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Abstract—Exposure bias widely exists in recommender systems, 
particularly in the case of with implicit feedbacks. It seriously 
influences user's satisfaction of recommendations. There are a 
number of methods for mitigating the exposure bias from different 
perspectives. In this paper, we survey the publications that focus 
on addressing the exposure bias issue in RS with the help of causal 
inference ideas. We propose a simple taxonomy consisting of bias 
discovery, evaluation estimator, recommendation modeling, 
ranking algorithm for the debiasing methods in our study. Based 
on the taxonomy, we discuss how those methods are beneficial to 
recommender systems to mitigate the exposure bias using causal 
graph and propensity score. Finally, we conduct the challenges and 
point out the future research directions. 

Keywords-exposure bias; causal inference; implicit feedback; 
survey; causality; recommender system.  

I. INTRODUCTION 
Recommender System (RS) is a critical technique in the field 

of Information Retrieval and widely used in many domains. In 
many cases, biases appear in RS caused by different types of 
reasons. Researchers have studied this problem in various point 
of views. Causal inference is a useful tool to figure out the 
relationship between cause and effect. It is treated as an effect 
way to mitigate biases in RS. In this paper, we focus on two 
points: exposure bias and causal solution. We proposes a survey 
of the causality-inspired debiasing methods for the exposure bias 
problem in RS. We collect the reviewed papers that focus on 
causal methods for the exposure bias in RS from the important 
conferences and journals in recent years, such as SIGIR, WWW, 
KDD, WSDM, RecSys, and CIKM. This paper can be beneficial 
for three groups: RS researchers who specifically work on the 
exposure bias issue; causal inference researchers who focus on 
the causal inference-inspired approaches applied for RS; and 
machine learning researchers who are interested in debiasing 

methods with the causality perspective. In this paper, we make 
the following contributions: we summarize the characteristics of 
the exposure bias in RS; we propose a taxonomy for the causal 
debiasing methods; we discuss the future research directions in 
terms of causality for the exposure problem.  

The rest of the paper is organized as follows. Section 2 depicts 
the technical background. Section 3 presents our investigation of 
the causal inference-inspired unbiased methods in RS. Finally, 
conclusion and future work are given in Section 4. 

II. TECHNICAL BACKGROUND 

A. Recommender System 
RS [1][2] works on addressing the information overloading 

problem of users. It is widely applied to provide personalized 
services in many fields [3][4][5]. RS models user interest by 
analyzing the user’s behaviors and item features. The work [6] 
proposed a cross-domain citation RS for publications regarding 
the specified patent. Gao et al. [7] focused on the cross-domain 
RS for Cyber-Physical Systems. Kumar et al. [8] showed a latent 
sematic-based recommendation method using topic model in 
distinct domains. Collaborative Filtering (CF) [9] is an effective 
way to find out potential interesting items by mining the co-
occurrence of users’ behaviors. The model-based CF learns 
complex behavior patterns with machine learning [10], such as 
Bayesian Belief Network CF [11] and clustering CF [12].  

B. Explicit and Implicit Feedback 
In RS, user behavior basically presents the user action with 

item, as well as interactions among users. The user interaction is 
treated as feedback when a system shows recommendations to a 
user and she gives responses. Feedback can be categorized into 
two groups: explicit feedback and implicit feedback. Explicit 
feedback usually means the user’s rating behavior for items, 
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which explicitly indicates the user interest. Implicit feedback [13] 
is the interaction that is indirectly related to the user interest, 
such as click, view, and purchase. With implicit feedback, it 
cannot directly observe the user’s opinion. 

C. Bias and Exposure Bias in Recommendation 
Biases widely exist in quite a lot machine learning methods 

[14][15][16]. There exist certain kinds of biases in different 
stages of RS, which seriously influences the recommendation, 
particularly the model-based recommendation. Thus, debiasing 
methods are largely developed in the recent research work. Chen 
et al. [17] summarize a feedback loop framework describing the 
relations among user interaction, data and model in RS. In the 
loop, it introduces types of biases, such as popularity bias [18], 
exposure bias [19], selection bias [20], conformity bias [21], 
position bias [22], and inductive bias [23]. This abstraction 
illustrates the generation mechanism of bias in RS. 

Exposure bias in RS is mostly caused by implicit feedback. With 
implicit feedback, it is hard to distinguish the situations of either 
the user does not like an item or the user is not exposed to the 
item. The unclicked-action cannot be clearly understood because 
it may represent either negative feedback or unlabeled positive 
feedback. The exposure bias will lead negative influences in 
training phase and evaluation phase in RS. 

D. Missing Data 
The work [24] considers that biases are caused by missing 

data, i.e., Missing-Not-At-Random (MNAR) problem. Missing 
data is defined as the user feedback without observed labels. 
Take click data for example, a clicked item can be assigned with 
a positive label by the observed data because click-action means 
positive opinion. However, an unclicked item cannot be 
definitely assigned by observation because the unclick-action 
represents either negative opinions or not. The unclicked items 
are defined as the missing data in this case. There are two 
intuitive strategies for the missing data problem. All Missing as 
Negative (AMAN) strategy treats all missing data as negative 
samples; and All Missing as Unknown (AMAU) strategy simply 
ignore the missing data.  

Most of the existing methods for missing data try to imbalance 
between AMAN and AMAU. Pan et al. [25] apply AMAN with 
random sampling strategy to select unclicked impressions as 
negative examples. The work proposes three kinds of weighting 
scheme for missing data regarding AMAN-oriented, user-
oriented, and item-oriented. In terms of exposure bias, the 
missing data in implicit feedback, e.g., unclicked items, can be 
separately handled: the exposed unclicked items can be assigned 
with the negative labels; and the unexposed items will have a 
likelihood to be either positive or negative. 

E. Causal Inference 
Causal inference works on finding the causal relations 

between cause and effect [26][27]. In this field, the widely used 
methods are propensity score in Rubin Causal Model (RCM) 
[28], e.g., Inversed Propensity Scoring (IPS/IPW), and causal 
graph in Structured Causal Model (SCM) [29], e.g., backdoor 
criterion. The research work aiming at exposure bias in RS 
focuses on analyzing the unobserved feedback, i.e., the missing 
data. The causal inference-inspired counterfactual reasoning is 

treated as a critical method that can predict the unobserved data 
with observed data. 

III. DEBIAS WITH CAUSAL INFERENCE 
In this paper, we build a simple taxonomy for the research 

articles regarding exposure bias in RS. The taxonomy is inspired 
by the work [17] and extended with more new characteristics. In 
the taxonomy, we categorize the unbiased methods according to 
four phases which the methods belonging to: Bias Discovery, 
Evaluation Estimator, Recommendation Modeling, and Ranking 
Algorithm. Articles in Bias Discovery phase focus on proving 
the existence of exposure bias in RS theoretically and 
experimentally. Papers in Evaluation Estimator phase work on 
building novel estimators for the unbiased evaluation. 
Publications in Recommendation Modeling phase study new 
models of the unbiased recommendation. Papers in Ranking 
Algorithm phase concentrate on the unbiased ranking algorithm 
of RS. We summarize the reviewed articles in Table 1 with three 
basic attributes: phase, causality relevance, and article reference. 

Table 1 Reviewed methods for exposure bias in RS 

Phase Causality 
Relevance Article 

Bias Discovery - [30], [31], [32], [33], 
[34] 

Evaluation Estimator propensity score [35], [39] 

Recommendation 
Modeling 

propensity score [38],[42], [43], [51], [53] 

causal graph [37], [41], [44], [45], 
[47], [48], [49], [52] 

Ranking Algorithm Propensity score [57], [59], [60] 

A. Bias Discovery Phase 
Schnabel et al. [30] perform experiments to evaluate the 

effects of the well-known unbiased methods in RS. This paper 
summarizes the quality estimators for the propensity score-based 
unbiased recommendation algorithms. The work uses the 
Empirical Risk Minimization (ERM) framework for learning 
recommendation models with these estimators. The authors 
applies propensity score-base matrix factorization for ERM in 
order to generate the error bound. The work [31] empirically 
investigates the generation of exposure/popularity bias of the 
algorithms and effects of the bias for different stakeholders in 
the fields of music and movie. The work considers the exposure 
bias from the users’ perspective as well as the item perspective. 
Experiments show the relations between these perspectives in 
the MovieLens and Last.fm datasets. A finding is that the lower 
the bias from the users’ perspective the lower proportional bias 
for the item perspective will be. The research also discover that 
accuracy and bias are not definitely correlated. Wasilewski and 
Hurley [32] perform an empirical evaluation considering the 
exposure of items to different types of users rather than only the 
exposure times. The authors group the users into different 
segments according to their types by using a clustering algorithm. 
The work compares the biased distribution and the ideal 
distribution using Jensen-Shannon divergence. The experiments 
show that the experimental movies indeed have target users but 
the recommendation algorithms may not reach these users 
because of biases. Ferraro et al. [33] perform experiments for 



music recommendation in order to evaluate the effect of bias. 
They compare the distributions of different recommendations 
regarding style-based exposure with the users’ listening 
behaviors. The results show that the bias strongly effects the 
matrix factorization-based collaborative filtering methods in the 
field of music recommendation. Banerjee et al. [34] perform an 
experimental study with the distance-based evaluation for 
location-based information retrieval. This work uses the datasets 
of Google place, Yelp, and Booking. An important finding is that 
the unintended exposure bias exists because of popularity bias 
and position bias in location-based retrievals. The experiments 
show that the exposure bias indeed exists in commonly used 
recommendation algorithms. 

B. Evaluation Metric Phase 
Yang et al. [35] study the evaluation bias that widely exists 

in the MNAR data-based evaluations. Thus, debias of evaluator 
can effectively improve RS. The paper investigates the existence 
of position/exposure bias by comparing the ideal estimator and 
Average-Over-All (AOA) estimator. The ideal recommendation 
estimator (see Eq. (1)) calculates the evaluation reward 𝑅𝑅�𝑍̂𝑍� for 
the predicted item’s rank 𝑍̂𝑍, where 𝑍̂𝑍𝑢𝑢,𝑖𝑖 is the predicted rank of 
item i for user u, and the function c denotes any top-N metric, 
e.g., Recall, DCG, and AUC, 𝑆𝑆𝑢𝑢 is the preferred item set of u. 
The AOA estimator defines 𝑅𝑅�𝑍̂𝑍�  as the average over all 
observed feedback. The AOA estimator is formulated as Eq. (2), 
where 𝑂𝑂𝑢𝑢,𝑖𝑖 represents whether (u,i) is observed and follows the 
Bernoulli distribution. 
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This article applies the propensity score-based idea to build an 
unbiased Self-Normalized Inverse-Propensity-Scoring (SNIPS) 
evaluator in order to estimate the reward by using the observed 
part 𝑆𝑆𝑢𝑢∗ of the preferred item set 𝑆𝑆𝑢𝑢. It is formulated as Eq. (3). 
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(3) 

For estimating propensity scores, this paper built a way to 
generate user-item interactions with two steps: Select step and 
Interact step. Both of the probability of select and the probability 
of Interaction can be modeled by the statistic model, respectively 
regarding occurrence times and interaction times. In this way, 
the reward can be estimated with observed data. The experiment 
works on evaluators rather than performance of recommendation 
models. The experiment also shows important findings that (1) 
the biased evaluators usually over-estimate the performance of 
recommendation algorithm; (2) the unbiased evaluator can more 
significantly discover the performance difference between 
algorithms; (3) the unbiased estimator is more robust than the 
biased estimators. The work follows two assumptions: user-
independent propensity assumption and selection-independent 
interaction assumption. For the first one, the next goal is to add 
more auxiliary information for User-dependent propensity; for 

the second one, the next move is to mine the influence of ranking 
for better modeling the interaction. 

C. Recommendation Modeling Phase 
Hu et al. [36] propose a model named Weighted Matrix 

Factorization (WMF) that assigns less weights unclicked items. 
It means that the unclicked items correspond to less confidence 
in prediction than clicked items. Usually, the item without 
interactions with the specific user will be simply treated as 
negative feedback. However, for a counter example, a movie that 
a user watched cannot indicate the preference of the user because 
she probably feels bad after watching the movie. For implicit CF, 
the paper proposes a confidence level for weighting the observed 
user-item interactions in matrix factorization-based models. The 
confidence increases with the growing feedback so that models 
can represent the user preference more accurately. Although this 
paper does not consider the situation of exposure bias, it is an 
important fundamental work inspiring the later methods for 
exposure bias. This work provides confidence for the case of 
“click represents like”. However, the proposed model works 
under the assumption of “unclick represents dislike”. It brings 
exposure bias into WMF model. The loss function is defined as 
Eq. (4) with an assumption preference can be represented as 
inner product 𝑃𝑃𝑢𝑢,𝑖𝑖 − 𝑥𝑥𝑢𝑢𝑇𝑇𝑦𝑦𝑖𝑖 , where 𝑥𝑥𝑢𝑢  represents preference of 
user u and 𝑦𝑦𝑖𝑖  is feature of item i. The confidence 𝑐𝑐𝑢𝑢,𝑖𝑖  in 
observing 𝑃𝑃𝑢𝑢,𝑖𝑖  is defined as Eq. (5) with parameter 𝛼𝛼  and 
observation variable 𝑟𝑟𝑢𝑢,𝑖𝑖 . 
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𝑐𝑐𝑢𝑢,𝑖𝑖 = 1 + 𝛼𝛼𝑟𝑟𝑢𝑢,𝑖𝑖 (5) 

Liang et al. [37] propose a method called ExpoMF to reduce the 
exposure bias in the implicit feedback that includes action part 
and non-action part, e.g., click and unclick. The WMF model 
focuses on extracting more reliable information from the click 
part for evaluating the preference, while ExpoMF aims to better 
understand the unclick part. Towards the unclicked items, the 
user may either really does not like the items or only has not seen 
them. The exposure data is considered as the missing data. 
ExpoMF selectively adjusts the feature weights of click matrix 
rather than completely reweighting by WMF. The paper builds 
the exposure model using the assignment mechanism RCM. 
This paper defines an exposure model as a generative process 
containing various factors of user distribution, item attribute, 
exposure, and consumption (click-action).  
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(a) Exposure MF (b) Exposure MF with 
exposure covariates  

Figure 1 Causal graph of ExpoMF [37] 



For better understanding the exposure model, the paper builds a 
causal graph to describe the generative process (see Figure 1). In 
fact, the causal graph is not a standard causal graph but a 
probabilistic graphical model. Nevertheless, the graph can be 
considered as a simple causal graph because it is helpful to 
understand the proposed matrix factorization model in the point 
of causal view. According to different settings of 𝜇𝜇𝑢𝑢,𝑖𝑖, this paper 
discusses two cases. In the way of per-item 𝜇𝜇𝑢𝑢,𝑖𝑖 (see Figure 1 
(a)), the work straightforward describes item popularity as the 
only exposure covariates without taking external information 
into account and defines 𝜇𝜇𝑢𝑢,𝑖𝑖 as a Beta distribution. Oppositely, 
the paper extends the basic exposure model with a hierarchical 
modeling of exposure that means the parameter 𝜇𝜇𝑢𝑢,𝑖𝑖  is also 
described as a generative process with two parameters (see 
Figure 1 (b)). In this case, the external information, such as 
content features of text and location, can be treated as covariates. 
With these covariates, 𝜇𝜇𝑢𝑢,𝑖𝑖 can be defined as a sigmoid function. 
The parameters of ExpoMF will be estimated by EM algorithm. 
After obtaining the parameter 𝜃𝜃𝑢𝑢  and 𝛽𝛽𝑖𝑖 , the click probability 
𝑦𝑦𝑢𝑢,𝑖𝑖 can be predicted by dot production of 𝜃𝜃𝑢𝑢 and 𝛽𝛽𝑖𝑖. The loss 
function is formalized as Eq. (6). Experiments shows that the 
two strategies of 𝜇𝜇𝑢𝑢,𝑖𝑖  are suitable for prediction in respective 
situations. The per-item 𝜇𝜇𝑢𝑢,𝑖𝑖 is more suitable for 𝜃𝜃𝑢𝑢𝑇𝑇𝛽𝛽𝑖𝑖, while the 
covariates-related prediction model works well with exposure 
covariates. However, ExpoMF model will lead popularity bias 
because it up-weights items with high exposure probability. 
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+ �1 − 𝑎𝑎𝑢𝑢,𝑖𝑖� log 𝕀𝕀�𝑦𝑦𝑢𝑢,𝑖𝑖 = 0� 

(6) 

Saito et al. [38] argue that ExpoMF model also does not 
completely mitigate exposure bias because the items frequently 
expose in the training data will lead the larger local loss weight. 
The paper defines an ideal loss function for optimizing the 
recommendation regarding the highest relevance. With the help 
of the ideal loss function, this paper theoretically proves the 
widely used methods, ExpoMF and WMF, still suffer from bias 
issues even if they take big efforts to mitigate biases. This paper 
proposes an unbiased estimator for addressing both the positive-
unlabeled problem by using propensity score-based ideas. The 
proposed method follows an assumption: item will be clicked 
when it has been exposed to a user and she is relevant to it. This 
paper uses “relevance” instead of “interest” for a more general 
purpose. An important shortcoming of propensity score-based 
estimator is that it usually has a high variance. This paper 
addresses this issue by using a clipped propensity score instead 
the original one in the loss function. It needs a balance between 
the variance and the clipped loss because the clipped loss will 
also lead another bias. The loss function is formalized as Eq. (7), 
where 𝛿𝛿𝑢𝑢,𝑖𝑖

(𝑅𝑅), 𝑅𝑅 ∈ {0,1} indicates the local loss for pair (u,i). The 
propensity score is used as weight 𝜔𝜔𝑢𝑢,𝑖𝑖 of pair (u,i) and defined 
as Eq. (8). 
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𝜔𝜔𝑢𝑢,𝑖𝑖 = 𝑃𝑃�𝑂𝑂𝑢𝑢,𝑖𝑖 = 1� = 𝑃𝑃�𝑌𝑌𝑢𝑢,𝑖𝑖 = 1|𝑅𝑅𝑢𝑢,𝑖𝑖 = 1� (8) 

Gupta et al. [39] apply causal concepts for link prediction in 
graph-based RS. The paper proposes estimators that mitigate the 
exposure bias by using exposure probability. The work builds a 
loss function for learning the exposure probabilities from data. 
In this paper, the exposure issue appears between different nodes. 
The work defines the link probability of a node to another node 
as the propensity score. The authors show a fact by an example, 
which the link probability will be underestimated for the nodes 
with a lower propensity in RS trained on the observed data. 

Wang et al. [40] propose a causal inference-inspired method for 
social network, namely SERec, consisting of two basic phases 
(see Figure 2). First, it estimates the exposure weights for each 
user; then, it evaluates the model. This paper builds a causal 
inference-based prediction model for user's ratings. The model 
is divided into two parts: rating matrix factorization and social 
exposure modeling. The first part calculates the prediction with 
exposure factors by matrix factorization; the second part aims at 
modeling the social exposure mechanism for calculating the 
exposure factor. The work proposes two ways to construct the 
social exposure models: social regularization (see Figure 2 (a)) 
and social boosting (see Figure 2 (b)), which make sense from 
the respective social perspectives. One is a matrix factorization-
based model as regularization for estimating exposure factor; 
another is a boosting model that a user’s feeling is effected by 
her social friends’ opinions with a Beta distribution. 
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Figure 2 Causal graph of SERec [38] 
 

Wang et al. [41] introduce a Deconfounded Recommender 
System (DecRS) to mitigate bias amplification in the feedback 
loop. They define a causal graph to represent the causal effect of 
user’s representation on the prediction. By using the backdoor 
criterion, it can eliminate the confounders in the causal graph. 

The paper [42] proposes a causality-related deconfounded RS to 
deal with the unobserved confounders in matrix factorization 
models. For addressing the multiple causal inference problem, 
the work uses the dependencies among the exposure as potential 
context information for confounders. The proposed method 
consists of an exposure model formulated by the Poisson 
factorization, and an outcome model defined by a probabilistic 
matrix factorization. Poisson factorization learns latent variables 
from the exposure matrix for each user. Experiment shows that 
the proposed recommendation model is more robust than 
traditional methods. The predicated outcome 𝑦𝑦𝑢𝑢,𝑖𝑖 is formalized 
in Eq. (9), where 𝑎𝑎 denotes the observed exposure matrix 𝜖𝜖𝑢𝑢,𝑖𝑖  



following Gaussian distribution, denotes confounders, and 𝛾𝛾𝑢𝑢 
denotes how much the confounder 𝑎𝑎�𝑢𝑢,𝑖𝑖 contributes to the ratings.  

𝑦𝑦𝑢𝑢,𝑖𝑖(𝑎𝑎) = 𝜃𝜃𝑢𝑢𝑇𝑇𝛽𝛽𝑖𝑖 ⋅ 𝑎𝑎 + 𝛾𝛾𝑢𝑢 ⋅ 𝑎𝑎�𝑢𝑢,𝑖𝑖 + 𝜖𝜖𝑢𝑢,𝑖𝑖 (9) 

Khenissi and Nasraoui [43] build a popularity and exposure 
aware regularization with propensity for matrix factorization-
based recommendations. The work uses the Jensen-Shannon 
divergence instead of the commonly used Kullback-Leibler 
divergence for modeling the regularization. Sato et al. [44] 
investigate the recommendation influence factors on exposure. 
The work proposes an exposure modeling method RecExpoMF 
in consideration of two influence factors. One is the direct 
influence that represents user-related item recommendation; 
another is the indirect influence that represents the relations 
between the focused item and other recommended items. Wang 
et al. [45] focus on the clickbait problem that the title does not 
correctly describe the item for deceptively obtaining attraction. 
This paper treats it as a particular exposure bias issue not to items 
but to title features because the user is not exposed to the actual 
features. This paper proposes a causal graph-based method that 
represents the causal effect of the clickbait issue (see Figure 3). 
Figure 3 (a) shows the causal graph. The sub-graph with solid 
lines is the conventional model with which prediction score Y is 
caused by item feature I and user feature U, while I is caused by 
exposure feature E and content feature T. The paper add an 
additional dash line to the causal graph in order to represent that 
a user probably clicks an item only because she is interested in 
the exposure features. Figure 3 (b) separates the exposed features, 
i.e., the factual part and the unexposed features, i.e., the 
counterfactual part in the graph. Figure 3 (c) rebuilds the causal 
graph with the unexposed features in order to formulate the 
mechanism of the counterfactual reasoning. With the help of this 
causal model, the paper can estimates the click likelihood of the 
unobserved features by counterfactual reasoning for addressing 
the clickbait problem.  
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Figure 3 Causal graph for clickbait issue [45] 

 
The exposure bias issue in social recommendations widely exist. 
Chen et al. [46] propose SoEXBMF that is a social exposure-
based recommendation model. It integrates social information 
related to users’ exposure into ExpoMF model for mitigating the 
exposure biases. The paper considers both social knowledge and 
social consumption as the influence on the exposure (see Figure 
4). The work builds a social-based exposure model for the social 
knowledge influence and considers the positive feedback for the 
social consumption influence. It uses the Bernoulli distribution 
for ExpoMF instead of the commonly used Gaussian distribution 
for representing the binary implicit feedback. 
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Figure 4 Basic idea of SoEXBMF [46] 

 
Sun and Shi [47] integrate the social relations into the ExpoMF 
model for build a social exposure-based recommender SoEx++. 
The authors consider not only the explicit social relations but 
also the implicit relations for addressing the sparse issue in social 
recommendations. Chen et al. [48] propose a method namely 
SamWalker for social RS. It assigns various weights to different 
data as the confidence levels according to the social relations. 
SamWalker applies a social context aware function rather than 
the individual variational parameter. It applies a combinational 
weighting strategy for the users’ social relations instead of using 
the posterior expectation of user’s exposure. The confidence 
weights can be integrated into convolutional neural networks as 
the weight parameters of convolutional layers for optimizing 
deep learning models. 
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Figure 5 Framework of SamWalker [48] 

 
Li, Wang, and Xu [49] propose an unbiased prediction model 
called DENC for users’ ratings by building a causal graph model. 
The paper concludes that the training space is not equal to the 
reference space because the reference space has more exposed 
items. Thus, there are exposure bias between the training and 
reference phase. The proposed method disentangles the rating 
into three factors (see Figure 6): inherent factors, confounder, 
and exposure. It builds a model for each factor, respectively. 



Social network confounder model uses a node2vec model to 
encode users. Deconfounder model calculates the adaptive 
weights for rating scores by using propensity. Exposure model 
applies an Integral Probability Metric model using Wasserstein-
distance in order to estimate the inherent factor. 
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Figure 6 DENC framework [49] 

 
Deep learning methods are good at finding patterns from big data. 
Causal inference can be combined with deep neural networks for 
addressing the exposure bias issue. Chen et al. [50] introduce a 
Variational Auto-Encoder-based fast adaptively weighted 
matrix factorization (FAWMF) for adaptive weighting and better 
model learning (see Figure 7). The proposed model learns both 
data confidence weights and latent factors of matrix factorization 
by building a Variational Auto-Encoder. 
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Figure 7 FAWMF model [50] 

 
Zhou et al. [51] construct a contrastive learning-based approach 
in order to improve fairness, effectiveness, and efficiency of 
deep learning-based recommendation methods with large-scale 
candidates. This paper optimizes the deep candidate generation 
model that learns a user behavior encoder and an item encoder. 
The paper defines the contrastive loss function as a sampling-
based approximation method with inverse propensity weight. 
Pan et al. [52] build a dynamic exposure model that is able to 
dynamically correct exposure biases for rating prediction in RS. 
In this paper, the probability distribution of the rating order is 
defined as the exposure probability. The paper encodes each 
user’s temporal rating history as an embedding using GRU 
(Gated Recurrent Unit) model. The proposed dynamic exposure 
model estimates the sequential exposure probability using a 
probabilistic graphical model. This work trains an inverse 
propensity scoring-inspired rating predictor with the dynamic 
exposure probabilities. Zhang et al. [53] propose an integrated 
method to mitigate exposure biases in implicit recommendations. 
The proposed method builds a Causal Neural Fuzzy Inference 
(CNFI) model that combines causal inference, neural network, 

and fuzzy set theory. This paper applies fuzzy set theory to 
model the missing data as impact factors of user exposure 
probability to items in implicit recommendations. CNFI model 
learns the weights of fuzzy rules by the neural-fuzzy inference 
network. CNFI works with matrix factorization-based method to 
predict the user’s opinions. 

The reinforcement learning-based recommendations also have 
exposure biases. Mansoury et al. [54] study the exposure bias in 
Linear Cascade Bandits algorithm of reinforcement learning. 
The work provides an unbiased representation for items and 
suppliers in recommendations. Due to mitigate the exposure bias, 
this paper proposes a discounting factor in order to sequentially 
controlling the exposure of items.  

D. Ranking Algorithm Phase 
Researchers focus on the fairness of ranking algorithms in 

RS in recent years [55][56][57], particular of the Learning-To-
Rank (LTR) algorithms. Usually, with ranking algorithms, the 
item highly ranked is more likely to be consumed. It may bring 
more serious Matthew Effect of recommendations. The 
exposure allocation on ranking can cause exposure biases which 
is more likely as the popularity bias issue. Morik et al. [58] 
introduce a control-based algorithm, namely FairCo, for the 
fairness of dynamic Learning-To-Rank (dLTR) algorithms. The 
proposed algorithm contains propensity score-based unbiased 
estimators. The work can improve fairness and mitigate the 
Mathew Effect. Yadav et al. [59] propose FULTR framework 
that can address unfairness in LTR models while learning 
ranking policies from implicit feedback data. The proposed 
framework applies IPS for the unbiased estimator of utility. 
Damak et al. [60] focus on the explanation of the pairwise 
ranking models by applying causal inference ideas for implicit 
RS. The paper proposes a matrix factorization-based 
Explainable Bayesian Personalized Ranking (EBPR) model that 
predicts recommended items and the corresponding item-based 
explanations. This work builds an IPS-based unbiased estimator 
on explainability weighting for EBPR loss. 

E. Experiment Methods 
The experiment for the exposure bias research contains 

important factors: dataset, baseline, and metric.  
The experimental datasets for evaluating the debiasing methods 
consists of open datasets and self-made datasets. The widely 
used open datasets in RS, such as Yahoo! R3 [61], Last.FM [62], 
and Epinions [63], MovieLens [64] are usually used in the 
reviewed research. A number of research works made datasets 
by themselves in order to satisfy their particular experiment 
requirements. The datasets provide implicit feedback data for 
model training and test. 
Another important factor of experiment is baseline. WMF [36], 
BPR [65], and ExpoMF [19] are classic debiasing models that 
are often used as baselines in experiments. BPR is a classic 
personalized ranking method for implicit feedback and widely 
used as a baseline for the ranking metric NDCG. WMF is 
usually applied for debias. ExpoMF is treated as a good baseline 
for modeling the exposure bias. 
The metrics commonly used in RS are also applied in the 
exposure bias research. For unbiased methods, MAE and MSE 



are standard metrics used to evaluate errors of the methods; 
Precision and Recall are usually used for estimating TopN 
recommendations; NDCG is very popularly applied to qualify 
the methods for ranking tasks. 

IV. CONCLUSION 
In this paper, we have reviewed research publications that 

work on exposure bias issue in RS. We propose a taxonomy that 
assigns the debiasing methods into four categories according to 
different phases in RS. In this survey, we focus on the methods 
inspired by causal inference. The causal methods can solve the 
problems that the correlation-based methods are not available for. 
We have studied and discussed the existing methods and their 
evolutions. We conclude that the combination of causal 
inference and deep learning will be an effect way for addressing 
the exposure bias issue in RS.  

In the future, we will focus on the experimental comparisons of 
the unbiased methods. Moreover, a universal framework for 
mitigating the exposure biases in RS is also meaningful. 
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