section 4 describes the proposed method. Section 5 and Section 
6 depict the experiments for evaluating our method. Finally, 
conclusion and future work are given in Section 7. 

II. RELATED WORK 

A. Knowledge Graph Exploration 
KGE is the gradual discovery and content understanding of 

a large-scale unfamiliar KG. Lissandrini et al. [1] [2] defined 
KGE as the computer-assisted interactive process of progressive 
analysis of a KG. KGE is a critical study for human-oriented 
tasks and machine-oriented tasks. For the human-oriented tasks, 
the basic goal of KGE study is to help the user to quickly 
understand the unfamiliar KG for finding valuable insights. For 



the machine-oriented tasks, the KGE study can enhance the 
prediction algorithms in the fields of QA systems, personalized 
search, recommendation, and KG-based data mining. An 
exploratory behavior of KGE is a user action for investigating a 
desired entity. Shi et al. [7] proposed a relevant-path-set-based 
method to search targets by estimating the path cost of 
exploratory search. Kuric et al. [8] compared different methods 
of KGE for estimating the usability of the SparQL query builder. 
Medlar and Głowacka elaborated [9] that the exploratory 
focuses on the knowledge discovery and planning. It differs from 
the traditional lookup search. Zheng et al. [10] proposed a 
random walk-based diversity-aware entity exploration method 
that represents user’s conceptual exploration with concept graph 
for entity exploration over a corresponding KG. Tawil et al. [11] 
proposed a method that facilitates users’ explorations using data 
graphs by increasing the users’ domain knowledge. 

B. Recommender System 
Recommender System (RS) [12] plays an important role for 
personalized services in many fields [5] [13] [14] [15] [16] [17] 
[18] [19] [20].Session-based Recommender System (SBRS) [21] 
predicts items that the user may be interested in according to a 
session of user-item interactions. SBRS learns the session 
features by modelling the sequential dependencies. A closely 
relevant study to SBRS is Sequential Recommender System [22]. 
SBRS mainly works on the next-item recommendations. It is 
valuable for the anonymous session data. GRU4Rec [23] applies 
the traditional sequential model GRU to extract the sequential 
features. BERT4Rec [24] applies the sophisticated language 
model BERT to model the session data by making full use of the 
attention mechanism. SR-GNN [25] is a well-known method 
that uses Graph Neural Network to model the session graph by 
taking the relations among multiple sessions into account. 

C. Personalized Entity Recommendation 
PER aims at the entity suggestions over a KG or a semantic 

web based on the user behaviors. Entity2rec [26] models the 
user-item relations for recommendations by using property-
specific KG embeddings. Ni et al. [27] proposed a layered-graph 
based embedding approach for the Wikipedia-relevant PER. 
Huang et al. [28] proposed a multi-task learning method that 
uses deep neural networks to jointly learn both the PER task and 
document ranking task for optimizing the web search. Besides, 
a similar study is entity set expansion that predicts the relevant 
knowledge entities by analyzing semantic relations between the 
given seed entities and the candidate entities. Zhang et al. [29] 
proposed an entity set expansion method that can generate 
candidate class names for predicting the related entities applying 
a pre-trained language model. Set-CoExpan [30] generates 
auxiliary sets using the corpus-based model for capturing better 
semantic relations between entities. BootstrapNet [31] uses a 
deep learning method for entity prediction, which represents the 
bootstrapping process by an encoder-decoder model. Yu et al. 
[32] proposed a course concept expansion framework for 
MOOC by interactive games and external knowledge. 

D. Memory Network 
Memory network [33] is a framework for managing the long-

term historical data using external memory in order to extract 
long-distance dependent features for sequential-based tasks. 
Key-Value Memory Networks [34] use the key-value structure 

for efficiently storing the large-scale textual data. The 
knowledge-enhanced sequential recommendation [35] combines 
RNN and key-value memory networks for improving sequential 
recommendations. KEPS [36] is a KG-enhanced personalized 
search method that models long-term entity preference using 
key-value memory networks. RUM [37] integrates collaborative 
filtering with memory networks for sequential recommendations. 
Wu et al. [38] proposed the Feedback Memory Network (FMN) 
for modelling user’s feedback behaviors for query suggestion 
during the search process. Zhou et al. [39] introduced a memory 
networks-based method to model the complex re-finding 
behaviors for personalized search. 

E. Attention Mechanism 
Attention mechanism can effectively extract the important 

features by assign weights to features based on their importance 
to the targets. The classic Attention mechanism [40] is used in 
the encoder-decoder framework for machine translation. Self-
Attention mechanism is a well-known variant applied in the 
sophisticated models Transformer [41] and BERT [42] for 
modelling the sequence data. The Attention mechanism is also 
widely applied in recommender systems [43] [44] [45]. 

III. PROBLEM STATEMENT 

A. Preliminaries 
A Knowledge Graph is a heterogeneous graph structure with 

semantic properties, which is denoted by 𝐾𝐾𝐾𝐾 = (𝐸𝐸,𝑅𝑅), where E 
is the entity set and 𝑅𝑅:𝐸𝐸 × 𝐸𝐸 represents the relation set. The KG 
is modelled with the triple < 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,𝑃𝑃𝑃𝑃𝑆𝑆𝑃𝑃𝑃𝑃𝑆𝑆𝑃𝑃𝑆𝑆𝑆𝑆,𝑂𝑂𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 >, 
where 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,𝑂𝑂𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ∈ 𝐸𝐸 and 𝑃𝑃𝑃𝑃𝑆𝑆𝑃𝑃𝑃𝑃𝑆𝑆𝑃𝑃𝑆𝑆𝑆𝑆 ∈ 𝑅𝑅.  

A Knowledge Graph Exploration is defined as a path walk 
process whose result is a directed graph denoted as a directed 
graph by 𝐾𝐾𝐾𝐾𝐸𝐸 = (𝐸𝐸𝐾𝐾𝐾𝐾𝐾𝐾 ,𝑅𝑅𝐾𝐾𝐾𝐾𝐾𝐾 ,𝑂𝑂𝐾𝐾𝐾𝐾𝐾𝐾) , where the 𝐸𝐸𝐾𝐾𝐾𝐾𝐾𝐾 ⊆ 𝐸𝐸 
represents entity set, 𝑅𝑅𝐾𝐾𝐾𝐾𝐾𝐾  represents relation set, and O𝐾𝐾𝐾𝐾𝐾𝐾  
indicates an order set of relations. Let ≺ be an exploration order 
of relations, the order set is denoted by 𝑂𝑂𝐾𝐾𝐾𝐾𝐾𝐾 = (𝑅𝑅𝐾𝐾𝐾𝐾𝐾𝐾 ,≺). The 
relation is denoted by 𝑃𝑃𝑖𝑖,𝑗𝑗 = �𝑆𝑆𝑖𝑖, 𝑆𝑆𝑗𝑗� ∈ 𝑅𝑅𝐾𝐾𝐾𝐾𝐾𝐾 , where entities 
𝑆𝑆𝑖𝑖 , 𝑆𝑆𝑗𝑗 ∈ 𝐸𝐸𝐾𝐾𝐾𝐾𝐾𝐾  with the direction from 𝑆𝑆𝑖𝑖 to 𝑆𝑆𝑗𝑗 . For the KGE, a 
session is defined as a sequence of KG entities. 

In this paper, topic is defined as a set of KG entities that 
directly connect with the same entity among them. The topic 
represents semantic meaning of several exploratory behaviors. 
A topic consists of a central entity (i.e., topic core) and its direct 
neighbor entities on a KG (i.e., topic context). Topic-oriented 
Knowledge Graph Exploration (ToKGE) is a special KGE that 
can be divided into a sequence of topics. During the process of 
ToKGE, it explores the entities of a topic over the KG before 
moving to the next topic core entity. Fig. 1 shows an example. 
The ToKGE process is a session containing 2 topics. The user 
explores first The Oscars-centric topic, and then the Forrest 
Gump-centric topic. The first topic contains a topic core entity 
The Oscars and two topic context entities Award Category and 
Forrest Gump. The exploration of the both entities is treated as 
the exploration inside The Oscars -centric topic. After that, the 
users explores the entities Tom Hanks and Robert Zemeckis 
around the new topic core entity Forrest Gump, i.e., the 
exploration topic is changed. ToKGE is denoted by 𝑇𝑇𝑇𝑇𝐾𝐾𝐾𝐾𝐸𝐸 =
(𝐾𝐾𝐾𝐾𝐸𝐸 ,𝑇𝑇), where 𝑇𝑇 = (𝑆𝑆1, 𝑆𝑆2, … , 𝑆𝑆𝑚𝑚) indicates a topic set. The 



structure of a topic 𝑆𝑆 is a subgraph of KGE, denoted by 𝑆𝑆𝑖𝑖 =
�𝐸𝐸𝑡𝑡𝑖𝑖

𝐾𝐾𝐾𝐾𝐾𝐾 ,𝑅𝑅𝑡𝑡𝑖𝑖
𝐾𝐾𝐾𝐾𝐾𝐾� ∈ 𝑇𝑇, where 𝐸𝐸𝑡𝑡𝑖𝑖

𝐾𝐾𝐾𝐾𝐾𝐾 ⊆ 𝐸𝐸𝐾𝐾𝐾𝐾𝐾𝐾 and 𝑅𝑅𝑡𝑡𝑖𝑖
𝐾𝐾𝐾𝐾𝐾𝐾 ⊆ 𝑅𝑅𝐾𝐾𝐾𝐾𝐾𝐾 . 

 
Fig. 1 Process of ToKGE. (1) the given entity; (2) and (3) show the exploration 
of the neighbour entities in the range of The Oscars-centric topic; (4) shows the 
exploration in the range of Forrest Gump-centric topic. 

B. Task definition 
When the user explores over a KG, the KG is treated as the 

context KG of the explored entity session. For a new topic core 
entity, the task of PER of ToKGE is to find 𝑘𝑘  topic context 
entities that are most likely interested in by the user and do not 
appear in the session. For quantifying the user’s interest, we need 
to define an interest function 𝑓𝑓(𝑠𝑠𝑆𝑆𝑠𝑠𝑠𝑠𝑃𝑃𝑇𝑇𝑠𝑠, 𝑆𝑆𝑇𝑇𝑡𝑡𝑃𝑃𝑆𝑆_𝑆𝑆𝑇𝑇𝑃𝑃𝑆𝑆,𝐾𝐾𝐾𝐾)  to 
estimate the interest for each candidate entity of KG. With the 
interest estimation, the candidate entities will be ranked for 
obtaining the 𝑘𝑘 most valuable entities. The process of PER is 
shown in Fig. 2. Based on a given historical session with the last 
explored entity The Oscars, PER finds three possible interested 
entities as candidates over the context KG. Next, the user 
explores the interesting entities Award Category and Forrest 
Gump. Then, the user has no more interests of current topic and 
transfers interest to the Forrest Gump-centric topic. A new PER 
will be requested for suggesting possible interested entities for 
Forrest Gump-centric topic.  

Fig. 2 Process of Personalized Entity Recommendation. (1) historical session 
data; (2) PER; (3) Entity exploration inside topic: exploring the entities Award 
Category and Forrest Gump; (4) Topic transfer; (5) PER for next topic. 

The user’s feedback of PER is essentially the response to the 
recommendation results. The feedback can be categorized into 
positive feedback and negative feedback that respectively 
represent the like and dislike, implicitly. We define the indicator 
function as Eq. (1).  

𝑓𝑓𝑃𝑃(𝑆𝑆𝑖𝑖) = � 𝑡𝑡𝑇𝑇𝑠𝑠𝑃𝑃𝑆𝑆𝑃𝑃𝑝𝑝𝑆𝑆, 𝑃𝑃𝑓𝑓 𝑆𝑆𝑖𝑖  𝑃𝑃𝑠𝑠 𝑆𝑆𝑒𝑒𝑡𝑡𝑒𝑒𝑇𝑇𝑃𝑃𝑆𝑆𝑃𝑃
𝑠𝑠𝑆𝑆𝑛𝑛𝑃𝑃𝑆𝑆𝑃𝑃𝑝𝑝𝑆𝑆, 𝑇𝑇𝑆𝑆ℎ𝑆𝑆𝑃𝑃𝑒𝑒𝑃𝑃𝑠𝑠𝑆𝑆  (1) 

where 𝑆𝑆𝑖𝑖 indicates an entity. 

A sequence of entities contained by a session are considered 
as positive feedbacks. In this paper, we define the negative 
feedbacks as a part of the recommended entities that the user is 
not interested in. For example, in Fig. 2 (3), Award Category 
and Forrest Gump are considered as a positive feedback entities 
and AMPAS is treated as a negative feedback entity. 

IV. METHOD 

A. Concept 
In this paper, there are three types of critical features: 

positive feedbacks with the exploration order, knowledge 
features, and negative feedbacks. We build different types of 
structures based on the session to respectively learn the features 
as shown in Fig. 3: session sequence is a sequence-based 
structure according to the orders of the explored entities; session 
graph is a graph-based structure for modelling the negative 
feedbacks. The session graph can be divided in to a Chain-
structured Subgraph (CSG) representing transfers of the topics 
and one or more Tree-structured Subgraphs (TSGs) respectively 
representing the topic contents. CSG represents the topic transfer 
and TSG represents the topic content. In the example, the session 
contains three topics: software company-centric, Apple-centric, 
and iPhone-centric. A topic core can be a topic context of the last 
topic when the explored entities are continuous. 

 
Fig. 3 Structure construction of session data. 

We propose metrics for evaluating the CSG and TSG.  

 Size of a CSG (CSG Size): for a session with 𝑠𝑠 topics 

𝑠𝑠𝑃𝑃𝑠𝑠𝑆𝑆𝐶𝐶𝐶𝐶𝐾𝐾 = � 1𝐴𝐴(𝑆𝑆𝑠𝑠𝑆𝑆𝑃𝑃𝑆𝑆𝑒𝑒𝑖𝑖)
𝑛𝑛

𝑖𝑖=1
 (2) 

with an indicator function : 

1𝐴𝐴(𝑆𝑆𝑠𝑠𝑆𝑆𝑃𝑃𝑆𝑆𝑒𝑒) = �1, 𝑃𝑃𝑓𝑓 𝑆𝑆𝑠𝑠𝑆𝑆𝑃𝑃𝑆𝑆𝑒𝑒 𝑃𝑃𝑠𝑠 𝑆𝑆𝑇𝑇𝑡𝑡𝑃𝑃𝑆𝑆 𝑆𝑆𝑇𝑇𝑃𝑃𝑆𝑆
0, 𝑃𝑃𝑓𝑓 𝑆𝑆𝑠𝑠𝑆𝑆𝑃𝑃𝑆𝑆𝑒𝑒 𝑃𝑃𝑠𝑠 𝑆𝑆𝑇𝑇𝑡𝑡𝑃𝑃𝑆𝑆 𝑆𝑆𝑇𝑇𝑠𝑠𝑆𝑆𝑆𝑆𝑒𝑒𝑆𝑆 (3) 

 Mean Size of CSGs: for 𝑚𝑚 sessions in total  

𝑚𝑚𝑆𝑆𝑃𝑃𝑠𝑠 𝑠𝑠𝑃𝑃𝑠𝑠𝑆𝑆𝐶𝐶𝐶𝐶𝐾𝐾𝐶𝐶 =
1
𝑚𝑚
� 𝑠𝑠𝑃𝑃𝑠𝑠𝑆𝑆𝐶𝐶𝐶𝐶𝐾𝐾𝑖𝑖

𝑚𝑚

𝑖𝑖=1
 (4) 

 Size of a TSG (TSG size): for a topic with l entities 

𝑠𝑠𝑃𝑃𝑠𝑠𝑆𝑆𝑇𝑇𝐶𝐶𝐾𝐾 = 𝑒𝑒 − 1 (5) 
 Average Size of TSGs: for a session with 𝑠𝑠 topics 

𝑃𝑃𝑝𝑝𝑛𝑛. 𝑠𝑠𝑃𝑃𝑠𝑠𝑆𝑆𝑇𝑇𝐶𝐶𝐾𝐾𝐶𝐶 =
1
𝑠𝑠
� 𝑠𝑠𝑃𝑃𝑠𝑠𝑆𝑆𝑇𝑇𝐶𝐶𝐾𝐾𝑖𝑖

𝑛𝑛

𝑖𝑖=1
 (6) 

 Mean Average Size of TSGs: for 𝑚𝑚 sessions in total 

𝑚𝑚𝑆𝑆𝑃𝑃𝑠𝑠 𝑃𝑃𝑝𝑝𝑛𝑛. 𝑠𝑠𝑃𝑃𝑠𝑠𝑆𝑆𝑇𝑇𝐶𝐶𝐾𝐾𝐶𝐶 =
1
𝑚𝑚
� 𝑃𝑃𝑝𝑝𝑛𝑛. 𝑠𝑠𝑃𝑃𝑠𝑠𝑆𝑆𝑇𝑇𝐶𝐶𝐾𝐾𝑖𝑖

𝑚𝑚

𝑖𝑖=1
 (7) 

Algorithm 1 depicts the construction process of the session 
graph according to a session and a context KG. For a session 
entity 𝑆𝑆𝑖𝑖, the algorithm updates the entity set and the relation set 
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of the session graph (line 1-4). The topic transfer will happen 
under either of two conditions. One is that 𝑆𝑆𝑖𝑖𝐶𝐶𝐾𝐾  does not have 
direct connection with the current topic core entity over KG (line 
5-6); another is that 𝑆𝑆𝑖𝑖𝐶𝐶𝐾𝐾 has a direct connection with the session 
entity 𝑆𝑆𝑖𝑖+1𝐶𝐶𝐾𝐾  over KG (7-8). The current topic core entity will be 
updated with 𝑆𝑆𝑖𝑖𝐶𝐶𝐾𝐾  for the topic transfer. Finally, the algorithm 
outputs a session graph. 

Algorithm 1: Session Graph Construction 
Input:𝑆𝑆𝐸𝐸 = [𝑆𝑆1𝐶𝐶𝐾𝐾 , 𝑆𝑆2𝐶𝐶𝐾𝐾 , … , 𝑆𝑆𝑛𝑛𝐶𝐶𝐾𝐾],𝐾𝐾𝐾𝐾 = (𝐸𝐸𝐾𝐾𝐾𝐾 ,𝑅𝑅𝐾𝐾𝐾𝐾) with 
𝑃𝑃𝑖𝑖,𝑗𝑗 = �𝑆𝑆𝑖𝑖𝐶𝐶𝐾𝐾 , 𝑆𝑆𝑗𝑗𝐶𝐶𝐾𝐾� ∈ 𝑅𝑅𝐾𝐾𝐾𝐾  and 𝑆𝑆𝑖𝑖𝐶𝐶𝐾𝐾 , 𝑆𝑆𝑗𝑗𝐶𝐶𝐾𝐾 ∈ 𝐸𝐸𝐾𝐾𝐾𝐾  
Output: directed graph 𝑆𝑆𝐾𝐾 = (𝐸𝐸𝐶𝐶𝐾𝐾 ,𝑅𝑅𝐶𝐶𝐾𝐾) 
1:   Initialize 𝐸𝐸𝐶𝐶𝐾𝐾 ← ∅, 𝑅𝑅𝐶𝐶𝐾𝐾 ← ∅ 
2:   for 𝑃𝑃 = 1 to n do 
3:      𝐸𝐸𝐶𝐶𝐾𝐾 ← 𝐸𝐸𝐶𝐶𝐾𝐾 ∪ {𝑆𝑆𝑖𝑖𝐶𝐶𝐾𝐾} 
4:      𝑅𝑅𝐶𝐶𝐾𝐾 ← 𝑅𝑅𝐶𝐶𝐾𝐾 ∪ {(𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 , 𝑆𝑆𝑖𝑖𝐶𝐶𝐾𝐾)} 
5:      if not exist 𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑖𝑖 ∈ 𝑅𝑅𝐾𝐾𝐾𝐾   then 
6:         𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ← 𝑆𝑆𝑖𝑖𝐶𝐶𝐾𝐾  
7:      else if exist 𝑃𝑃𝑖𝑖,𝑖𝑖+1 ∈ 𝑅𝑅𝐾𝐾𝐾𝐾 then 
8:         𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ← 𝑆𝑆𝑖𝑖𝐶𝐶𝐾𝐾  
9:      end if 
10: end for 
11: return SG 

B. Architecture 
The architecture of our method consists of three important 

parts for learning the features of the user’s intent. The Session 
Interest layer models the positive intents and the Negative 
Feedback Memory Networks layer learns the negative intents. 
The Aggregation layer integrates the positive intent, the negative 
intent, and the knowledge feature for each candidate entities. We 
obtain the recommended entities by similarity computing and 
the softmax function. The architecture is shown in Fig. 6. 

C. Preparation 
In this paper, the symbol �̂�𝑆𝑖𝑖  denotes the embedding of an 

entity 𝑆𝑆𝑖𝑖, an embedding set is indicated as �̂�𝑆 = ��̂�𝑆1, �̂�𝑆2, … , �̂�𝑆|𝑐𝑐|�. 
We use the knowledge graph embedding model TransE [46] to 
encode the entities of the context KG by learning the semantic 
distance between entities. The knowledge semantic of the 
entities can be denoted Eq. (8). 

�̂�𝑆𝐾𝐾𝐾𝐾 = 𝑇𝑇𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝐸𝐸(𝐾𝐾𝐾𝐾) = ��̂�𝑆1𝐾𝐾𝐾𝐾 , �̂�𝑆2𝐾𝐾𝐾𝐾 , … , �̂�𝑆|𝐾𝐾𝐾𝐾|
𝐾𝐾𝐾𝐾 � (8) 

where �̂�𝑆𝐾𝐾𝐾𝐾 ∈ ℝ𝑑𝑑𝐾𝐾𝐾𝐾×|𝐾𝐾𝐾𝐾|  consists of entity embeddings. The 
candidate entity set is denoted as 𝐶𝐶𝐸𝐸 = {𝑆𝑆1𝐶𝐶𝐾𝐾 , 𝑆𝑆2𝐶𝐶𝐾𝐾 , … , 𝑆𝑆𝑚𝑚𝐶𝐶𝐾𝐾} that 
contains the direct neighbour entities of a specified topic core 
entity over the context KG, which do not appear in the session. 

D. Session Interest Layer 
1) Session Sequence: A session sequence contains a set of 

entities, which is denoted by 𝑆𝑆𝐸𝐸 = [𝑆𝑆1𝐶𝐶𝐾𝐾 , 𝑆𝑆2𝐶𝐶𝐾𝐾 , … , 𝑆𝑆𝑛𝑛𝐶𝐶𝐾𝐾], where 
𝑆𝑆𝑖𝑖𝐶𝐶𝐾𝐾is an entity belonging to the context KG. 

2) Input Encoder: Inspired by the architecture of BERT, we 
encode the session sequence by aggregating knowledge feature, 
the topic feature, and the position feature as shown in Fig. 4.The 
session entity �̂�𝑆𝑖𝑖𝐶𝐶𝐾𝐾 is encoded as Eq. (9) and Eq.(10): 

�̂�𝑆𝑖𝑖𝐶𝐶𝐾𝐾 = �̂�𝑆𝑖𝑖𝐾𝐾𝐾𝐾 + �̂�𝑆𝑖𝑖
𝑡𝑡𝑐𝑐𝑡𝑡 + �̂�𝑆𝑖𝑖

𝑡𝑡𝑐𝑐𝐶𝐶 (9) 

�̂�𝑆𝑖𝑖
𝑡𝑡𝑐𝑐𝑡𝑡 = 𝑊𝑊𝑡𝑡𝑐𝑐𝑡𝑡𝐻𝐻𝑖𝑖

𝑡𝑡𝑐𝑐𝑡𝑡  ,   �̂�𝑆𝑖𝑖
𝑡𝑡𝑐𝑐𝐶𝐶 = 𝑊𝑊𝑡𝑡𝑐𝑐𝐶𝐶𝐻𝐻𝑖𝑖

𝑡𝑡𝑐𝑐𝐶𝐶  (10) 

where �̂�𝑆𝑖𝑖𝐶𝐶𝐾𝐾 ∈ ℝ𝑑𝑑𝐾𝐾𝐾𝐾 ; �̂�𝑆𝑖𝑖
𝑡𝑡𝑐𝑐𝑡𝑡 ∈ ℝ𝑑𝑑𝐾𝐾𝐾𝐾  encodes the topic including 

𝑆𝑆𝑖𝑖𝐶𝐶𝐾𝐾, where the 𝐻𝐻𝑖𝑖
𝑡𝑡𝑐𝑐𝑡𝑡 ∈ ℤ𝑡𝑡 denotes the one-hot vector of topic 

and 𝑊𝑊𝑡𝑡𝑐𝑐𝑡𝑡 ∈ ℝ𝑑𝑑𝐾𝐾𝐾𝐾×𝑡𝑡 . The entities contained by the identical 
topic have the same topic embedding; �̂�𝑆𝑖𝑖

𝑡𝑡𝑐𝑐𝐶𝐶 ∈ ℝ𝑑𝑑𝐾𝐾𝐾𝐾  denotes the 
position of 𝑆𝑆𝑖𝑖𝐶𝐶𝐾𝐾 , where the 𝐻𝐻𝑖𝑖

𝑡𝑡𝑐𝑐𝐶𝐶 ∈ ℤ𝑔𝑔  denotes the one-hot 
vector of position and 𝑊𝑊𝑡𝑡𝑐𝑐𝐶𝐶 ∈ ℝ𝑑𝑑𝐾𝐾𝐾𝐾×𝑔𝑔. The session entity set 
is denoted as �̂�𝑆𝐶𝐶𝐾𝐾 = {�̂�𝑆1𝐶𝐶𝐾𝐾 , �̂�𝑆2𝐶𝐶𝐾𝐾 , . . , �̂�𝑆𝑛𝑛𝐶𝐶𝐾𝐾}. 

 
Fig. 4 Input of sequence encoder 

3) Sequence Encoder: In this paper, we build a sequence 
encoder consisting of three Transformer encoder blocks. Fig. 5 
shows the structure of the Transformer encoder block that 
contains several important units. The Multi-Head Self-
Attention aggregates multiple attention heads that respectively 
represent subspaces at different positions for enhancing the 
feature representations, which is defined as Eq. (11). 

𝑀𝑀𝑆𝑆𝑒𝑒𝑆𝑆𝑃𝑃𝐻𝐻𝑆𝑆𝑃𝑃𝑃𝑃(𝑄𝑄,𝐾𝐾,𝑉𝑉) = 𝐶𝐶𝑇𝑇𝑠𝑠𝑆𝑆𝑃𝑃𝑆𝑆(ℎ𝑆𝑆𝑃𝑃𝑃𝑃1, … , ℎ𝑆𝑆𝑃𝑃𝑃𝑃ℎ)𝑊𝑊𝑂𝑂 (11) 

where ℎ𝑆𝑆𝑃𝑃𝑃𝑃𝑖𝑖 = 𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑆𝑆𝑃𝑃𝑇𝑇𝑠𝑠�𝑄𝑄𝑊𝑊𝑖𝑖
𝑄𝑄 ,𝐾𝐾𝑊𝑊𝑖𝑖

𝐾𝐾 ,𝑉𝑉𝑊𝑊𝑖𝑖
𝑉𝑉� , 𝑊𝑊𝑖𝑖

𝑄𝑄 ∈
ℝ𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚×𝑑𝑑𝑘𝑘 , 𝑊𝑊𝑖𝑖

𝐾𝐾 ∈ ℝ𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚×𝑑𝑑𝑘𝑘 , 𝑊𝑊𝑖𝑖
𝑉𝑉 ∈ ℝ𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚×𝑑𝑑𝑣𝑣  , and 𝑊𝑊𝑂𝑂 ∈

ℝℎ𝑑𝑑𝑣𝑣×𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  are learnable parameters, h is the number of 
attention heads, 𝑃𝑃𝑚𝑚𝑐𝑐𝑑𝑑𝑐𝑐𝑚𝑚   denotes dimension of embedding. In 
this paper, we build the model with ℎ = 4. The Q, K, and V are 
projections of the session entity set. We define 𝑄𝑄 = (�̂�𝑆𝐶𝐶𝐾𝐾)T𝑊𝑊𝑄𝑄, 
�̂�𝑆𝐶𝐶𝐾𝐾 ∈ ℝ𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚×𝑛𝑛 , where 𝑊𝑊𝑄𝑄 ∈ ℝ𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚×𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ; 𝐾𝐾 =
(�̂�𝑆𝐶𝐶𝐾𝐾)T𝑊𝑊𝐾𝐾 , where 𝑊𝑊𝐾𝐾 ∈ ℝ𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚×𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚; V= (�̂�𝑆𝐶𝐶𝐾𝐾)T𝑊𝑊𝑉𝑉, where 
𝑊𝑊𝑉𝑉 ∈ ℝ𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚×𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚. The encoder uses the scaled dot product 
attention defined as in Intent Attention mechanism. The Add 
and Norm layer works on aggregating and normalizing a group 
of embeddings. The Position-wise Feed-Forward Network 
contains two-layer fully connected networks with a ReLU 
activation in between: 𝐹𝐹𝐹𝐹𝐹𝐹 = 𝑀𝑀𝑀𝑀𝑃𝑃2(𝑅𝑅𝑆𝑆𝑀𝑀𝑅𝑅(𝑀𝑀𝑀𝑀𝑃𝑃1)) . The 
output of the sequence encoder is a set of entity embeddings 
�̂�𝑆𝐶𝐶𝑐𝑐𝑠𝑠 = ��̂�𝑆1

𝐶𝐶𝑐𝑐𝑠𝑠 , �̂�𝑆2
𝐶𝐶𝑐𝑐𝑠𝑠 , … , �̂�𝑆𝑛𝑛

𝐶𝐶𝑐𝑐𝑠𝑠� ∈ ℝ𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚×𝑛𝑛. 

 
Fig. 5 Transformer encoder block. 
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Fig. 6 Architecture 
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4) Positive Intents: Using the Intent Attention mechanism, 
we obtain the weighted embeddings based on the importance to 
the candidate entities, which is defined as �̂�𝑆𝑃𝑃𝑃𝑃 = 𝑃𝑃𝐴𝐴(�̂�𝑆𝐶𝐶𝑐𝑐𝑠𝑠 ,𝐶𝐶𝐸𝐸). 
The positive intent set is defined as Eq. (12) . 

𝑃𝑃𝑃𝑃 = {�̂�𝑆1𝑃𝑃𝑃𝑃 , �̂�𝑆2𝑃𝑃𝑃𝑃 , … , �̂�𝑆𝑚𝑚𝑃𝑃𝑃𝑃} (12) 

where 𝑃𝑃𝑃𝑃 ∈ ℝ𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚×𝑛𝑛. 

E. Negative Feedback Memory Network (NFMN) 
1) Embedding Unit: Corresponding to 𝑒𝑒 topics, the negative 

feedback entity set 𝑆𝑆𝑁𝑁𝑁𝑁  is divided into 𝑒𝑒  groups: 𝑆𝑆𝑡𝑡𝑐𝑐𝑡𝑡𝑁𝑁𝑁𝑁 =
�𝑆𝑆𝑡𝑡𝑐𝑐𝑡𝑡1

𝑁𝑁𝑁𝑁 , 𝑆𝑆𝑡𝑡𝑐𝑐𝑡𝑡2
𝑁𝑁𝑁𝑁 , … , 𝑆𝑆𝑡𝑡𝑐𝑐𝑡𝑡𝑚𝑚

𝑁𝑁𝑁𝑁 � , where 𝑆𝑆𝑡𝑡𝑐𝑐𝑡𝑡𝑖𝑖
𝑁𝑁𝑁𝑁 = �𝑆𝑆𝑖𝑖,1𝑁𝑁𝑁𝑁 , 𝑆𝑆𝑖𝑖,2𝑁𝑁𝑁𝑁 , … , 𝑆𝑆𝑖𝑖,𝑡𝑡𝑁𝑁𝑁𝑁�  and 

𝑆𝑆𝑖𝑖,𝑗𝑗𝑁𝑁𝑁𝑁 ∈ 𝑆𝑆𝑁𝑁𝑁𝑁. The initial value of a negative feedback entity is the 
knowledge embedding of the entity. The embedding unit has an 
embedding lookup function that converts the input values to 
new embeddings. The encoding is defined as Eq. (13). 

�̂�𝑆𝑁𝑁𝑁𝑁 = 𝑊𝑊𝑖𝑖𝑛𝑛
T �̂�𝑆𝑛𝑛𝑛𝑛𝐾𝐾𝐾𝐾 (13) 

where �̂�𝑆𝑛𝑛𝑛𝑛𝐾𝐾𝐾𝐾 denotes the embeddings of negative entities of the 
context KG, and 𝑊𝑊𝑖𝑖𝑛𝑛 ∈ ℝ𝑑𝑑𝐾𝐾𝐾𝐾×𝑠𝑠 is the learnable parameters. 

2) Hierarchical Memory Slot: We define the memory of 
NFMN as a First-In First-Out (FIFO) queue. We propose a 
Hierarchical Memory Slot (HMS) in order to deal with both the 
topic orders and the negative feedback entities of each topic. It 
is defined as Eq. (14). 

𝐻𝐻𝑀𝑀𝑆𝑆 = ��̂�𝑆𝑡𝑡𝑐𝑐𝑡𝑡𝑁𝑁𝑁𝑁 ,𝑂𝑂𝑡𝑡𝑐𝑐𝑡𝑡� (14) 

where 𝑂𝑂𝑡𝑡𝑐𝑐𝑡𝑡 = ���̂�𝑆𝑡𝑡𝑐𝑐𝑡𝑡𝑖𝑖
𝑁𝑁𝑁𝑁 , �̂�𝑆𝑡𝑡𝑐𝑐𝑡𝑡𝑗𝑗

𝑁𝑁𝑁𝑁 � ,≺�  indicates the orders of the 
memory elements. HMS contains topic hierarchy and entity 
hierarchy, which is shown in Fig. 7. The topic hierarchy 
contains a set of memory slots for storing the sequential 
memory elements that represent topics. In the entity hierarchy, 
each memory element contains a few negative feedback entities 
of a topic. We define a metric NF length as the number of 
obtained topics that are read from the memories. For example, 
in Fig. 3, the NF length is 3 because NFMN will use the 
negative entities regarding the Software Company-, Apple-, and 
iPhone-centric topics for encoding negative intents. 

 
Fig. 7 HMS contains 𝑒𝑒 memory slots for 𝑒𝑒 topics. Each slot includes negative 
feedback entities of the corresponding topic. 

3) Generalization: The Generalization unit manages the 
memorized data. When updating memories, for the given input 
regarding l topics, the Generalization unit updates the memory 
slots storing the earliest 𝑒𝑒  topics with the input data; when 
reading memories, the Generalization unit obtains the last 𝑒𝑒 
memory based on the update order.  

4） Negative Intents: We compute the negative intent 
attention values by the Intent Attention mechanism according to 
the importance between the negative feedback entities and each 
candidate entities. The output is defined as �̂�𝑆𝑁𝑁𝑃𝑃 = 𝑃𝑃𝐴𝐴(�̂�𝑆𝑁𝑁𝑁𝑁 ,𝐶𝐶𝐸𝐸). 
The negative intent set is obtained by (−1) × �̂�𝑆𝑁𝑁𝑃𝑃 , which is 

defined as Eq. (15). 
𝐹𝐹𝑃𝑃 = {(−�̂�𝑆1𝑁𝑁𝑃𝑃), (−�̂�𝑆2𝑁𝑁𝑃𝑃), … , (−�̂�𝑆𝑚𝑚𝑁𝑁𝑃𝑃)} (15) 

where 𝐹𝐹𝑃𝑃 ∈ ℝ𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚×𝑧𝑧. 

F. Aggregation Layer 
1) Aggregation: We concatenate the positive intent, the 

negative intent, and the knowledge embedding. The user’s 
intents can be obtained by linear layers with ReLU activations 
defined as Eq. (16) and Eq. (17). 

𝑃𝑃𝑖𝑖 = 𝑃𝑃𝑃𝑃𝑖𝑖 ⊕ 𝐹𝐹𝑃𝑃𝑖𝑖 ⊕ �̂�𝑆𝑖𝑖𝐾𝐾𝐾𝐾  (16) 

𝑃𝑃𝑠𝑠𝑆𝑆𝑆𝑆𝑠𝑠𝑆𝑆𝑖𝑖 = 𝑅𝑅𝑆𝑆𝑀𝑀𝑅𝑅�𝑊𝑊2
T𝑅𝑅𝑆𝑆𝑀𝑀𝑅𝑅�𝑊𝑊1

T𝑃𝑃𝑖𝑖 + 𝑆𝑆1� + 𝑆𝑆2� (17) 

where 𝑃𝑃𝑖𝑖 ∈ ℝ2𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 𝑊𝑊1 ∈ ℝ2𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚×𝑈𝑈, and 𝑊𝑊2 ∈ ℝ2𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚×𝑉𝑉. 
We set 𝑅𝑅 = 512 and  𝑉𝑉 = 128 in this paper. 

2) Loss Function: After obtaining the intents, we compute the 
score between each intent and the corresponding candidate 
entity as Eq. (18).  

𝑠𝑠𝑆𝑆𝑖𝑖 = 𝑃𝑃𝑠𝑠𝑆𝑆𝑆𝑆𝑠𝑠𝑆𝑆𝑖𝑖T�̂�𝑆𝑖𝑖𝐶𝐶𝐾𝐾 (18) 
Then, the scores are normalized by softmax function as Eq. (19). 

𝑒𝑒′ = softmax(𝑠𝑠𝑆𝑆) (19) 

where 𝑠𝑠𝑆𝑆 ∈ ℝ𝑚𝑚  denotes the scores for m candidate entities, 
𝑒𝑒′ ∈ ℝ𝑚𝑚  indicates the probabilities of recommendations. We 
define the loss function as the binary cross-entropy of the 
prediction and the ground truth 𝑒𝑒𝑖𝑖  as Eq. (20). 
ℒ = −� 𝑒𝑒𝑖𝑖𝑒𝑒𝑇𝑇𝑛𝑛�𝜎𝜎(𝑒𝑒𝑖𝑖′)� + (1 − 𝑒𝑒𝑖𝑖)𝑒𝑒𝑇𝑇𝑛𝑛�𝜎𝜎(1 − 𝑒𝑒𝑖𝑖′)�

𝑚𝑚

𝑖𝑖=1
 (20) 

G. Intent Attention 
For a given session of source entities and a target entity, the 

Intent Attention mechanism encodes the session by considering 
the attentions between session entities and the target entity, 
which is shown in Fig. 8. With the Intent Attention, the fine-
grained intent features can be dynamically obtained regarding 
the importance to each candidate entity. 

For different target entities, the Intent Attention mechanism 
provides different session encodings rather than a fixed value in 
order to adaptively represent the importance to the target entity. 
First, we define the similarity score between source entity 𝑃𝑃 and 
target entity 𝑆𝑆 using the scaled dot product defined as Eq. (21). 

𝑠𝑠𝑆𝑆𝑇𝑇𝑃𝑃𝑆𝑆𝑖𝑖,𝑗𝑗 =
1
√𝑃𝑃

�(�̂�𝑆𝑖𝑖𝐶𝐶𝑐𝑐𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐)T�̂�𝑆𝑗𝑗
𝑡𝑡𝑡𝑡𝑐𝑐𝑔𝑔𝑐𝑐𝑡𝑡� (21) 

where 𝑃𝑃 indicates embedding dimension. The normalized score 
𝑃𝑃𝑖𝑖,𝑗𝑗 is defined as Eq. (22).  

𝑃𝑃𝑖𝑖,𝑗𝑗 = softmax�𝑠𝑠𝑆𝑆𝑇𝑇𝑃𝑃𝑆𝑆𝑖𝑖,𝑗𝑗� =
𝑆𝑆𝑒𝑒𝑡𝑡�𝑠𝑠𝑆𝑆𝑇𝑇𝑃𝑃𝑆𝑆𝑖𝑖,𝑗𝑗�

∑ 𝑆𝑆𝑒𝑒𝑡𝑡�𝑠𝑠𝑆𝑆𝑇𝑇𝑃𝑃𝑆𝑆𝑖𝑖,𝑗𝑗�𝑛𝑛
𝑖𝑖=1

 (22) 

The intent attention 𝑃𝑃𝐴𝐴𝑗𝑗  for target entity j is treated as a 
normalized weighted embedding of each source entity, which is 
defined as Eq. (23). 

𝑃𝑃𝐴𝐴𝑗𝑗 = � 𝑃𝑃𝑖𝑖,𝑗𝑗�̂�𝑆𝑖𝑖𝐶𝐶𝑐𝑐𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐
𝑁𝑁

𝑖𝑖=1
 (23) 

... �̂�𝑆𝑒𝑒3  �̂�𝑆𝑒𝑒4  

Hierarchical Memory Slot
Topic 1 Topic 2 Topic l

�̂�𝑆1 �̂�𝑆𝑒𝑒1  �̂�𝑆𝑒𝑒2  �̂�𝑆2 �̂�𝑆3 �̂�𝑆4 �̂�𝑆5 
 



where N is the number of the source entities. The intent 
attention set is denoted as 𝑃𝑃𝐴𝐴 = {𝑃𝑃𝐴𝐴1, 𝑃𝑃𝐴𝐴2, … , 𝑃𝑃𝐴𝐴𝑚𝑚} that contains 
intent attentions respectively for 𝑚𝑚  target entities. The Intent 
Attention mechanism is respectively used for computing the 
positive intents and the negative intents. 

 
Fig. 8 Intent Attention 

H. Model Learning 
The entity embeddings of the context knowledge graph need 

to be learned before training the model. These embeddings will 
not be updated in the training process. The positive intents and 
the negative intents can be computed in parallel. 

1) Training: The entities extracted with the parameters of the 
CSG size and the NF length are used for model training. The 
parameters represent the number of topics respectively for 
computing positive intents and negative intents. Algorithm 2 
demonstrates the learning process of our model. The input 
includes a session of entities, candidate entities, a context KG, 
the CSG size and the NF length. The learnable parameters and 
entity embeddings of the context KG need to be initially 
processed (line 1-2). We construct the inputs by aggregating the 
features of topic, position, and knowledge (line 4-8). The 
algorithm computes the sequence embeddings of entities using 
the Sequence Encoder and obtains the positive intents by the 
Intent Attention mechanism (line 9-12). Meanwhile, we extract 
the negative feedback entities and compute the negative intents 
basically using NFMN and the Intent Attention mechanism 
(line 13-20). For each candidate entity, its positive intent, 
negative intent, and the knowledge embedding are concatenated 
(line 19). Then, we compute the loss and update learnable 
parameters by stochastic gradient descent (line 21-30). With a 
number of iterations, the algorithm outputs the recommendation 
function with the learned parameters.  

 
 

Algorithm 2: Learning Algorithm 
Input: SE, CE, KG, CSG size 𝑆𝑆𝑠𝑠, NF length 𝑠𝑠𝑓𝑓𝑒𝑒 
Output: rec. function ℱ(𝑆𝑆|𝜃𝜃) with parameters 𝜃𝜃 
1:   Initialize all parameters: init(𝜃𝜃) 
2:   �̂�𝑆𝐾𝐾𝐾𝐾 ← 𝑇𝑇𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝐸𝐸(𝐾𝐾𝐾𝐾) 
3:   for number of training iteration do 
4:      SE ← SEextract(𝑆𝑆𝐸𝐸, 𝑆𝑆𝑠𝑠) 
5:      for 𝑃𝑃 = 1 to n do 
6:         �̂�𝑆𝑖𝑖

𝑡𝑡𝑐𝑐𝑡𝑡 = 𝑊𝑊𝑡𝑡𝑐𝑐𝑡𝑡𝐻𝐻𝑖𝑖
𝑡𝑡𝑐𝑐𝑡𝑡 and �̂�𝑆𝑖𝑖

𝑡𝑡𝑐𝑐𝐶𝐶 = 𝑊𝑊𝑡𝑡𝑐𝑐𝐶𝐶𝐻𝐻𝑖𝑖
𝑡𝑡𝑐𝑐𝐶𝐶  

7:         �̂�𝑆𝑖𝑖𝐶𝐶𝐾𝐾 = �̂�𝑆𝑖𝑖𝐾𝐾𝐾𝐾 + �̂�𝑆𝑖𝑖
𝑡𝑡𝑐𝑐𝑡𝑡 + �̂�𝑆𝑖𝑖

𝑡𝑡𝑐𝑐𝐶𝐶 
8:      end for 
9:      for 3 iterations do 
10:         �̂�𝑆𝐶𝐶𝑐𝑐𝑠𝑠 ← Sequence Encoder(�̂�𝑆𝐶𝐶𝐾𝐾) 
11:    end for 
12:    �̂�𝑆𝑃𝑃𝑃𝑃𝐴𝐴 ← 𝑃𝑃𝐴𝐴(�̂�𝑆𝐶𝐶𝑐𝑐𝑠𝑠 ,𝐶𝐶𝐸𝐸) 
13:    �̂�𝑆𝑛𝑛𝑛𝑛𝐾𝐾𝐾𝐾 = 𝐹𝐹𝐹𝐹𝑆𝑆𝑒𝑒𝑆𝑆𝑃𝑃𝑃𝑃𝑆𝑆𝑆𝑆(𝑆𝑆𝐸𝐸,𝐾𝐾𝐾𝐾,𝑠𝑠𝑓𝑓𝑒𝑒) 
14:    �̂�𝑆𝑁𝑁𝑁𝑁 = 𝑊𝑊𝑖𝑖𝑛𝑛

T�̂�𝑆𝑛𝑛𝑛𝑛𝐾𝐾𝐾𝐾 
15:    Update the Hierarchical Memory Slots. 
16:    �̂�𝑆𝑁𝑁𝑃𝑃𝐴𝐴 ← 𝑃𝑃𝐴𝐴(�̂�𝑆𝑁𝑁𝑁𝑁,𝐶𝐶𝐸𝐸) 
17:    for 𝑃𝑃 = 1 to m do 
18:       �̂�𝑆𝑖𝑖𝑁𝑁𝑃𝑃𝐴𝐴 = (−1) × �̂�𝑆𝑖𝑖𝑁𝑁𝑃𝑃𝐴𝐴 
19:       𝑃𝑃𝑖𝑖 = �̂�𝑆𝑖𝑖𝑃𝑃𝑃𝑃𝐴𝐴 ⊕ �̂�𝑆𝑖𝑖𝑁𝑁𝑃𝑃𝐴𝐴 ⊕ �̂�𝑆𝑖𝑖𝐾𝐾𝐾𝐾  
20:    end for 
21:    𝑃𝑃𝑠𝑠𝑆𝑆𝑆𝑆𝑠𝑠𝑆𝑆 = 𝑅𝑅𝑆𝑆𝑀𝑀𝑅𝑅�𝑊𝑊2

T𝑅𝑅𝑆𝑆𝑀𝑀𝑅𝑅�𝑊𝑊1
T𝑃𝑃 + 𝑆𝑆1� + 𝑆𝑆2�, 𝑃𝑃𝑖𝑖 ∈ 𝑃𝑃 

22:    for 𝑃𝑃 = 1 to m do 
23:       𝑠𝑠𝑆𝑆𝑖𝑖 = 𝑃𝑃𝑠𝑠𝑆𝑆𝑆𝑆𝑠𝑠𝑆𝑆𝑖𝑖T�̂�𝑆𝑖𝑖𝐶𝐶𝐾𝐾  
24:    end for 
25:    𝑒𝑒′ = softmax(𝑠𝑠𝑆𝑆) 
26:    ℒ = −∑ 𝑒𝑒𝑖𝑖𝑒𝑒𝑇𝑇𝑛𝑛�𝜎𝜎(𝑒𝑒𝑖𝑖′)� + (1 − 𝑒𝑒𝑖𝑖)𝑒𝑒𝑇𝑇𝑛𝑛�𝜎𝜎(1 − 𝑒𝑒𝑖𝑖′)�𝑚𝑚

𝑖𝑖=1  
27:    Compute gradients for each learnable parameter 

∂ℒ ∂𝜃𝜃𝑖𝑖⁄ , 𝜃𝜃𝑖𝑖 ∈ 𝜃𝜃 
28:    Update 𝜃𝜃 by stochastic gradient descent with learning 

rate 𝜂𝜂 
29: end for 
30: return recommendation function ℱ(𝑆𝑆|𝜃𝜃) 

 
2) Test: The proposed model is used to predict the next 𝐾𝐾 

session entities for the TopK recommendation. In this paper, we 
do not evaluate the exact orders of the recommended entities. 

V. EXPERIMENTAL SETUP 

A. Research Questions 
We evaluate the performance of our method for the following 

research questions: 

 RQ1: Can our method outperforms the state-of-the-art 
methods for the PER tasks regarding ToKGE? 

 RQ2: How does our method performs on the session data 
with different settings? 

 RQ3: How is the contributions of each critical 
component in our method? 

According to these research questions, we select databases, 
metrics, and baseline methods for the experiments. 
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B. Datasets 
We build the experimental data based on QA-datasets 

because the QA-datasets naturally contain quite a few session 
data for forming CSGs and the TSGs. The experimental data 
is shown in TABLE I. 

TABLE I STATISTICS OF EXPERIMENTAL DATASETS 

 KdConv-based 
dataset 

CSQA-based 
dataset 

# Entities 36,052 182,930 
# Relations 36,617 183,641 
Total sessions 830 1,426 
Mean size of CSGs 3.201 9.728 
Mean avg. size of TSGs 5.068 2.134 

 

1) KdConv-based Dataset (KdConv-bd): We construct the 
dataset based on KdConv [3] that is a dataset for multi-domain 
knowledge-driven conversation. KdConv contains 4,500 dialogs 
with an average number of 19 turns in terms of film, music, and 
travel. The entities extracted from the dialogs are respectively 
mapped to the entities of DBpedia [47]. It forms a knowledge 
graphs that contains 13,072 entities and 9,115 relations. The 
experiments need a medium number of direct neighbour entities 
for a given entity of tree-structured data in order to ensure the 
experimental methods have enough neighbours as candidates for 
the TopK recommendations. Therefore, we sample the session 
data with the CSG size ≥3 and average TSG size ≥ 2. In order 
to generate the negative feedback data, we extend the samples 
with the existing KGs including DBpedia and Ownthink [48]. 
For each topic core entity of CSG, we identify the corresponding 
entity of the KGs. Then, we look up the direct neighbour entities 
and relations of the KG entities. Then, we eliminate duplicates 
according to the synonyms directory. Last, we randomly select 
a certain number of neighbour entities to supplement each topic 
that totally contains not more than 15 entities. We obtain a 
dataset containing 830 sessions involving 36,052 entities and 
36,617 relations. The mean size of CSG is 3.201 and mean 
average size of TSG is 5.068. 

2) CSQA-based dataset (CSQA-bd): For the experiments, we 
use the dataset CSQA [49] that consists of a large number of 
sequential complex questions. CSQA has more than 150K 
dialogs that are labelled with the corresponding entities and 
relations based on Wikidata. CSQA is suitable for this paper 
because it can be easily transformed into graphs with CSGs and 
TSGs. We only use the simple QA pairs of CSQA in order to 
well match our experiments. The statistical QA pairs for 
clarification and count are filtered out because the results of the 
pairs are numbers rather than entities. We sample the data with 
the CSG size ≥ 9 and the average TSG size ≥ 2. The sampled 
data has the mean size of CSG of 9.728 and the mean average 
size of TSG of 2.134. In order to generate the negative feedback 
data, we extend CSQA with Wikidata. For each entity of CSQA, 
we first find the corresponding entity in Wikidata. Then, we find 
its direct neighbor entities and relations that do not appear in 
CSQA. Finally, we add the identified entities and relations into 
CSQA. The extended dataset is CSQA-bd. 

C. Baselines 
In the experiments, we compare our method with eight 

representative and state-of-the-art methods that are selected 
from three most related areas. 

1) Conventional Methods: traditional and widely used 
methods.  

 PageRank [50] is a random walk-based graph ranking 
algorithm. It can predict graph nodes according to their 
importance to the given entities. PageRank is basically 
works on directed graphs. Therefore, we treat the 
undirected experimental graph as a bi-directed graph for 
being made available for PageRank. In the experiments, 
we train PageRank with the experimental KG for 
computing the structural features of the KG. After 
training, for a specified entity, PageRank outputs a set of 
ranked entities. This algorithm represents the traditional 
graph analysis methods that do not take the dynamic 
changes of graphs into account. 

 Graph Attention Networks (GAT) [51] is a well-known 
Graph Neural Network model that introduces the multi-
head attention mechanism into the propagation step for 
learning the relative weights between the linked nodes in 
a graph. It computes the hidden states of each nodes for 
the weighting the relations between the nodes. We select 
GAT because it is the representative of the conventional 
graph deep learning methods. In the experiments, GAT 
learns the entity embeddings by computing the given 
knowledge graph. Based on the embedding similarity of 
each pair of the specified entity and its direct neighbours, 
GAT can rank the neighbours for the TopK entity 
recommendations. 

 Sequence-to-Sequence (Seq2Seq) [52] is an Encoder-
Decoder model integrating with RNN models. Seq2Seq 
is the widely used deep learning model for analysing the 
sequence data. The model can predict a sequence of 
objects according to a list of given ordered objects. In 
this paper, we model the experimental tasks as Seq2Seq 
problems that predict the result entities by learning the 
sequential features of the given sessions with their 
ranking scores for TopK recommendation. 

2) Entity Set Expansion: state-of-the-art methods for entity set 
expansion issues. 

 SetExpan [53] is a corpus-based entity set expansion 
approach that iteratively extracts the context features 
using skip-gram method. It provides a rank ensemble 
mechanism by the entity similarity for entity expansion. 
We select SetExpan as a baseline because it is a 
representative entity expansion method that takes 
context knowledge into account. In the experiments, 
SetExpan suggests a set of result entities according to the 
given session of entities. This method uses the context 
information, yet it ignores the sequential features. 

 MCTS-bootstrapping [54] is a bootstrapping entity set 
expansion framework that combines the Monte Carlo 
Tree Search (MCTS) algorithm and a deep similarity 
network. It predicts entities by evaluating delayed 



feedbacks for pattern evaluation in a bootstrapping 
system. In this paper, the MCST-bootstrapping model is 
selected as a baseline because it uses the MCTS 
algorithm that is an outstanding decision method for 
entity suggestions. In the experiments, MCST-
bootstrapping computes the pattern embedding between 
each input entity and the context entity. The model 
predicts the expanded set entities by computing the 
pattern similarity. Although this method well models the 
feedbacks, it rarely applies the structural features of KG. 

 RippleNet [55] is an end-to-end algorithm by applying a 
KG for recommendations in order to enhance the user 
preference model. The model implements a mechanism 
that user’s potential preferences propagate along graph 
paths rooted at each user like ripples of water. It also 
extracts high-order preferences using a memory neural 
network. This method predicts the possible nodes based 
on the ripple propagation. We select RippleNet as a 
baseline because it is a well-known PER method using 
KG. In the experiments, RippleNet is trained with a 
session of entities and a context KG. For prediction, the 
method learns the features of the given entities for the K-
hops recommends. Although RippleNet models the 
structural information of the KG, it does not consider the 
sequential features of the given session entities. 

3) Session-based Recommendation: recommendation models 
for session-based data. 

 Graph Contextualized Self-Attention Network (GC-
SAN) [56] is a deep learning-based model for session 
recommendations. It learns the features of session 
entities using Graph Neural Network and self-attention 
mechanism. We select GC-SAN because it learns the 
hidden relational features of sequence data. In the 
experiments, GC-SAN builds a directed graph for the 
given session entities in order to train the model. After 
training, the model can learn the input session entities 
and recommend a set of ranked entities. This model 
focuses on the session features, yet it does not take the 
knowledge information into consideration. 

 BERT4Rec [57] uses BERT to learn the features of 
behaviour sequences for sequential recommendations. 
This model extracts the context information from the 
user behaviour sequences by using the deep bidirectional 
self-attention mechanism. We select BERT4Rec in this 
paper because it uses the state-of-the-art pre-trained 
sequential model to learn session features for 
recommendations. We train BERT4Rec with entity 
sequences in the experiments. The trained model can 
predict a set of result entities for the given sequential 
entities. BERT4Rec focuses on the sequential features 
rather than the semantic relations of entities. 

D. Metrics 
We use the metrics Precision, Recall, F1-measure, and Mean 

Average Precision. 

 Precision: Precision indicates the proportion of the true 
positive samples in the predicted positive sample set. 

𝑃𝑃𝑃𝑃𝑆𝑆𝑆𝑆𝑃𝑃𝑠𝑠𝑃𝑃𝑇𝑇𝑠𝑠 =
𝑇𝑇𝑆𝑆𝑃𝑃𝑆𝑆 𝑃𝑃𝑇𝑇𝑠𝑠𝑃𝑃𝑆𝑆𝑃𝑃𝑝𝑝𝑆𝑆

𝑇𝑇𝑃𝑃𝑆𝑆𝑆𝑆 𝑃𝑃𝑇𝑇𝑠𝑠𝑃𝑃𝑆𝑆𝑃𝑃𝑝𝑝𝑆𝑆 + 𝐹𝐹𝑃𝑃𝑒𝑒𝑠𝑠𝑆𝑆 𝑃𝑃𝑇𝑇𝑠𝑠𝑃𝑃𝑆𝑆𝑃𝑃𝑝𝑝𝑆𝑆
 (24) 

 Recall: Recall indicates the proportion of the true 
positive samples in the real positive sample set. 

𝑅𝑅𝑆𝑆𝑆𝑆𝑃𝑃𝑒𝑒𝑒𝑒 =
𝑇𝑇𝑆𝑆𝑃𝑃𝑆𝑆 𝑃𝑃𝑇𝑇𝑠𝑠𝑃𝑃𝑆𝑆𝑃𝑃𝑝𝑝𝑆𝑆

𝑇𝑇𝑃𝑃𝑆𝑆𝑆𝑆 𝑃𝑃𝑇𝑇𝑠𝑠𝑃𝑃𝑆𝑆𝑃𝑃𝑝𝑝𝑆𝑆 + 𝐹𝐹𝑃𝑃𝑒𝑒𝑠𝑠𝑆𝑆 𝐹𝐹𝑆𝑆𝑛𝑛𝑃𝑃𝑆𝑆𝑃𝑃𝑝𝑝𝑆𝑆
 (25) 

 F1-Measure: F1-measure is defined as a weighted 
average of the precision and recall. The metric balances 
both of the precision and recall in one score. 

𝐹𝐹1 =
2 × 𝑃𝑃𝑃𝑃𝑆𝑆𝑆𝑆𝑃𝑃𝑠𝑠𝑃𝑃𝑇𝑇𝑠𝑠 × 𝑅𝑅𝑆𝑆𝑆𝑆𝑃𝑃𝑒𝑒𝑒𝑒
𝑃𝑃𝑃𝑃𝑆𝑆𝑆𝑆𝑃𝑃𝑠𝑠𝑃𝑃𝑇𝑇𝑠𝑠 + 𝑅𝑅𝑆𝑆𝑆𝑆𝑃𝑃𝑒𝑒𝑒𝑒

 (26) 

 Mean Average Precision (MAP): MAP is a widely used 
metric for evaluating ranked lists in the field of 
information retrieval. The critical difference between 
Precision and MAP is that the MAP additionally 
considers the entire ranking of the list. 

𝑀𝑀𝐴𝐴𝑃𝑃 =
1
𝑚𝑚
�

1
𝑠𝑠

𝑚𝑚

𝑖𝑖=1

�𝑃𝑃@𝑃𝑃 × 𝑃𝑃𝑆𝑆𝑒𝑒𝑖𝑖

𝑘𝑘

𝑖𝑖=1

 (27) 

where 𝑃𝑃𝑆𝑆𝑒𝑒𝑖𝑖  equals 1 if the result at rank 𝑃𝑃 is the correct 
example and 0 otherwise. 

E. Task Settings 
We compute the Precision (P@K), Recall (R@K), F1-

measure (F1@K), and Mean Average Precision (MAP@K) for 
the TopK recommendations to evaluate our method. 

 Value of K: For KdConv-bd, we set K as 5 and 10 
because the mean average size of TSG of this dataset is 
relative large. For CSQA-bd, we set K as 1 and 2 because 
this database has a small mean average size of TSG that 
cannot support the bigger values of K. 

 Size of CSG and TSG: We set suitable parameter pairs of 
CSG and TSG for different experimental goals. In 
general, based on the characteristics of the subgraphs, we 
set a small size of CSG and a big size of TSG for 
KdConv-bd, while set a big size of CSG and a small size 
of TSG for CSQA-bd. 

F. Training 
For KdConv-bd, we trained our model for 3,000 epochs with 

ca. 60 hours. For CSQA-bd, we trained our model for 2,500 
epochs with ca. 45 hours.  

VI. EXPERIMENTAL RESULTS 

A. General Comparison 
The general performance comparison with the both datasets 

are presented in TABLE II and TABLE III. In the experiments, 
we use data with different CSG sizes, while we do not limit the 
NF length that equals to the corresponding CSG size at most. 

Our method mostly has the best performance compared with 
the baselines across both the datasets. With the comparison of 
the best performance of the baselines, our method respectively 
obtains the consistent improvements in the both datasets except 
with the CSG size of 2. In this special case of the KdConv-bd 



dataset, the sequence-related models, including our method, do 
not work well because the models hardly extract sequential 
features from the too short sequence data. Oppositely, the graph-
based methods can obtain entity features by encoding the context 
KG, which focus on the low-hop relations. 

When the CSG size is greater than 2, our method obviously 
outperforms the conventional baseline methods that are usually 

used as basic models of feature learning. For the experiments 
with KdConv-bd, the precision of our method reaches 0.667 
(CSG size = 3) that is quite practical for PERs. Precision has 
been improved maximum 8.33% by our method (CSG size = 5). 
Recall of our method achieves 0.684 in the best case (CSG size 
= 3) and maximum 7.65% improvement (CSG size = 5). Our 
method has the best MAP of 0.541 (CSG size = 3) and maximum 
7.55% improvement (CSG size = 3).  

TABLE II PERFORMANCE COMPARISON WITH KDCONV-BASED DATASET 

Methods P@5 P@10 R@5 R@10 MAP@5 MAP@10 
CSG size = 2 

PageRank 0.207 0.189 0.278 0.302 0.181 0.168 
GAT 0.329 0.272 0.298 0.347 0.364 0.312 
Seq2Seq 0.191 0.159 0.232 0.335 0.187 0.16 
SetExpan 0.301 0.268 0.288 0.347 0.284 0.247 
MCTS-bst. 0.184 0.157 0.285 0.287 0.225 0.181 
GC-SAN 0.368 0.362 0.332 0.375 0.389 0.361 
BERT4Rec 0.204 0.168 0.246 0.358 0.284 0.224 
RippleNet 0.324 0.297 0.302 0.324 0.308 0.274 
Ours 0.228 0.186 0.271 0.297 0.263 0.222 
Improv. -38.04% -48.62% -18.37% -20.80% -32.39% -38.50% 

CSG size = 3 
PageRank 0.286 0.289 0.29 0.313 0.202 0.182 
GAT 0.487 0.438 0.357 0.415 0.425 0.401 
Seq2Seq 0.308 0.258 0.283 0.384 0.258 0.235 
SetExpan 0.621 0.598 0.504 0.638 0.484 0.427 
MCTS-bst. 0.614 0.585 0.533 0.644 0.503 0.458 
GC-SAN 0.569 0.51 0.524 0.623 0.492 0.424 
BERT4Rec 0.435 0.402 0.315 0.404 0.363 0.289 
RippleNet 0.588 0.557 0.515 0.614 0.498 0.433 
Ours 0.667 0.647 0.568 0.684 0.541 0.492 
Improv. 7.41% 8.19% 6.57% 6.21% 7.55% 7.42% 

CSG size = 5 
PageRank 0.269 0.261 0.281 0.323 0.195 0.175 
GAT 0.42 0.401 0.333 0.389 0.392 0.366 
Seq2Seq 0.269 0.224 0.257 0.361 0.223 0.203 
SetExpan 0.575 0.532 0.468 0.525 0.402 0.381 
MCTS-bst. 0.588 0.541 0.487 0.601 0.477 0.405 
GC-SAN 0.514 0.487 0.462 0.502 0.445 0.379 
BERT4Rec 0.411 0.388 0.301 0.387 0.314 0.257 
RippleNet 0.523 0.503 0.441 0.578 0.463 0.398 
Ours 0.637 0.584 0.519 0.647 0.505 0.434 
Improv. 8.33% 7.95% 6.57% 7.65% 5.87% 7.16% 

For the experiments with CSQA-bd, the precision of our 
method reaches 0.554 (CSG size = 7) that is also practical for 
the entity recommendations. The precision has been improved 
maximum 9.45% by our method (CSG size = 10). The recall of 

our method achieves 0.381 in the best case (CSG size = 7) and 
maximum 8.39% improvement (CSG size = 10). Our method 
has the best MAP of 0.401 (CSG size = 7) and maximum 9.54% 
improvement (CSG size = 10).  

TABLE III PERFORMANCE COMPARISON WITH CSQA-BASED DATASET 

Methods P@1 P@2 R@1 R@2 MAP@1 MAP@2 
CSG size = 5 

PageRank 0.232 0.195 0.168 0.235 0.163 0.122 
GAT 0.334 0.304 0.267 0.289 0.314 0.227 
Seq2Seq 0.201 0.165 0.187 0.215 0.163 0.133 
SetExpan 0.468 0.354 0.274 0.334 0.343 0.225 
MCTS-bst. 0.474 0.336 0.298 0.338 0.341 0.258 
GC-SAN 0.409 0.287 0.286 0.305 0.331 0.203 
BERT4Rec 0.352 0.283 0.208 0.248 0.224 0.201 
RippleNet 0.421 0.299 0.297 0.311 0.334 0.241 
Ours 0.511 0.384 0.317 0.363 0.364 0.274 
Improv. 7.81% 8.47% 6.38% 7.40% 6.12% 6.20% 

CSG size = 7 



PageRank 0.253 0.221 0.187 0.246 0.171 0.135 
GAT 0.387 0.324 0.289 0.301 0.353 0.289 
Seq2Seq 0.225 0.208 0.203 0.258 0.186 0.147 
SetExpan 0.487 0.325 0.325 0.346 0.348 0.276 
MCTS-bst. 0.514 0.411 0.311 0.358 0.375 0.28 
GC-SAN 0.469 0.315 0.299 0.341 0.354 0.258 
BERT4Rec 0.361 0.318 0.231 0.274 0.242 0.268 
RippleNet 0.492 0.363 0.302 0.325 0.362 0.287 
Ours 0.554 0.441 0.352 0.381 0.401 0.31 
Improv. 7.78% 7.30% 8.31% 6.42% 6.93% 7.27% 

CSG size = 10 
PageRank 0.175 0.121 0.156 0.202 0.152 0.114 
GAT 0.284 0.268 0.169 0.223 0.289 0.221 
Seq2Seq 0.14 0.134 0.114 0.196 0.147 0.129 
SetExpan 0.42 0.236 0.241 0.265 0.288 0.187 
MCTS-bst. 0.434 0.278 0.268 0.277 0.304 0.237 
GC-SAN 0.302 0.254 0.257 0.298 0.256 0.148 
BERT4Rec 0.236 0.203 0.152 0.201 0.214 0.174 
RippleNet 0.348 0.261 0.244 0.268 0.292 0.196 
Ours 0.475 0.302 0.284 0.323 0.333 0.257 
Improv. 9.45% 8.63% 5.97% 8.39% 9.54% 8.44% 

PageRank takes the worst performance because it computes 
the explicit relational features without deeply mining the hidden 
features. Seq2Seq learns the sequential features from the session 
data. GAT works on learning the deep structural graph features 
from KG. The conventional methods only consider one type of 
features so that their performance are relative low. 

Compared with the recommendation-oriented based baseline 
methods, we find that our method also obtains significant 
improvements. The recommendation-oriented baselines achieve 
better performance than the conventional baselines because 
these methods not only fusion different types of features but also 
focus on the optimization of ranking. The session-based 
recommendation methods, i.e., GC-SAN and BERT4Rec, 
efficiently capture the sequential information by encoding the 
positional information using Graph Convolutional Network or 
Attention mechanism. The entity set expansion methods usually 
prefer to encode the features of KG. The experiment results 
show that the entity set expansion baselines have better precision 
than the session-based recommendation baselines. It means that 

the features extracted from KG is more useful than the features 
learned from the sequence data. Particularly, MCST-bst. not only 
encodes the semantic of KG, also applies the user feedback 
information. Regarding P@K, MCST-bst. can be viewed as a 
strong baseline. With respect to R@K, BERT4Rec has a relative 
low value because of without considering the graph relations of 
entities. Other recommendation-oriented baselines have small 
differences. With respect to MAP@K, MCST-bst. and RippleNet 
have relative better values. Therefore, they can be treated as 
strong baselines for evaluating precision with the order factor. 
BERT4Rec also has the worst value compared with other 
recommendation-oriented models.  

In total, the performance of MCS-bst. and RippleNet are 
close to our method. It concludes that the path-based features 
and user feedback data are critical information for ToKGE. 

Fig. 9 presents the results of F1-measure evaluation. Our 
method outperforms the baseline methods. Our method achieves 
the satisfied F1 values representing the model has good quality.  

 
(a) KdConv-based dataset 

 
(b) CSQA-based dataset 

Fig. 9 F1-measure evaluations 

B. Performance of Our Method 
There are more detailed evaluations of our method with 

MAP by considering the CSG size and NF length in order to 
analyse the performance patterns. The evaluations start with the 

CSG size of 2 because a sequence with only one entity is usually 
not treated as a session. Fig. 10 and Fig. 11 show the results. We 
find that our method obtains good results when the parameter 
pairs of the CSG size and NF length are respectively set to (5, 3) 
and (3, 2) for the experimental datasets. 
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The experiments show that there exists a set of global optimal 
settings consisting of an optimal CSG size and an optimal NF 
length for each sequence data. Taking CSQA-bd as an example, 
our method obtains the best performance with the optimal CSG 
size of 7 and the optimal NF length of 4. The difference between 
the optimal CSG size and the optimal NF length increases along 
with the growth of the CSG size. 

1) Impact of Negative Feedback Length: We find that there is 
a turning point 𝑠𝑠 of the NF length for a given CSG size. As 
shown in the Eq. (28), when the CSG size is less than or equal 
to 𝑠𝑠, the optimal NF length equals to the CSG size; when the 
CSG size is greater than 𝑠𝑠, the optimal NF length is greater than 
the CSG size. 

�𝑂𝑂𝑡𝑡𝑆𝑆.𝐹𝐹𝐹𝐹 𝑒𝑒𝑆𝑆𝑠𝑠𝑛𝑛𝑆𝑆ℎ = 𝐶𝐶𝑆𝑆𝐾𝐾 𝑠𝑠𝑃𝑃𝑠𝑠𝑆𝑆, 𝑒𝑒ℎ𝑆𝑆𝑠𝑠 𝐶𝐶𝑆𝑆𝐾𝐾 𝑠𝑠𝑃𝑃𝑠𝑠𝑆𝑆 ≤ 𝑠𝑠
𝑂𝑂𝑡𝑡𝑆𝑆.𝐹𝐹𝐹𝐹 𝑒𝑒𝑆𝑆𝑠𝑠𝑛𝑛𝑆𝑆ℎ < 𝐶𝐶𝑆𝑆𝐾𝐾 𝑠𝑠𝑃𝑃𝑠𝑠𝑆𝑆, 𝑒𝑒ℎ𝑆𝑆𝑠𝑠 𝐶𝐶𝑆𝑆𝐾𝐾 𝑠𝑠𝑃𝑃𝑠𝑠𝑆𝑆 > 𝑠𝑠 (28) 

For the CSQA-bd, in Fig. 11, we find the turning point 𝑠𝑠 = 4. 
In case of 𝐶𝐶𝑆𝑆𝐾𝐾 𝑠𝑠𝑃𝑃𝑠𝑠𝑆𝑆 ≤ 𝑠𝑠, for example, when the CSG size is 3, 
the optimal NF length is 3; when the CSG size is 4, the optimal 
NF length is 4. In case of 𝐶𝐶𝑆𝑆𝐾𝐾 𝑠𝑠𝑃𝑃𝑠𝑠𝑆𝑆 > 𝑠𝑠, for example, when the 
CSG size is 6, the optiaml NF length is 4. We evaluate impacts 
of the NF length with the both datasets. In the experiments, the 
NF length does not exceed the CSG size. From the results 
shown in Fig. 10 and Fig. 11, we find that the NF length has an 
optimal value for each dataset. Too short NF length does not 
really help for modeling user intents while too much negative 
feedback information will also lead negative influence. In terms 
of results, the most proper NF length for KdConv-bd is relative 
bigger than CSQA-bd. We think that it depends on the selected 
CSG size. 

 

 
(a) MAP@5  

(b) MAP@10 
Fig. 10 Model Performance with KdConv-bd. 

 

 

 
(a) MAP@1 

 
(b) MAP@2 

Fig. 11 Model Performance with CSQA-bd. 

2) Impact of Chain-structured Subgraph Size: We study the 
effect of the CSG size on the performance of our method using 
MAP. From the results shown in Fig. 10 and Fig. 11, we find 
that our method achieves the best MAP values with the CSG size 
of 3 for KdConv-bd and the CSG size of 7 for CSQA-based 
dataset. The performance is increasing before achieving the 
turning point 𝑠𝑠, while the performance is decreasing after the 
turning point. Either too small or too big sizes cannot maximally 
improve the performance. We conclude that the short session 

data cannot provide enough information and the longer session 
contains more noises. Besides, we find that the optimal CSG size 
is relevant to the mean CSG size of the data. There are less long 
CSG data in KdConv-bd than in CSQA-bd. Therefore, the 
optimal CSG size for KdConv-bd is smaller than for CSQA-bd. 

C. Ablation Study 
We perform an ablation analysis by comparing our method 

with it's variants. We build three variants respectively by 
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ignoring negative feedback, intent attention, and knowledge 
features. The first variant removes NFMN from our method in 
order to evaluate the impact of the negative feedback. The 
second variant keeps NFMN but use the fixed weight instead of 
the intent attention-based weights. The third variant replace the 
KG embeddings with random embeddings. 

We select the proper settings of the CSG size and NF length 
according to the performance evaluations. We study ablation of 
the three components with Precision and Recall. TABLE IV 
shows the results. We find that each of the three variants lead to 
the performance decrease. It indicates that each type of the 
ignored information has contribution for the intent modeling. 

TABLE IV ABLATION EVALUATIONS 

Model w/o 
NFMN 

w/o Intent 
Attention 

w/o 
Knowledge 

Feature 

Standa
rd 

Model 
KdConv-based dataset (CSG size=3, NF length=3) 

P@5 

value 0.504 0.583 0.611 0.667 
change -32.34% -14.41% -9.17%  

P@10 value 0.491 0.564 0.595 0.647 
change -31.77% -14.72% -8.74%  

R@5 value 0.448 0.508 0.511 0.568 
change -26.79% -11.81% -11.15%  

R@10 value 0.552 0.604 0.608 0.684 
change -23.91% -13.25% -12.50%  

MAP@5 value 0.464 0.491 0.502 0.541 
change -16.59% -10.18% -7.77%  

MAP@10 value 0.43 0.455 0.46 0.492 
change -14.42% -8.13% -6.96%  
CSQA-based dataset(CSG size=7, NF length=7) 

P@1 value 0.454 0.503 0.511 0.554 
change -22.03% -10.14% -8.41%  

P@2 value 0.357 0.392 0.402 0.441 
change -23.53% -12.50% -9.70%  

R@1 value 0.303 0.321 0.318 0.352 
change -16.17% -9.66% -10.69%  

R@2 value 0.321 0.355 0.348 0.381 
change -18.69% -7.32% -9.48%  

MAP@1 value 0.359 0.375 0.374 0.401 
change -11.70% -6.93% -7.22%  

MAP@2 value 0.275 0.283 0.289 0.31 
change -12.73% -9.54% -7.27%  

 

1) Model without NFMN: The results show that the variant 
without NFMN largely reduces the performances. It indicates 
that the negative feedback information provides the critical 
contributions for encoding the user intent in our method. 

2) Model without Intent Attention: The results show that the 
Intent Attention also reduces the performance. It indicates, 
although the Intent Attention mechanism is removed, our 
method provides a lot of valuable features for modeling the 
user’s intents. We find that the effect of Intent Attention is 
relative smaller than the negative feedback’s.  

3) Model without Knowledge Features: The results show that 
the performance obviously reduces in varying degrees with the 
selected metrics and datasets. It indicates that the knowledge 
features give significant contributions for our method. The 
results show that the Recall is more influenced than Precision. 
We think the reason is that KG can give more features enlarging 
the search range of the relevant entities.  

In general, we find that the perrformance decrease of each 
variant by MAP is smaller than that by Precison and Recall. It 
indicates that the three types of modifications do not largely. 
influece the final rank in our method for TopK recommendations. 
In sum, the ablation study shows that the features of negative 
feedback, intent attention, and knowledge graph play importants 
roles for our method.  

D. Case Study 
TABLE V shows examples for demonstrating the use of our 

method. For each example, we sample QA data from KdConv-
bd. and transfer to an entity session for Top3 recommendations. 
The first column of the table shows the request of PER in the 
formal form of a triple: [𝑠𝑠𝑆𝑆𝑠𝑠𝑠𝑠𝑃𝑃𝑇𝑇𝑠𝑠, 𝑒𝑒𝑃𝑃𝑠𝑠𝑆𝑆 𝑆𝑆𝑇𝑇𝑡𝑡𝑃𝑃𝑆𝑆 𝑆𝑆𝑇𝑇𝑃𝑃𝑆𝑆, ? ], where the 
session is described as a list of topics in this example in order to 
clearly explain the structure of the session; the second columns 
shows the predictions. The bold entities indicate the correctly 
predicted results. The results shows that our method can obtain 
the satisfied performance. 

TABLE V EXAMPLES OF OUR METHOD 

PER request Rec. results 

[(Chungking Express, Hong Kong Film Awards, Faye 
Wong, Tony Leung), (Tony Leung, birth date, Infernal 
Affairs, Happy Together), (Happy Together, Leslie 
Cheung, singer, Farewell My Concubine)], Farewell 
My Concubine, ? 

Chen Kaige, 
Release time, 
Golden Palm 
Award 

[(Julia Stiles, 10 Things I Hate About You, Dexter, The 
Bourne Identity3), (The Bourne Identity3, Release 
time, Matt Damon)], Matt Damon, ? 

Harvard 
University, 
Cambridge, Good 
Will Hunting 

[(Sean Penn, Yale University, Mystic River, Academy 
Award for Best Actor in a Leading Role, Robin 
Wright),(Robin Wright, Best Actress of the Golden 
Globe Award, Forrest Gump), (Forrest Gump, Robert 
Zemeckis, Academy Award for Best Picture, Tom 
Hanks)], Tom Hanks, ? 

The 
Philadelphia 
Story, Saving 
Private Ryan, 
Academy Award 
for Best Actor 

E. Discussion 
In sum, our method outperforms the state-of-the-art methods 

for the PER tasks regarding ToKGE (RQ1). We regard that the 
larger the CSG size, the better the performance; the larger the 
TSG size, the better the performance. KdConv-bd has small 
mean CSG size and quite a few big TSGs, while CSQA-bd is in 
the opposite situation. Therefore, we regard that the TSG can 
provide more valuable contributions than the CSG does (RQ2). 
The experiments show that NFMN is obviously beneficial for 
the PER tasks of ToKGE. The Intent Attention mechanism and 
context KG are much valuable as well (RQ3). 

We discuss the limitations: (1) our method needs the optimal 
settings of CSG size and NF length, which strongly depend on 
the experiences. If CSG size is too small, our method does not 
work well; however, the performance strongly reduces if CSG 
size is too big. It indicates that our method needs a better way 
for encoding sequence data; (2) our method ignores the relations 
between the negative feedback entities; (3) the number of the 
candidate entities cannot be large because it will lead high 
computational complexity when computing intent attention 
values for each of them; (4) finally, our model has weak parallel 
computing performance, particularly for the sequence model. 

mailto:P@5


VII. CONCLUSION 
Personalized entity recommendations are important for 

Knowledge Graph exploration to address the information 
overflow problem. In this paper, we propose a KG-based topic-
oriented personalized entity recommendation method 
integrating positive intents with negative intents. We design a 
Transformer-based encoder for modelling the adaptive positive 
intents and a NFMN for encoding the adaptive negative intents. 
Experimental results confirm the effectiveness of our method. In 
the future, we will find the good way to determine the optimal 
parameters of the CSG size and NF length. We will also model 
the relations among the negative feedback entities. In addition, 
we will work on improving the computing performance for a 
large number of candidate entities. 
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