
Learning to Navigate in Human
Environments via Deep Reinforcement

Learning

Xingyuan Gao1,2, Shiying Sun1(B), Xiaoguang Zhao1, and Min Tan1

1 The State Key Laboratory of Management and Control for Complex Systems,
Institute of Automation, Chinese Academy of Sciences, Beijing, China

{gaoxingyuan2016,sunshiying2013,xiaoguang.zhao,min.tan}@ia.ac.cn
2 University of Chinese Academy of Sciences, Beijing, China

Abstract. Mobile robots have been widely applied in human populated
environments. To interact with humans, the robots require the capac-
ity to navigate safely and efficiently in complex environments. Recent
works have successfully applied reinforcement learning to learn socially
normative navigation behaviors. However, they mostly focus on model-
ing human-robot cooperations and neglect complex interactions between
pedestrians. In addition, these methods are implemented using assump-
tions of perfect sensing about the states of pedestrians, which makes
the model less robust to the perception uncertainty. This work presents
a novel algorithm to learn an efficient navigation policy that exhibits
socially normative navigation behaviors. We propose to employ convo-
lutional social pooling to jointly capture human-robot cooperations and
inter-human interactions in an actor-critic reinforcement learning frame-
work. In addition, we propose to focus on partial observability in socially
normative navigation. Our model is capable to learn the representation of
unobservable states with recurrent neural networks and further improves
the stability of the algorithm. Experimental results show that the pro-
posed learning algorithm enables robots to learn socially normative navi-
gation behaviors and achieves a better performance than state-of-the-art
methods.

Keywords: Socially normative navigation · Reinforcement learning

1 Introduction

In recent years, mobile robots have been developed to provide mobile services in
human populated environments, such as shopping malls and subway stations.
The task requires the robot not only to be socially normative with respect
to person’s space but also to navigate efficiently in crowded environments.

This work is partially supported by the National Natural Science Foundation of China
under Grants 61673378 and 61421004.

c© Springer Nature Switzerland AG 2019
T. Gedeon et al. (Eds.): ICONIP 2019, LNCS 11953, pp. 418–429, 2019.
https://doi.org/10.1007/978-3-030-36708-4_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-36708-4_34&domain=pdf
https://doi.org/10.1007/978-3-030-36708-4_34

Learning to Navigate in Human Environments via Deep RL 419

Different from traditional navigation methods, in “socially normative naviga-
tion”, pedestrians are considered as more than dynamic obstacles, but rather as
rational agents which maintain social relations and comply with social norms.

A usual method [1,2] on socially normative navigation treats pedestrians as
dynamic obstacles and uses hand-crafted rules for collision avoidance. However,
it is infeasible to program the complex behaviors manually and these methods
do not consider human behaviors. To this end, some works [3,4] try to find
a collision-free path by forecasting the future states of pedestrians according
to pedestrians’ motion. Nevertheless, in dense crowds, the set of potential paths
may occupy most of the space, which causes the freezing robot problem [5]. A lot
of works [6,7] are presented to capture the interdependencies of the trajectories
and learn human navigation behaviors. However, these methods suffer from high
computational cost. Thus, recent works have applied reinforcement learning (RL)
to solve the above issues.

Although several works [8–11] successfully apply RL to the task of socially
normative navigation and present good performance, there are some issues to
address. First, existing methods [8–10] focus on modeling the effect of pedestrian
motion on robot, but neglect complex interactions between pedestrians. Jointly
capturing human-robot cooperations and inter-human interactions is essential for
the robot to navigate safely and efficiently in complex environments. To this end,
Chen et al. [11] propose to learn the collective importance of neighboring humans
with a self-attention mechanism. However, the method relies on predicting the
future states of pedestrians to find an action form the state-value function, which
becomes infeasible in complex environments where the behaviors of pedestrians
are difficult to predict. What’s more, the methods [8–11] rely on perfect sensors
to obtain the states of pedestrians. However, the assumption does not hold in
real world. Many sources can lead to pedestrian tracking failures, such as sen-
sor limitations, occlusions and perception uncertainty, which results in partial
observability. What’s more, pedestrians’ intended goal position, preferred speed
is unobservable. Existing methods [8–11] are unable to infer unobservable states
since inferring the unobservable states often relies on history information, which
makes the algorithm less robust to the partial observability.

Inspired by the existing methods [8–11], in this work, we present a novel
framework to address the above issues of socially normative navigation using RL.
The contributions of this work are as follows: (1) We propose to use convolutional
social pooling [12] to encode the states of pedestrians and robot. Our model
can handle an arbitrary number of pedestrians while jointly capturing human-
robot cooperations and inter-human relations. (2) We propose to focus on partial
observability in socially normative navigation and employ a recurrent neural
network (RNN) architecture called gated recurrent unit (GRU) [13] to infer the
unobservable states and further improve the robustness of algorithm. (3) The
simulation results show that our proposed model achieves a better performance
than state-of-the-art methods.

The paper is organized as follows: In Sect. 2, we introduce the problem for-
mulation. In Sect. 3, we present the details of our approach. In Sect. 4, we detail
our experiments and discuss the experiment results. Finally, the conclusions are
drawn in Sect. 5.

420 X. Gao et al.

2 Problem Formulation

2.1 Problem Formulation

The task of socially normative navigation is to steer the robot from current posi-
tion to a desired goal in pedestrian-rich environments, which can be formulated
as a sequential decision making problem in a RL framework [8–11]. Let st, at

denote robot’s state and action at timestep t. Denote bi
t the observed state of a

nearby pedestrian i. For each agent (including robot and pedestrian) i, the posi-
tion and velocity can be described by pi = [pi

x, pi
y] and vi = [vi

x, vi
y] in 2D. The

joint observation states sjn
t can be divided into two parts: sjn

t = [st, bt], where
s = [p0, p0g, v

0, v0
pref , r0] denotes robot’s current position, goal position, veloc-

ity, preferred speed and radius; b = [b1, ..., bn] refers to the observed state of n
pedestrians in the field-of-view, where bi = [pi, vi, ri]. The action at is robot’s
velocity.

The goal of RL is to learn a policy πθ : sjn
t �→ at which maximizes the

expected discounted reward:

J = Eτ

[∞∑
t=1

γt−1R(sjn
t , at)

]
(1)

where τ = (sjn
1 , a1, ...) denotes the whole trajectory and at ∼ πθ(·|sjn

t). R(sjn
t , at)

is the reward received. γ ∈ (0, 1) is a discount factor.
As mentioned in [10], previous algorithms [8,9,11] employ a state-value func-

tion V (sjn
t) to estimate the expected reward at state sjn

t . However, the optimal
policy π∗(sjn

t) can only be extracted indirectly from value function V ∗(sjn
t):

π∗(sjn
t) = arg max

at

R(sjn
t , at) + γ

∫
sjn

t+1

P (sjn
t+1|sjn

t , at)V ∗(sjn
t+1)dsjn

t+1 (2)

A major challenge in finding the optimal policy is that the state-transition prob-
ability P (sjn

t+1|sjn
t , at) is unknown. In order to avoid computing integrals in (2),

previous algorithms estimate the next state sjn
t+1 by assuming that pedestrians

continue their current velocities for a sufficiently large duration. However, the
assumption of constant velocity neglects the effects of inter-human relations,
which is not valid in dense crowds [10].

2.2 Policy-Based Learning

To overcome the shortcomings of the assumption of constant velocity, we consider
a recently proposed actor-critic framework called Proximal Policy Optimization
(PPO) [14,15] instead of using a state-value function. What’s more, our model
contains a RNN architecture, which will be detailed in Sect. 3. PPO has two
improvements which make it convenient to facilitate the use of RNN. First, PPO
algorithm relies only on first order gradients. Second, PPO uses a truncated

Learning to Navigate in Human Environments via Deep RL 421

version of generalized advantage estimation with K-steps returns to support
variable length episodes:

Ât = δt + (γλ)δt+1 + ... + ... + (γλ)K−t+1δK−1 (3)

where
δt = rt + γV (sjn

t+1) − V (sjn
t) (4)

where K varies from episode to episode. t specifies the timestep index in [0,K].

Given a current policy πθold
, let the probability ratio rt(θ) = πθ(at|sjn

t)

πθold
(at|sjn

t)
,

PPO optimizes the policy by maximizing the following surrogate loss function:

Lclip
t (θ) = Êt

[
min(rt(θ)Ât, clip(rt(θ), 1 − ε, 1 + ε)Ât)

]
(5)

where the first term inside the min is an approximation of the expected advan-
tages, and the second term removes the incentive for moving rt outside of the
interval [1 − ε, 1 + ε] by clipping the probability ratio.

To approximate policy and value function with a neural network architecture,
the objective function is formulated to combine the policy surrogate loss and a
value function error term, which is maximized:

Lclip+vs+s
t (θ) = Êt

[
Lclip

t (θ) − c1L
vf
t (θ) + c2S[πθ](s

jn
t)

]
(6)

where S denotes an entropy bonus added to ensure sufficient exploration, and
Lvf

t is a squared-error loss (Vθ(s
jn
t) − V targ

t)2, and c1, c2 are hyper-parameters.

3 Approach

In this section, first, we introduce the basic concepts in our RL framework. Sec-
ond, we describe the architecture of our model. Finally, we describe the training
framework and detail the training setup.

3.1 Basic Concepts

We introduce the basic concepts in our RL framework, including state space,
action space and reward function.

(1) State Space: Different from the coordinate frame in [8–11], this work uses
a robot-centric coordinate frame with the origin at current robot position, and
the x-axis points in the direction of linear velocity of the robot. The states of the
robot and per pedestrian i through coordinate transformation are parameterized:

s̃ = [p̃0gx, p̃0gy, v0
pref , ṽ0, r0] (7)

b̃i = [p̃i
x, p̃i

y, ṽi
x, ṽi

y, ri] (8)

422 X. Gao et al.

Fig. 1. (a): Sensor limitations and occlusions in our simulation. It is assumed that only
the pedestrians in front of the robot can be detected, which simulates the restricted
field-of-view of sensors. The pedestrian A is regarded as occluded and can not be
detected if the line connecting pedestrian A and robot intersects the circle which is
centered at pedestrian B with its radius. (b): GRU unrolled for 2 timesteps. At each
time, GRU accepts the final encodings et and stores the important information in ht

for next action. So the decision step can utilize information about past.

where [p̃0gx, p̃0gy] is the goal position of robot in robot-centric coordinate frame,
ṽ0 is the translational velocity of the robot.

The previous works [8–11] are based on the assumption of perfect sensing
about the states of pedestrians, which is not valid in in reality. In our simulation,
we consider the sensor limitations and occlusions which widely exist in real world,
as illustrated in Fig. 1(a).

(2) Action Space: The robot’s action consists of a translational velocity and
change in heading angle. Similarly to [10], the action space is discretized into 11
permissible discrete velocity vectors: with a translational velocity of vpref , there
are 5 headings evenly spaced between ±π/6, for translational velocity of 0.5vpref

and 0 the heading choices are [−π/6, 0, π/6]. Although discretizing the action
space may lose some information about the structure of the action domain,
it makes the algorithm convenient to combine with other obstacle avoidance
algorithms in the future work, such as [16].

(3) Reward Function: Inspired by [8], a reward function is designed to guide
the robot to achieve the goal without collisions, which awards the robot for reach-
ing its goal and penalizes the robot for colliding with pedestrians or intruding
pedestrians’ intimate space.

Rt(s
jn
t , at) =

⎧⎪⎪⎨
⎪⎪⎩

−0.25 if dcp
t � 0

−0.1 + 0.5 · dcp
t if dcp

t < 0.2
1 if p0 = p0g
0 otherwise

(9)

where dcp
t is the minimum distance between robot and the closest pedestrian.

Learning to Navigate in Human Environments via Deep RL 423

Fig. 2. The total architecture of our model. The pedestrian encoder (FC encoder) is
a fully connected layer with shared weights. The convolutional social pooling layers
model the human-robot cooperations and inter-human interactions. In decision step,
the final encodings are fed into the GRU layer, as unrolled for 2 timesteps in Fig. 1(b).

3.2 Network Architecture

The total architecture of our model is shown in Fig. 2. We introduce our network
from the following three aspects:

(1) Convolutional Social Pooling Module: The number of surrounding pedes-
trians can vary dramatically in different scenes, which certainly brings a great
challenge to many learning-based planning methods that require a fixed-size
input [10]. Everett et al. [10] propose to feed the states of surrounding pedes-
trians into LSTMs and take the LSTM’s final hidden state as a fixed-length,
encoded state of the pedestrians. Although the LSTM encoder can handle an
arbitrary number of agent inputs, it fails to capture the inter-human interactions
in the scene. Chen et al. [11] propose to aggregate the states into a fixed-length
embedding vector by a self-attention mechanism.

Inspired by [12], we propose to extend convolutional social pooling for
robustly learning inter-human interactions. We set up our social tensor by defin-
ing a grid based on the sensor bandwidth. As shown in Fig. 2, a 9 × 5 spatial
grid is defined in front of the robot, where the grids are separated by a distance
of 1 m which approximately equals the diameter (size) of a pedestrian. The state
of each pedestrian b̃i is fed into a fully connected layer with a hidden layer of 64
units and Leaky ReLU nonlinearity to capture the dynamics of pedestrian. The
social tensor is formed by populating this grid with the feature vector accord-
ing to the location of pedestrians. By defining the social tensor, the model can
encode the states of a variable number of pedestrians into a fixed-length vector.
Aiming to obtain local features within the spatial grid of the social tensor, two
3 × 3 convolutional layers are applied to the social tensor. The output of the
convolutional layer is fed into a 2 × 1 max-pooling layer to add local transla-
tional invariance. The output of max-pooling layer is denoted as social context
encoding which captures inter-human interactions. In addition, the state of the
robot s̃ is passed through a fully connected layer with a hidden layer of 32
units and Leaky ReLU nonlinearity to capture the dynamics encoding of robot.

424 X. Gao et al.

Algorithm 1. Framework of learning
1: Initialize network weights θ by supervised learning
2: for iteration = 1,2,3... do
3: for robot = 1,2,3,..., N do
4: run policy πθold in environment for an episode, collecting {sjn

t , at, rt}
5: compute advantage estimates Â1...

6: Update θ through time with learning rate lr by Adam w.r.t Lclip+vs+s for F
epochs

7: θold ← θ

To jointly model human-robot cooperations and inter-human interactions, the
two encodings are concatenated to form the final encoding for the decision step.

(2) Recurrent Module: Due to the existence of sensor limitations, occlusions
and perception uncertainty, it seems difficult to perfectly obtain the states of
surrounding pedestrians. What’s more, the pedestrians’ intended goal position,
preferred speed is unobservable. The reasons stated above model the task as a
partially-observable sequential decision making problem. It is challenging for the
models in [8–11] to infer the unobservable states since inferring the unobservable
states often relies on history.

Inspired by recent works [14,17,18], we add a GRU layer before the final fully
connected layers, as shown in Fig. 2. The GRU unrolled is shown in Fig. 1(b).
The GRU layer stores important information in its hidden states for making
decision on the next action, which helps to infer unobservable state and capture
long-term dependency on history.

(3) Decision Module: In decision step, the final encodings are fed into the
GRU. The final hidden state is passed through two parallel fully connected
layers with two hidden layers of 64 units and tanh nonlinearities. The outputs
are policy π(sjn

t) represented as discrete probability distribution across actions
and a state-value function V (sjn

t).

3.3 Training Details

(1) Training Scheme: The learning scheme is described in Algorithm 1 (adapted
from [14]). Inspired by [8–11], the network is first initialized by supervised learn-
ing on a set of state-action-value pairs generated by GA3C-CADRL [10]. The
loss of supervised learning phase consists of square-error loss on the value output
and cross-entropy loss on the policy output. The initialization step enables the
robot to reach the goal in the scenarios with few pedestrians while obtaining
positive reward, which improves the convergence ability of the algorithm. The
second training step improves the solution with PPO [14,15]. In each iteration,
each of N robots simultaneously follows the same policy πθold

to complete an
episode. Then the advantages Â1... are estimated using Eq. (3) with state-value
function V (sjn

t). The collected episodes are used to construct the surrogate loss
and the updates begin at the beginning of the episode and proceed forward

Learning to Navigate in Human Environments via Deep RL 425

through time to the end of the episode for training GRU. The loss is optimized
with the Adam [19] optimizer for F epochs.

(2) Training Scenarios: To improve the generalization ability of the model,
experiences are generated from simulations of randomly-generated scenarios. In
each episode, the robot is generated with fixed initial position, but randomly
selected orientation within a 10.0×10.0 square domain. Following current learned
policy, the robot tries to navigate to a randomly-sampled goal. The simulated
pedestrians are controlled by a random assortment of policies such as ORCA
[20] and Social Force [21] to reach the randomly-generated goals. The radius of
pedestrians r ∈ [0.2, 0.5]m. The number of the pedestrians in scenarios varies
from 2 to 8. In addition, to avoid the simple cases where the robot easily reaches
the goal without encountering with pedestrians, the goals are sampled randomly
at a distance of more than 5 m to the initial position. The complex training
scenarios lead the robot to explore the high-dimensional observation space and
improve the robustness of the model.

4 Experiment

This section is organized as follows: First, the details of computation are pro-
vided. Second, qualitative experiments are carried out in simulation. Third,
experiment metrics and quantitative experiment results are discussed. We refer
to our whole model as SNNRL-GRU. To demonstrate the benefit of GRU layer,
a copy of our model without GRU (SNNRL) is trained for comparison.

4.1 Computational Details

We implement the model with Tensorflow [22] and train it on a computer with
an NVIDIA GTX 1080 graphics card. The offline training takes about 28 h to
complete 2.2 ·107 timesteps for the policy to converge. A query of trained model
only takes 1.8 ms on an i7-7700K CPU.

4.2 Qualitative Experiments

Qualitative experiments are carried out to evaluate the performance of the algo-
rithm. The trajectories obtained by different algorithms are compared in the
same crossing scenario, as illustrated in Fig. 3. In qualitative experiments, aim-
ing to generate the same pedestrian trajectories for comparison, we set the robot
invisible to the pedestrians. That means the pedestrians will not cooperate with
the robot.

The performance of each algorithm can be roughly evaluated by navigation
time and clearance between robot and pedestrians. As shown in Fig. 3, CADRL
[8] only considers one neighbor pedestrian, which leads the robot to take longer
path for passing on the right side of crowds. The robot controlled by GA3C-
CADRL [10] slows down in 6.0 s–9.0 s, hesitating about which side to pass the
crowds, which makes the robot maintain smaller clearance to the pedestrians.
While, our SNNRL-GRU recognizes the inter-human interactions and finds an
efficient and safe path to navigate to the goal with the shortest time.

426 X. Gao et al.

(a) CADRL (b) GA3C-CADRL (c) SNNRL-GRU

Fig. 3. The trajectories obtained by different algorithms. The goal of robot is indicated
by a yellow triangle. The trajectory of robot is visualized with a pink circle. The circles
of other colors represent the trajectories of pedestrians and lighten as time increases.
The numbers indicate the time at agent’s position. In addiction, the trajectories are
recorded until the robot reaches the goal. (a): trajectories of using policy CADRL with
navigation time 20.2 s. (b): trajectories of using GA3C-CADRL with navigation time
17.8 s (c): trajectories of using our SNNRL-GRU with navigation time 13.2 s. (Color
figure online)

4.3 Experiment Metrics

In order to evaluate quantitatively the performance of our algorithm and com-
pare the different algorithms, the following evaluation metrics are defined:

(1) Success rates: The percentage of cases where the robot reaches their goals
within a certain time limit without colliding with pedestrians.

(2) Extra time to goal: The difference between the travel time that robot spends
to reach the goal and the lower bound of the travel time (going straight
toward the goal at preferred speed [8]).

(3) Proxemic intrusions (PI): According to the distance between robot and the
closest pedestrian, a percentage of time spent in pedestrian’s intimate zone
for a complete trajectory is defined by:

PI =
1
M

M∑
t=1

1(‖p0t − pcp
t ‖2 − r0 − rcp < 0.2) (10)

where M represents the total timesteps in a complete trajectory. pcp
t , rcp

denote the position of the closest pedestrian to the robot and its radius at
timestep t. 1(·) is the indicator function.

4.4 Quantitative Experiments

We implement three state-of-the-art methods, ORCA [20], CADRL [8] and
GA3C-CADRL [10] as baseline method to present a comparison with our algo-
rithm. The training process of the two learning-based algorithms (CADRL and

Learning to Navigate in Human Environments via Deep RL 427

Table 1. Results of different algorithms in different scenes.

Numa Method Success
(%)

Collision
(%)

Stuck
(%)

Extra time to goal (s)b

[Avg / 75th / 90th pctl]

PI(%)

2 ORCA 75.0 25.0 0.0 0.684 / 0.789 / 1.383 12.476

CADRL 97.6 2.2 0.2 1.031 / 1.549 / 2.182 3.509

GA3C-CADRL 98.4 1.6 0.0 0.915 / 1.415 / 1.981 5.387

SNNRL-GRU 97.8 2.2 0.0 1.259 / 1.746 / 2.259 1.450

SNNRL 97.4 2.4 0.2 1.331 / 1.944 / 2.403 1.631

5 ORCA 61.2 38.8 0.0 0.878 / 1.079 / 1.846 11.593

CADRL 84.4 11.2 4.4 2.168 / 2.937 / 4.827 3.599

GA3C-CADRL 90.2 7.6 2.2 2.042 / 2.984 / 4.133 4.274

SNNRL-GRU 96.0 3.8 0.2 2.373 / 3.375 / 4.435 1.537

SNNRL 93.4 6.2 0.4 2.614 / 3.611 / 4.834 1.416

8 ORCA 49.8 50.2 0.0 1.135 / 1.420 / 2.027 12.352

CADRL 76.4 12.4 11.2 3.234 / 4.618 / 6.357 4.173

GA3C-CADRL 86.4 8.2 5.4 3.338 / 4.622 / 6.561 3.713

SNNRL-GRU 95.0 4.8 0.2 3.473 / 4.745 / 6.835 1.807

SNNRL 91.0 8.6 0.4 3.621 / 5.038 / 7.184 1.914
a Num represents the number of pedestrians in different scenes.
b pctl is the abbreviation of percentile which is used to measure the dispersion degree of
experiment results.

GA3C-CADRL) is conducted under the same simulation setup, except that
CADRL is trained in a two-agent environment since it does not support multi-
agent training.

For the sake of comparing the performances of different algorithms, we define
3 different test scenes with different numbers of pedestrians, as illustrated in
Table 1. Each pedestrian is controlled by a randomly selected policy such as
ORCA, Social Force and zero velocity. The experiments of each algorithm are
conducted under the same 500 test cases.

The test results obtained by different algorithms are listed in Table 1. As can
be seen, compared to ORCA [20], three learning-based algorithms take more
time to reach the goal as the algorithms try to adapt their pathes to people.
However, ORCA achieves a very low success rate due to the short-sighted and
conservative behaviors. In n = 2 pedestrians, our algorithm gets a similar perfor-
mance with other learning-based algorithms. GA3C-CADRL is slightly better.
However, with the increase of number of pedestrians, the advantages of our pro-
posed algorithm become more obvious. The success rate of CARDL drops to
84.4% when n = 5. As described in [8], its minimax implementation is limited
in that it only considers one neighbor at a time. The lower success rate shows
the importance of considering all the pedestrians simultaneously. When n = 8,
our model significantly outperforms the other algorithms. The success rate of
GA3C-CADRL drops to 86.4%, while our SNNRL-GRU remains 95%. What’s
more, our algorithm maintains less proxemic intrusions (PI) across all the test

428 X. Gao et al.

cases. The results demonstrate that our proposed algorithm is more applicable
to learn a policy that exhibits socially normative navigation behaviors. By com-
paring the experiment results of two copies of our model, it can be concluded
that the GRU layer makes the model more robust.

5 Conclusions

In this paper, we propose a novel algorithm to learn a policy that exhibits socially
normative navigation behaviors. Our model uses a convolutional social pooling
layer that robustly models human-robot cooperations and complex interactions
between pedestrians. Moreover, we focus on partial observability in socially nor-
mative navigation. We employ a recurrent policy that infers unobservable states
from the history information and further improves the robustness of algorithm.
The experiment results show that our approach outperforms the state-of-the-art
methods in complex scenarios.

References

1. Kirby, R., Simmons, R., Forlizzi, J.: COMPANION: a constraint-optimizing
method for person-acceptable navigation. In: IEEE International Symposium on
Robot and Human Interactive Communication, Toyama, pp. 607–612 (2009)

2. Phillips, M., Likhachev, M.: SIPP: safe interval path planning for dynamic environ-
ments. In: IEEE International Conference on Robotics and Automation, Shanghai,
pp. 5628–5635 (2011)

3. Unhelkar, V.V., Pérez-D’Arpino, C., Stirling, L., Shah, J.A.: Human-robot co-
navigation using anticipatory indicators of human walking motion. In: IEEE Inter-
national Conference on Robotics and Automation, Seattle, pp. 6183–6190 (2015)

4. Aoude, G.S., et al.: Probabilistically safe motion planning to avoid dynamic obsta-
cles with uncertain motion patterns. Auton. Robots 35(1), 51–76 (2013)

5. Trautman, P., Krause, A.: Unfreezing the robot: navigation in dense, interacting
crowds. In: IEEE International Conference on Intelligent Robots and Systems,
Taipei, pp. 797–803 (2010)

6. Kuderer, M., Kretzschmar, H., Sprunk, C., Burgard, W.: Feature based prediction
of trajectories for socially compliant navigation. In: Robotics: Science and Systems
(2012)

7. Kretzschmar, H., Spies, M., Sprunk, C., Burgard, W.: Socially compliant mobile
robot navigation via inverse reinforcement learning. Int. J. Robot. Res. 35(4),
1289–1307 (2016)

8. Chen, Y.F., Liu, M., Everett, M., How, J.P.: Decentralized non-communicating
multiagent collision avoidance with deep reinforcement learning. In: IEEE Inter-
national Conference on Robotics and Automation, Singapore, pp. 285–292 (2017)

9. Chen, Y.F., Everett, M., Liu, M., How, J.P.: Socially aware motion planning
with deep reinforcement learning. In: IEEE International Conference on Intelli-
gent Robots and Systems, Vancouver, BC, pp. 1343–1350 (2017)

10. Everett, M., Chen Y.F., How, J.P.: Motion planning among dynamic, decision-
making agents with deep reinforcement learning. In: IEEE International Conference
on Intelligent Robots and Systems, Madrid, pp. 3052–3059 (2018)

Learning to Navigate in Human Environments via Deep RL 429

11. Chen, C., Liu, Y., Kreiss, S., Alahi, A.: Crowd-robot interaction: crowd-aware
robot navigation with attention-based deep reinforcement learning. In: IEEE Inter-
national Conference on Robotics and Automation, Montreal, pp. 6015–6022 (2019)

12. Deo, N., Trivedi, M.M.: Convolutional social pooling for vehicle trajectory pre-
diction. In: IEEE Conference on Computer Vision and Pattern Recognition. pp.
1468–1476 (2018)

13. Cho, K., Van Merrienboer, B., Gulcehre, C.: Learning phrase representations using
RNN encoder-decoder for statistical machine translation. arXiv preprint (2014).
arXiv:1406.1078

14. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy
optimization algorithms. arXiv preprint (2017). arXiv:1707.06347

15. Heess, N., et al.: Emergence of locomotion behaviours in rich environments. arXiv
preprint (2017). arXiv:1707.02286

16. Lu, D.V., Hershberger D., Smart, W.D.: Layered costmaps for context-sensitive
navigation. In: IEEE International Conference on Intelligent Robots and Systems,
Chicago, IL, pp. 709–715 (2014)

17. Heess, N., Hunt, J.J., Lillicrap, T.P., Silver, D.: Memory-based control with recur-
rent neural networks. arXiv preprint (2015). arXiv:1512.04455

18. Mnih, V., Badia, A.P., Lillicrap, T.P., et al.: Asynchronous methods for deep rein-
forcement learning. In: International Conference on Machine Learning, pp. 1928–
1937 (2016)

19. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
(2014). arXiv:1412.6980

20. van den Berg, J., Guy, S.J., Lin, M., Manocha, D.: Reciprocal n-body collision
avoidance. In: Pradalier, C., Siegwart, R., Hirzinger, G. (eds.) Robotics Research,
vol. 70, pp. 3–19. Springer, Berlin (2011). https://doi.org/10.1007/978-3-642-
19457-3 1

21. Helbing, D., Molnr, P.: Social force model for pedestrian dynamics. Phys. Rev. E.
51(5), 4282–4286 (1995)

22. Abadi, M., et al.: Tensorflow: a system for large-scale machine learning. OSDI 16,
265–283 (2016)

http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.02286
http://arxiv.org/abs/1512.04455
http://arxiv.org/abs/1412.6980
https://doi.org/10.1007/978-3-642-19457-3_1
https://doi.org/10.1007/978-3-642-19457-3_1

	Learning to Navigate in Human Environments via Deep Reinforcement Learning
	1 Introduction
	2 Problem Formulation
	2.1 Problem Formulation
	2.2 Policy-Based Learning

	3 Approach
	3.1 Basic Concepts
	3.2 Network Architecture
	3.3 Training Details

	4 Experiment
	4.1 Computational Details
	4.2 Qualitative Experiments
	4.3 Experiment Metrics
	4.4 Quantitative Experiments

	5 Conclusions
	References

