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Abstract—Calligraphy is one of the most famous traditional art 

in China. The Calligraphy copying practice is the inevitable 

phase when learning Calligraphy. Calligraphy character has 

structure and stroke attributes, such as length of stroke and 

the position distribution of subpart, which can identify each 

certain character. In this paper, we propose a graph neural 

network-based algorithm which can measure the similarity 

between two Calligraphy characters according to structure 

and stoke. Experiment shows that the proposed method gives 

satisfied results with respect to the similarity measurement for 

the Calligraphy copying practice.  
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I.  INTRODUCTION 

Calligraphy is a famous Chinese traditional art. In recent 
years, there are many research works focus on the field of 
digital calligraphy by combining the traditional art and 
computer technology, such as calligraphy stroke 
segmentation [1][2][3], calligraphy style generation [4][5], 
and calligraphy author recognition [6][7].  

The area of calligraphy similarity estimation consists of 
two basic aspects: stroke similarity estimation and structure 
similarity estimation. The process of stroke similarity starts 
at segmenting each stroke from the original calligraphy 
character. After strokes segmentation, it computes the 
similarity of the two strokes that can be treated as a shape 
similarity problem. Hence, shape similarity algorithms can 
be used for addressing this problem. 

The structure of a calligraphy character represents quite 
abstract meaning and is different from character to character. 

Usually, the skeleton of the calligraphy character is used to 
represent the structure of character. And the current 
similarity algorithms between two characters skeletons focus 
on computing the distance between two points sets of 
skeleton position. Although such algorithms considered the 
position of skeleton point as the local information, they took 
few global information for illustrating the overall 
characteristics of a calligraphy character. Hence, it can’t 
totally represent the structure similarity of two calligraphy 
character. 

In this paper, we define the skeleton of a Calligraphy 
character as a graph model. We embed the graph model into 
a vector space using graph neural network. The embedding 
model can help to measure the similarity between two given 
calligraphy images. Experiment shows that the method gives 
satisfied result in estimating structure similarity. 

The paper is organized as follows: The part one is the 
introduction of the paper. The part two is the related work of 
the calligraphy estimated. The part three shows the details of 
the proposed graph neural network. The part four shows 
comparative experience and result. The last part draws the 
conclusion of the paper. 

 

II. RELATED WORK 

A. Similarity of Calligraphy Characters 

The similarity of two calligraphy characters contains two 
important parts: stroke similarity and structure similarity. A 
Calligraphy character consists of a set of strokes that is the 
basic component. The similarity of stroke pairs represents 
the similarity of shape pairs in the abstract level.  
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B. Graph Similarity Search and Graph Kernels 

Graph similarity search has been studied extensively in 
database and data mining communities[8][9]. The similarity 
was typically defined by either exact match (full-graph or 
sub-graph isomorphism)[10] or measuring of structural 
similarity, e.g. graph edit distances[11]. Most of the 
approaches proposed in this direction were not learning-
based, and focused on efficiency.  

Graph kernels are kernels on graphs designed to capture 
the graph similarity, and can be used in kernel methods for 
e.g. graph classification[12]. Popular graph kernels included 
those that measured the similarity between walks or paths on 
graphs[13], kernels based on limited-sized substructures and 
kernels based on sub-tree structure[14]. A recent survey on 
graph kernels can be found in the article [15]. Graph kernels 
were usually used in models that may have learned 
components, but the kernels themselves were hand-designed 
and motivated by graph theory. They can typically be 
formulated as first computing the feature vectors for each 
graph (the kernel embedding), and then take inner product 
between these vectors to compute the kernel value. One 
exception was [16] where the co-occurrence of graph 
elements (substructures, walks, etc.) were learned, but the 
basic elements were still hand-designed. Compared to these 
approaches, our graph neural network, which is based on 
similarity learning framework, learns the similarity metric 
end-to-end. 

C. Graph Nural Network and Graph Representation 

Learning 

The history of Graph Neural Networks (GNNs) goes 
back to at least the early work by Gori and Scarselli [17], 
who proposed to use a propagation process to learn node 
representations. These models have been further developed 
by incorporating modern deep learning components [18]. A 
separate line of work focused on generalizing convolutions 
to graphs [19]. Popular graph convolutional networks also 
computed node updates by aggregating information in local 
neighborhoods [20], making them the same family of models 
as GNNs. GNNs have been successfully used in many 
domains [21]. Most of the previous work on GNNs focused 
on supervised prediction problems [22]. The graph similarity 
learning problem we study in this paper and the new graph 
matching model can be good additions to this family of 
models. Independently Al-Rfou [23] also proposed a cross 
graph matching mechanism similar to ours, for the problem 
of unsupervised graph representation learning. 

Recently Xu [24], Morris [25] studied the discriminative 
power of GNNs and concluded that GNNs are as powerful as 
the Weisfeiler-Lehman algorithm in terms of distinguishing 
graphs (isomorphism test). In this paper, however we study 
the similarity learning problem, i.e. how similar are two 
graphs, rather than whether two graphs are identical. In this 
setting, learned models can adapt to the metric we have data 
for, while hand-coded algorithms cannot easily adapt. 

 

III. GRAPH NEURAL NETWORK MODEL FOR CALLIGRAPHY 

STRUCTURE SIMILARITY MEASUREMENT 

A. Framework 

Given a calligraphy character image, denoted as P. First 
of all, extract the skeleton of the calligraphy image, then 
propose a method that establish the skeleton to the graph 
structure G. We propose a mapping function F that 
transforms G to the distance space, then a distance function 
d(G1,G2) in distance space can measure the structure 
similarity between any graph Gi and Gj. 

B. Establish Graph Structure From Calligraphy character 

Skeleton 

Skeleton is an important feature of a shape, especially for 
calligraphy character. We use skeleton extract algorithm [30] 
to extract skeleton of the calligraphy character which is 
shown in the Figure 1. The graph has the node set and edge 
set, so we need to transfer the original skeleton to graph 
structure. 

         
 

Figure 1 The original calligraphy character(left) and the skeleton of 
calligraphy character(right) 

 
Intuitively, we can just model each skeleton point as a 

node in the graph, and if two nodes are 8-neighbor connected, 
we set an edge between these two nodes. The number of 
points in the graph is the number points in the skeleton, 
which is usually more than 300 points in an image with 
256×256 pixels. Most of the points are redundant and will 
increase the complexity of the down-stream algorithm. 
Furthermore, most of the nodes in the graph only have two 
edges between other nodes. The adjacent matrix of this graph 
is quite sparse. 

So, in order to improve the representation effectiveness 
of the calligraphy graph structure, we establish the graph 
structure through the follow steps: 

• Step 1: Finding all terminal points in the skeleton 
image. Terminal points have the feature with only 
one neighbor point. The terminal points are usually 
the terminal of the strokes of character. 

• Step 2: Finding all crossing points in the skeleton 
image. Crossing points have the feature with more 
than three neighbor points. The crossing points 
usually are the cross points between two strokes of 
character. 

• Step 3: If the crossing points are connected which is 
shown in Figure 2, these connected crossing points 
will be considered as one point in the graph. 



• Step 4: Visiting every terminal node. If a terminal 
node is connected with a crossing point, then add an 
edge between these two nodes.  

• Step 5: Adding inner points as nodes for building the 
complex structure of stroke for the case that a stoke 
between two nodes are too long to build a correct 
structure, which is show in Figure 3. 

Eventually, the graph structure has been established, 
which consider the trade of between node number and 
represent effectiveness. 

 
 

 
 

Figure 2 Each square is a pixel of the skeleton, all of the red square has more 
than three neighbor, these connected red square should be considered as one 
node in the graph generated by the skeleton. 

 
 

 
 
 

Figure 3 To take more information of the stroke into account, we add inner 
nodes between terminal node and cross node. The connected crossing points 
are reduced to one behavior point in this figure.  

 
 

C. Graph Embedding Model 

 
Given two graphs G1(V1, E1) and G2(V2, E2), our model 

embeds the two graphs into two vectors individually through 
node embedding, message propagation, aggregation process, 
which is show in the Figure 4. Then we use similarity metric 
measure the similarity between graphs. 
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calligraphy
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Figure 4. The framework of propoese model to compute similarity of to 
graph which is generated by the calligraphy skeleton to represent similarity 
of calligraphy characters. 

 

• Encoding layer  
The encoding layer encodes the node feature and edge 

feature through MLP, as shown in the follow. 
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• Message propagation layer 
The message propagation layer is the core layer of the 

graph neural network. Each node collects features from its 
neighbor nodes and merges the information to the features of 
itself. Here we use the Graph Attention Network(GAT)[26] 
as the message propagation module. We can make multilayer 
GAT module to collect faraway node features of the current 
nodes. 
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• Aggregator layer 
After a certain number T rounds of propagations, an 

aggregator takes all node representations as input, and 
computes a graph level representation. That means, to 
aggregate all the node features and embed the whole graph 
into a vector. We use the proposed aggregation module in 
[27]. This aggregate module transforms node feature via 
MLP layer and weight them together with the coefficient 
from gate MLP layer. Eventually, the last MLP layer 
transform the vector to the target dimension vector. 
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D. Loss Function 

We train our model on a set of triples with an end-to-end 
framework. The triple data has three graphs, G1, G2 and G3. 
All of three graphs are from the same calligraphy character. 
G1 is the reference calligraphy. G2 and G3 are the copying 
characters. G2 is more similar with the G1 than with G3 and 
G3 is more dissimilar with G1 than with G2. We call G2 the 
positive labeled graph and G3 the negative labeled graph. 
Our model needs to predict the positive labeled graph more 
similar than the negative labeled graph. Hence, we optimize 
the following margin-based triplet loss: 

 

1 2 3( , , ) 1 2 1 3[max{0, ( , ) ( , ) }]triplet G G GL E d G G d G G = − +  

This loss encourages d(G1, G2) to be smaller than d(G1, 
G3) by at least a margin γ. 

IV. EXPERIMENT 

A. Dataset 

We collect 200 calligraphy character images which were 
created by famous Chinese calligrapher such as Yan 
Zhenqing, Wen Zhengming, and Mi Fu. We label 200 



positive images and 200 negative character images from 
calligraphy learner.  

The positive calligraphy images are collected from the 
calligraphy learner. The positive labeled images do the best 
to have the excellent similarity performance during their 
generation process by the learner.  

The negative calligraphy images are also collected from 
the calligraphy learner. Generally, the negative labeled 
calligraphy character images have the following 
shortcomings: (1) strokes may be longer or shorter than 
reference calligraphy character image, (2) position of subpart 
may deviate from its reference position, (3) stroke may be 
wider or thinner than the reference calligraphy character 
image. 

As shown in Figure 5, left column is the reference 
calligraphy images, middle column is the positive labeled 
calligraphy image and the right column is the negative 
calligraphy image. 

 
Figure 5 The left column contains the five reference images. The middle 
column contains the corresponding positive images which is much similar to 
the reference images. The right column contains the corresponding negative 
labeled images which is not similar to the reference and usually have some 
structure problems.  

We invited a calligraphy expert and asked him whether 
the labeled results are correct in the calligraphy domain. And 
then we rectify incorrect labels in the dataset according to the 
expert’s advice. 

B. Node Feature and Edge Feature of Graph With prior 

Information  

Given two graphs G1=(V1, E1) and G2=(V2, E2), we want 
a model that produces the similarity score s(G1, G2) between 
them. Each graph G=(V, E) is represented as sets of nodes V 
and edges E. Optionally each node i  V can be associated 
with a feature vector xi , and each edge (i, j)   E associated 
with a feature vector xij. These features can represent, e.g. 
type of a node and direction of an edge. If a node or an edge 

does not have any associated features, we set the 
corresponding vector to a constant vector of 1s. 

We train a Resnet50 [29] network to predict the 
calligraphy character category with dataset which has more 
than two million images of 3,500 kinds of Chinese common 
characters. After testing, the model has the predict accuracy 
of 97% at the worst performance. The convolution layer can 
extract the feature of the image from shallow level to the 
deep level. And do prediction based on the aggregation 
feature. Given a calligraphy character image, we extract the 
output features from the first and second convolution layers 
as the node feature in the corresponding position. 

In our dataset, we set edge attribute and set node attribute 
from the middle feature of the pretrained ResNet50 character 
recognition network as the prior information. 

For example, the pixel position of node n in the image is 
(x, y). The feature extraction module has the convolutional 
layer and pooling layer, which usually reduce the image size 
proportionally. We find the corresponding pixel position (x1, 
y1) of the source position (x, y). Then pick out the whole 
channel in the pixel position in (x1, y1) as the node feature. 

The node feature has a dimension number of 256, which 
is flattened from the channel of node position of the feature. 

We use data augmentation to expand the generalization 
of our model, which includes image scaling and image 
rotating in small range. 

C. Graph network Structure 

We have given the overall structure of the proposed 
network. In the experiment, the concrete parameter is shown 
as Table 1. 

 

Layer name Input Dimension Output Dimension 

Node encoding layer N  256 N  128 

Propagation layer 1 N  128 N  128 

Propagation layer 2 N  128 N  128 

Propagation layer 3 N  128 N  64 

Aggregator layer N  64 64 

TABLE I.  INNER PARAMETERS OF PROPOESED MODUEL 

We use three propagation layers to update the attribute of 
each node. All of the three layers use graph attention module 
as the message aggregation function, while layer 1 and layer 
2 with two multi-heads and layer 3 without multi-head.   

The N respect to the node number of the input graph. The 
aggregator layer collects all attribute of nodes, then the input 
graph is embedded into a vector with 64 dimensions.  

D. Result 

We compare precision of prediction of our model with 
the traditional graph kernel framework. The graph kernel 
framework transforms the input graph into the different 
vector spaces with different kernel functions. We even could 
design our own graph kernel method follow graph kernel 
method.  



We train our model on our dataset with the following 
configuration: Adam optimizer [28] with decay 0.9 and 
momentum 0.9, initial learning rate 0.002 that decays by 
0.97 every 2.4 epochs.  

Table 1 shows the prediction result of our model, graph 
kernel with shortest path kernel and graphlet sampling kernel. 
The shortest path kernel and graphlet sampling kernel need 
node attribute optionally and do not need edge attribute. 
Result shows that our model has better performance than the 
traditional graph kernel method. 

 
 

Method Prior Information Test Accuracy 

Shortest path kernel False 60% 

graphlet sampling 
kernel 

False 72% 

Shortest path kernel True 63% 

graphlet sampling 
kernel 

True 72% 

Our model False 69% 

Our model True 78% 

TABLE II.  EXPERIMENT RESULT COMPARATION 

 
Figure 6 The Histogram figure of the comparing experience result of 
different method. 
 

The training process learns an embedding network that 
embedding the input graph in to a vector with the dimension 
of 32. Therefore, facing with the application scenario that 
scoring the calligraphy character copying practice from the 
reference calligraphy reference character, we can just simply 
deem the normed distance of two embedding vectors as the 
quality scores of the outcomes of the calligraphy characters 
copying practice.  

 

V. CONCLUSION 

In this paper, we propose a graph similarity model which 
embed the graph into a vector through graph neural network. 
Experiment shows that the result outperforms the traditional 
graph kernel methods in the area of time and space 
complexity. 

The proposed model has following limitations: 

• The prediction precision can be largely improved 
with more efficient network model. 

• The model size can be compressed with novel model 
compressing algorithm. It will reduce the number of 
model parameters and increase response rate of 
algorithm.  

• From the application point of view, the model does 
not tell how to rectify the negative labeled 
calligraphy character image so as to make it more 
likely to the reference character image. 

In the future, we will concentrate on increasing the 
predict precision on positive labeled calligraphy and negative 
labeled calligraphy. Furthermore, we will focus on more 
specific similarity criterion and give the natural languages-
based advises to the calligraphy character copying practice. 
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