
A Graph based Calligraphy Similarity Compare Model

Guoyang Pan

School of Artificial Intelligence,

University of Chinese Academy of

Sciences

Institute of Automation, Chinese

Academy of Sciences

Beijing, China,

panguoyang2019@ia.ac.cn

Yi Yang

Institute of Automation, Chinese

Academy of Sciences

Beijing, China, yangyi@ia.ac.cn

Meng Li

Institute of Automation, Chinese

Academy of Sciences

Beijing, China, meng_li@ia.ac.cn

Xueyang Hu

University of Maryland,

Maryland, United States,

xhu010127@gmail.com

Weixing Huang

Institute of Automation, Chinese

Academy of Sciences

Beijing, China,

CASIA-Junsheng (Shenzhen) Intelligent

& Big Data Sci-Tech Development Ltd.

Shenzhen, China,

weixing.huang@ia.ac.cn

Jian Wang*

Institute of Automation, Chinese

Academy of Sciences

Beijing, China, jian.wang@ia.ac.cn

Yun Wang

Institute of Automation, Chinese

Academy of Sciences

Beijing, China, y.wang@ia.ac.cn *Corresponding author: Jian Wang

Abstract—Calligraphy is one of the most famous traditional art

in China. The Calligraphy copying practice is the inevitable

phase when learning Calligraphy. Calligraphy character has

structure and stroke attributes, such as length of stroke and

the position distribution of subpart, which can identify each

certain character. In this paper, we propose a graph neural

network-based algorithm which can measure the similarity

between two Calligraphy characters according to structure

and stoke. Experiment shows that the proposed method gives

satisfied results with respect to the similarity measurement for

the Calligraphy copying practice.

Keywords-calligraphy estimation; graph similarity; image

process; graph neural network;

I. INTRODUCTION

Calligraphy is a famous Chinese traditional art. In recent
years, there are many research works focus on the field of
digital calligraphy by combining the traditional art and
computer technology, such as calligraphy stroke
segmentation [1][2][3], calligraphy style generation [4][5],
and calligraphy author recognition [6][7].

The area of calligraphy similarity estimation consists of
two basic aspects: stroke similarity estimation and structure
similarity estimation. The process of stroke similarity starts
at segmenting each stroke from the original calligraphy
character. After strokes segmentation, it computes the
similarity of the two strokes that can be treated as a shape
similarity problem. Hence, shape similarity algorithms can
be used for addressing this problem.

The structure of a calligraphy character represents quite
abstract meaning and is different from character to character.

Usually, the skeleton of the calligraphy character is used to
represent the structure of character. And the current
similarity algorithms between two characters skeletons focus
on computing the distance between two points sets of
skeleton position. Although such algorithms considered the
position of skeleton point as the local information, they took
few global information for illustrating the overall
characteristics of a calligraphy character. Hence, it can’t
totally represent the structure similarity of two calligraphy
character.

In this paper, we define the skeleton of a Calligraphy
character as a graph model. We embed the graph model into
a vector space using graph neural network. The embedding
model can help to measure the similarity between two given
calligraphy images. Experiment shows that the method gives
satisfied result in estimating structure similarity.

The paper is organized as follows: The part one is the
introduction of the paper. The part two is the related work of
the calligraphy estimated. The part three shows the details of
the proposed graph neural network. The part four shows
comparative experience and result. The last part draws the
conclusion of the paper.

II. RELATED WORK

A. Similarity of Calligraphy Characters

The similarity of two calligraphy characters contains two
important parts: stroke similarity and structure similarity. A
Calligraphy character consists of a set of strokes that is the
basic component. The similarity of stroke pairs represents
the similarity of shape pairs in the abstract level.

mailto:weixing.huang@ia.ac.cn
mailto:jian.wang@ia.ac.cn

B. Graph Similarity Search and Graph Kernels

Graph similarity search has been studied extensively in
database and data mining communities[8][9]. The similarity
was typically defined by either exact match (full-graph or
sub-graph isomorphism)[10] or measuring of structural
similarity, e.g. graph edit distances[11]. Most of the
approaches proposed in this direction were not learning-
based, and focused on efficiency.

Graph kernels are kernels on graphs designed to capture
the graph similarity, and can be used in kernel methods for
e.g. graph classification[12]. Popular graph kernels included
those that measured the similarity between walks or paths on
graphs[13], kernels based on limited-sized substructures and
kernels based on sub-tree structure[14]. A recent survey on
graph kernels can be found in the article [15]. Graph kernels
were usually used in models that may have learned
components, but the kernels themselves were hand-designed
and motivated by graph theory. They can typically be
formulated as first computing the feature vectors for each
graph (the kernel embedding), and then take inner product
between these vectors to compute the kernel value. One
exception was [16] where the co-occurrence of graph
elements (substructures, walks, etc.) were learned, but the
basic elements were still hand-designed. Compared to these
approaches, our graph neural network, which is based on
similarity learning framework, learns the similarity metric
end-to-end.

C. Graph Nural Network and Graph Representation

Learning

The history of Graph Neural Networks (GNNs) goes
back to at least the early work by Gori and Scarselli [17],
who proposed to use a propagation process to learn node
representations. These models have been further developed
by incorporating modern deep learning components [18]. A
separate line of work focused on generalizing convolutions
to graphs [19]. Popular graph convolutional networks also
computed node updates by aggregating information in local
neighborhoods [20], making them the same family of models
as GNNs. GNNs have been successfully used in many
domains [21]. Most of the previous work on GNNs focused
on supervised prediction problems [22]. The graph similarity
learning problem we study in this paper and the new graph
matching model can be good additions to this family of
models. Independently Al-Rfou [23] also proposed a cross
graph matching mechanism similar to ours, for the problem
of unsupervised graph representation learning.

Recently Xu [24], Morris [25] studied the discriminative
power of GNNs and concluded that GNNs are as powerful as
the Weisfeiler-Lehman algorithm in terms of distinguishing
graphs (isomorphism test). In this paper, however we study
the similarity learning problem, i.e. how similar are two
graphs, rather than whether two graphs are identical. In this
setting, learned models can adapt to the metric we have data
for, while hand-coded algorithms cannot easily adapt.

III. GRAPH NEURAL NETWORK MODEL FOR CALLIGRAPHY

STRUCTURE SIMILARITY MEASUREMENT

A. Framework

Given a calligraphy character image, denoted as P. First
of all, extract the skeleton of the calligraphy image, then
propose a method that establish the skeleton to the graph
structure G. We propose a mapping function F that
transforms G to the distance space, then a distance function
d(G1,G2) in distance space can measure the structure
similarity between any graph Gi and Gj.

B. Establish Graph Structure From Calligraphy character

Skeleton

Skeleton is an important feature of a shape, especially for
calligraphy character. We use skeleton extract algorithm [30]
to extract skeleton of the calligraphy character which is
shown in the Figure 1. The graph has the node set and edge
set, so we need to transfer the original skeleton to graph
structure.

Figure 1 The original calligraphy character(left) and the skeleton of
calligraphy character(right)

Intuitively, we can just model each skeleton point as a

node in the graph, and if two nodes are 8-neighbor connected,
we set an edge between these two nodes. The number of
points in the graph is the number points in the skeleton,
which is usually more than 300 points in an image with
256×256 pixels. Most of the points are redundant and will
increase the complexity of the down-stream algorithm.
Furthermore, most of the nodes in the graph only have two
edges between other nodes. The adjacent matrix of this graph
is quite sparse.

So, in order to improve the representation effectiveness
of the calligraphy graph structure, we establish the graph
structure through the follow steps:

• Step 1: Finding all terminal points in the skeleton
image. Terminal points have the feature with only
one neighbor point. The terminal points are usually
the terminal of the strokes of character.

• Step 2: Finding all crossing points in the skeleton
image. Crossing points have the feature with more
than three neighbor points. The crossing points
usually are the cross points between two strokes of
character.

• Step 3: If the crossing points are connected which is
shown in Figure 2, these connected crossing points
will be considered as one point in the graph.

• Step 4: Visiting every terminal node. If a terminal
node is connected with a crossing point, then add an
edge between these two nodes.

• Step 5: Adding inner points as nodes for building the
complex structure of stroke for the case that a stoke
between two nodes are too long to build a correct
structure, which is show in Figure 3.

Eventually, the graph structure has been established,
which consider the trade of between node number and
represent effectiveness.

Figure 2 Each square is a pixel of the skeleton, all of the red square has more
than three neighbor, these connected red square should be considered as one
node in the graph generated by the skeleton.

Figure 3 To take more information of the stroke into account, we add inner
nodes between terminal node and cross node. The connected crossing points
are reduced to one behavior point in this figure.

C. Graph Embedding Model

Given two graphs G1(V1, E1) and G2(V2, E2), our model

embeds the two graphs into two vectors individually through
node embedding, message propagation, aggregation process,
which is show in the Figure 4. Then we use similarity metric
measure the similarity between graphs.

graph generated from
calligraphy

Propagation process

Graph vector
Dimention of n Dimention of n

Calligraphy similarity

Figure 4. The framework of propoese model to compute similarity of to
graph which is generated by the calligraphy skeleton to represent similarity
of calligraphy characters.

• Encoding layer
The encoding layer encodes the node feature and edge

feature through MLP, as shown in the follow.

(0)

(0)

(),

(), (,)

i node i

i edge ij

h MLP x i V

e MLP x i j E

=

=

• Message propagation layer
The message propagation layer is the core layer of the

graph neural network. Each node collects features from its
neighbor nodes and merges the information to the features of
itself. Here we use the Graph Attention Network(GAT)[26]
as the message propagation module. We can make multilayer
GAT module to collect faraway node features of the current
nodes.

() ()

(1) ()

:(,)

(, ,)

(,)

t t

j i message i j ij

t t

i node i j i

j j i E

m f h h e

h f h m

→

+

→

=

=

• Aggregator layer
After a certain number T rounds of propagations, an

aggregator takes all node representations as input, and
computes a graph level representation. That means, to
aggregate all the node features and embed the whole graph
into a vector. We use the proposed aggregation module in
[27]. This aggregate module transforms node feature via
MLP layer and weight them together with the coefficient
from gate MLP layer. Eventually, the last MLP layer
transform the vector to the target dimension vector.

() ()((()) ())T T

G G gate i i

i V

h MLP MLP h MLP h

=

D. Loss Function

We train our model on a set of triples with an end-to-end
framework. The triple data has three graphs, G1, G2 and G3.
All of three graphs are from the same calligraphy character.
G1 is the reference calligraphy. G2 and G3 are the copying
characters. G2 is more similar with the G1 than with G3 and
G3 is more dissimilar with G1 than with G2. We call G2 the
positive labeled graph and G3 the negative labeled graph.
Our model needs to predict the positive labeled graph more
similar than the negative labeled graph. Hence, we optimize
the following margin-based triplet loss:

1 2 3(, ,) 1 2 1 3[max{0, (,) (,) }]triplet G G GL E d G G d G G = − +

This loss encourages d(G1, G2) to be smaller than d(G1,
G3) by at least a margin γ.

IV. EXPERIMENT

A. Dataset

We collect 200 calligraphy character images which were
created by famous Chinese calligrapher such as Yan
Zhenqing, Wen Zhengming, and Mi Fu. We label 200

positive images and 200 negative character images from
calligraphy learner.

The positive calligraphy images are collected from the
calligraphy learner. The positive labeled images do the best
to have the excellent similarity performance during their
generation process by the learner.

The negative calligraphy images are also collected from
the calligraphy learner. Generally, the negative labeled
calligraphy character images have the following
shortcomings: (1) strokes may be longer or shorter than
reference calligraphy character image, (2) position of subpart
may deviate from its reference position, (3) stroke may be
wider or thinner than the reference calligraphy character
image.

As shown in Figure 5, left column is the reference
calligraphy images, middle column is the positive labeled
calligraphy image and the right column is the negative
calligraphy image.

Figure 5 The left column contains the five reference images. The middle
column contains the corresponding positive images which is much similar to
the reference images. The right column contains the corresponding negative
labeled images which is not similar to the reference and usually have some
structure problems.

We invited a calligraphy expert and asked him whether
the labeled results are correct in the calligraphy domain. And
then we rectify incorrect labels in the dataset according to the
expert’s advice.

B. Node Feature and Edge Feature of Graph With prior

Information

Given two graphs G1=(V1, E1) and G2=(V2, E2), we want
a model that produces the similarity score s(G1, G2) between
them. Each graph G=(V, E) is represented as sets of nodes V
and edges E. Optionally each node i V can be associated
with a feature vector xi , and each edge (i, j) E associated
with a feature vector xij. These features can represent, e.g.
type of a node and direction of an edge. If a node or an edge

does not have any associated features, we set the
corresponding vector to a constant vector of 1s.

We train a Resnet50 [29] network to predict the
calligraphy character category with dataset which has more
than two million images of 3,500 kinds of Chinese common
characters. After testing, the model has the predict accuracy
of 97% at the worst performance. The convolution layer can
extract the feature of the image from shallow level to the
deep level. And do prediction based on the aggregation
feature. Given a calligraphy character image, we extract the
output features from the first and second convolution layers
as the node feature in the corresponding position.

In our dataset, we set edge attribute and set node attribute
from the middle feature of the pretrained ResNet50 character
recognition network as the prior information.

For example, the pixel position of node n in the image is
(x, y). The feature extraction module has the convolutional
layer and pooling layer, which usually reduce the image size
proportionally. We find the corresponding pixel position (x1,
y1) of the source position (x, y). Then pick out the whole
channel in the pixel position in (x1, y1) as the node feature.

The node feature has a dimension number of 256, which
is flattened from the channel of node position of the feature.

We use data augmentation to expand the generalization
of our model, which includes image scaling and image
rotating in small range.

C. Graph network Structure

We have given the overall structure of the proposed
network. In the experiment, the concrete parameter is shown
as Table 1.

Layer name Input Dimension Output Dimension

Node encoding layer N 256 N 128

Propagation layer 1 N 128 N 128

Propagation layer 2 N 128 N 128

Propagation layer 3 N 128 N 64

Aggregator layer N 64 64

TABLE I. INNER PARAMETERS OF PROPOESED MODUEL

We use three propagation layers to update the attribute of
each node. All of the three layers use graph attention module
as the message aggregation function, while layer 1 and layer
2 with two multi-heads and layer 3 without multi-head.

The N respect to the node number of the input graph. The
aggregator layer collects all attribute of nodes, then the input
graph is embedded into a vector with 64 dimensions.

D. Result

We compare precision of prediction of our model with
the traditional graph kernel framework. The graph kernel
framework transforms the input graph into the different
vector spaces with different kernel functions. We even could
design our own graph kernel method follow graph kernel
method.

We train our model on our dataset with the following
configuration: Adam optimizer [28] with decay 0.9 and
momentum 0.9, initial learning rate 0.002 that decays by
0.97 every 2.4 epochs.

Table 1 shows the prediction result of our model, graph
kernel with shortest path kernel and graphlet sampling kernel.
The shortest path kernel and graphlet sampling kernel need
node attribute optionally and do not need edge attribute.
Result shows that our model has better performance than the
traditional graph kernel method.

Method Prior Information Test Accuracy

Shortest path kernel False 60%

graphlet sampling
kernel

False 72%

Shortest path kernel True 63%

graphlet sampling
kernel

True 72%

Our model False 69%

Our model True 78%

TABLE II. EXPERIMENT RESULT COMPARATION

Figure 6 The Histogram figure of the comparing experience result of
different method.

The training process learns an embedding network that
embedding the input graph in to a vector with the dimension
of 32. Therefore, facing with the application scenario that
scoring the calligraphy character copying practice from the
reference calligraphy reference character, we can just simply
deem the normed distance of two embedding vectors as the
quality scores of the outcomes of the calligraphy characters
copying practice.

V. CONCLUSION

In this paper, we propose a graph similarity model which
embed the graph into a vector through graph neural network.
Experiment shows that the result outperforms the traditional
graph kernel methods in the area of time and space
complexity.

The proposed model has following limitations:

• The prediction precision can be largely improved
with more efficient network model.

• The model size can be compressed with novel model
compressing algorithm. It will reduce the number of
model parameters and increase response rate of
algorithm.

• From the application point of view, the model does
not tell how to rectify the negative labeled
calligraphy character image so as to make it more
likely to the reference character image.

In the future, we will concentrate on increasing the
predict precision on positive labeled calligraphy and negative
labeled calligraphy. Furthermore, we will focus on more
specific similarity criterion and give the natural languages-
based advises to the calligraphy character copying practice.

ACKNOWLEDGMENT

This work was supported by National Key Research and
Development Project under Grant No. E0M2040101. We
also thank all colleagues and graduate students who helped
us for our system and experiments.

REFERENCES

[1] Bi F, Han J, Tian Y, et al. SSGAN: generative adversarial networks
for the stroke segmentation of calligraphic characters[J]. The Visual
Computer, 2021: 1-10

[2] ZHU X, YANG C. Graph Based Stroke Extraction for Chinese
Calligraphy[J]. Software Guide, 2019.

[3] Chen X, Lian Z, Tang Y, et al. A benchmark for stroke extraction of
chinese characters[J]. Acta Scientiarum Naturalium Universitatis
Pekinensis, 2016, 2(3): 4.

[4] Narasimhan B. Calligraphy Style Transfer using Generative
Adversarial Networks[J].

[5] Miao Y, Jia H, Tang K, et al. Chinese Calligraphy Generation Based
on Residual Dense Network[C]//Proceedings of the 2019 4th
International Conference on Intelligent Information Processing. 2019:
508-512.

[6] Zhang J, Guo M, Fan J. A novel CNN structure for fine-grained
classification of Chinese calligraphy styles[J]. International Journal
on Document Analysis and Recognition (IJDAR), 2019, 22(2): 177-
188.

[7] Zhang J, Wang L, Wen X. Combination of GIST and PHOG Features
for Calligraphy Styles Classification[C]//Proceedings of the 2019 4th
International Conference on Multimedia Systems and Signal
Processing. 2019: 21-24.

[8] Yan X, Yu P S, Han J. Substructure similarity search in graph
databases[C]//Proceedings of the 2005 ACM SIGMOD international
conference on Management of data. 2005: 766-777.

[9] Dijkman R, Dumas M, García-Bañuelos L. Graph matching
algorithms for business process model similarity
search[C]//International conference on business process management.
Springer, Berlin, Heidelberg, 2009: 48-63. ference on Management of
data, pp. 766–777, 2005.

[10] Berretti S, Del Bimbo A, Vicario E. Efficient matching and indexing
of graph models in content-based retrieval[J]. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2001, 23(10): 1089-1105.

[11] Willett P, Barnard J M, Downs G M. Chemical similarity searching[J].
Journal of chemical information and computer sciences, 1998, 38(6):
983-996.

[12] Vishwanathan S V N, Schraudolph N N, Kondor R, et al. Graph
kernels[J]. Journal of Machine Learning Research, 2010, 11: 1201-
1242.

[13] Borgwardt K M, Kriegel H P. Shortest-path kernels on
graphs[C]//Fifth IEEE international conference on data mining
(ICDM'05). IEEE, 2005: 8 pp.

[14] Shervashidze N, Borgwardt K M. Fast subtree kernels on
graphs[C]//NIPS. 2009: 1660-1668.

[15] Kriege N M, Johansson F D, Morris C. A survey on graph kernels[J].
Applied Network Science, 2020, 5(1): 1-42.

[16] Yanardag P, Vishwanathan S V N. Deep graph
kernels[C]//Proceedings of the 21th ACM SIGKDD international
conference on knowledge discovery and data mining. 2015: 1365-
1374.

[17] Gori M, Monfardini G, Scarselli F. A new model for learning in
graph domains[C]//Proceedings. 2005 IEEE International Joint
Conference on Neural Networks, 2005. IEEE, 2005, 2: 729-734.

[18] Li Y, Tarlow D, Brockschmidt M, et al. Gated graph sequence neural
networks[J]. arXiv preprint arXiv:1511.05493, 2015.

[19] Bronstein M M, Bruna J, LeCun Y, et al. Geometric deep learning:
going beyond euclidean data[J]. IEEE Signal Processing Magazine,
2017, 34(4): 18-42.

[20] Kipf T N, Welling M. Semi-supervised classification with graph
convolutional networks[J]. arXiv preprint arXiv:1609.02907, 2016.

[21] Gilmer J, Schoenholz S S, Riley P F, et al. Neural message passing
for quantum chemistry[C]//International conference on machine
learning. PMLR, 2017: 1263-1272.

[22] Li Y, Vinyals O, Dyer C, et al. Learning deep generative models of
graphs[J]. arXiv preprint arXiv:1803.03324, 2018.

[23] Al-Rfou R, Perozzi B, Zelle D. Ddgk: Learning graph representations
for deep divergence graph kernels[C]//The World Wide Web
Conference. 2019: 37-48.

[24] Xu K, Hu W, Leskovec J, et al. How powerful are graph neural
networks?[J]. arXiv preprint arXiv:1810.00826, 2018.

[25] Morris C, Ritzert M, Fey M, et al. Weisfeiler and leman go neural:
Higher-order graph neural networks[C]//Proceedings of the AAAI
Conference on Artificial Intelligence. 2019, 33(01): 4602-4609.

[26] Veličković P, Cucurull G, Casanova A, et al. Graph attention
networks[J]. arXiv preprint arXiv:1710.10903, 2017.

[27] Li Y, Tarlow D, Brockschmidt M, et al. Gated graph sequence neural
networks[J]. arXiv preprint arXiv:1511.05493, 2015.

[28] Kingma D P, Ba J. Adam: A method for stochastic optimization[J].
arXiv preprint arXiv:1412.6980, 2014.

[29] He K, Zhang X, Ren S, et al. Deep residual learning for image
recognition[C]//Proceedings of the IEEE conference on computer
vision and pattern recognition. 2016: 770-778.

[30] Zhang T Y, Suen C Y. A fast parallel algorithm for thinning digital
patterns[J]. Communications of the ACM, 1984, 27(3): 236-239.

