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ABSTRACT

Knowledge distillation has been successfully applied in im-
age classification for model acceleration. There are also
some works employing this technique to object detection, but
they all treat different feature regions equally when perform-
ing feature mimic. In this paper, we propose an end-to-end
attention-guided knowledge distillation method to train ef-
ficient single-stage detectors with much smaller backbones.
More specifically, we introduce an attention mechanism to
prioritize the transfer of important knowledge by focusing on
a sparse set of hard samples, leading to a more thorough dis-
tillation process. In addition, the proposed distillation method
also provides an easy way to train efficient detectors without
tedious ImageNet pre-training procedure. Extensive exper-
iments on PASCAL VOC and CityPersons datasets demon-
strate the effectiveness of the proposed approach. We achieve
57.96% and 69.48% mAP on VOC07 with the backbone of
1/8 VGG16 and 1/4 VGG16, greatly outperforming their Im-
ageNet pre-trained counterparts by 11.7% and 7.1% respec-
tively.

Index Terms— Knowledge distillation, model accelera-
tion, object detection

1. INTRODUCTION

Object detection is a fundamental task in computer vision,
and is widely applied in intelligent surveillance, autonomous
driving, robotics and so on. Thanks to the significant develop-
ment of convolutional neural networks (CNN) [1, 2, 3], CNN-
based object detection pipelines [4, 5, 6] have been proposed
successively and made impressive achievements in generic
benchmarks. However, the state-of-the-art detectors always
rely on deeper and more sophisticated backbone networks,
resulting in high computational complexity and huge mem-
ory footprint, which greatly hampering their application in

resource-constrained devices.
There are already many works devoting to speeding up the

CNNs, among which the knowledge distillation is a proven
effective method. It tries to transfer the knowledge from a
cumbersome teacher model to a small student model to im-
prove performance of the student model and facilitate the de-
ployment. Many researchers devote themselves into this area,
trying to design more effective distillation algorithms and ap-
ply knowledge distillation to various tasks. Recently, several
works have attempted to introduce knowledge distillation to
object detection. [7] proposed a weighted cross entropy loss
to deal with the misclassification for background samples and
exploited hint learning to learn the distribution of neurons
in intermediate layers. [8] presented a feature map mimic
method by mimicking the features sampled from region of
proposals. [9] introduced the quantization operation to dis-
cretize the feature map to facilitate the knowledge transfer.
[10] combined knowledge distillation with RetinaNet [11].
They proposed ADL to lead the student network to adaptively
mimic the teacher’s logits.

Although aforementioned methods can effectively im-
prove the performance of small networks, most of them are
intended for two-stage detectors, the application of distilla-
tion techniques to single-stage detectors has not been well ex-
plored yet. Different from two-stage detectors, single-stage
detectors capsule all operations into a single network by aban-
doning the proposal generation and subsequent RoI-wise re-
finement stage, making the whole process more compact and
faster. Despite [11] combines knowledge distillation with
RetinaNet, there is still a speed bottleneck due to the rela-
tively large prediction head of RetinaNet. With a view to build
extremely fast object detectors, we combine knowledge distil-
lation with classical single-stage detector, Single Shot Multi-
Box Detector (SSD) [5], making it possible to train small yet
accurate detectors.

In addition, it is generally accepted that the quality of
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feature directly determines the performance of object detec-
tors. We notice that, previous feature mimicking distillation
methods for object detection treat different regions of the fea-
ture map equally important, which may be sub-optimal for an
effective and efficient knowledge transfer process. Our ap-
proach comes from the observation that most of the samples
are easy to learn during iterative training, and the correspond-
ing features of well-classified samples do not necessarily need
to be learned constantly. During training, there always ex-
ists some hard samples which can not be handled well by the
student itself. Therefore, the student should focus on these
samples when learning from the teacher to better cope with
them. In other words, the corresponding feature regions of
hard samples should be attached more importance during fea-
ture mimic process.

Therefore, in this paper, we propose an effective end-
to-end distillation framework for single-stage detector SSD.
Specifically, we propose to distill the feature maps before
the classification and regression branch, and the ground-truth
supervision is normally added to the final prediction lay-
ers. Additionally, we design an attention-based distillation
mechanism to automatically locate the region of interests that
are hard to learn and then adaptively adjust the distillation
weights for each region. Thereby, the student network can
put more emphasis on the current hard regions, which will
accelerate the network convergence and make the knowledge
transfer easier and more thorough. To verify the effectiveness
of our distillation method, we conduct extensive experiments
on varies datasets, including PASCAL VOC [12] and CityPer-
sons [13].

To summarize, the contributions of this work are as fol-
lows:

1. We propose a novel knowledge distillation method
for single-stage detectors, which can efficiently train
smaller student detectors without tedious ImageNet
pre-training procedure.

2. We propose an attention mechanism for efficient
knowledge transfer and a weighted Euclidean loss for
integrating the attention map to knowledge distillation.

3. We conduct comprehensive experiments on PASCAL
VOC and CityPersons datasets. The results prove the
effectiveness and generality of our method.

2. METHODS

In this section, we first introduce the overall architecture of
our distillation method. And then, we introduce the proposed
spatial attention mechanism in detail. Finally, we elaborate
how the attention maps are combined with the distillation loss
and how to optimize the whole network in an end-to-end way.
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Fig. 1: An overview of the proposed attention-guided knowledge
distillation for single-stage detector. The black arrows in the picture
show the forward data flow, and the red arrows display the backward
gradient flow.

2.1. Architecture

The overall architecture is illustrated in Figure 1. Similar to
other distillation methods, it consists of two networks, a well-
trained teacher network which has high accuracy on target
task and a student network with random initialization param-
eters. We remove the prediction heads (softmax and bound-
ing box regression layers) of the teacher network, since only
the backbone feature maps of the teacher network are useful.
The student network has an intact SSD architecture. Both the
backbone and prediction heads are preserved. Under our ex-
periment setting, we obtain the small network by cutting off
part of convolutional channels from the original network. The
1/n network represents a model that has the same architecture
as the original network, but only has 1/n channels for each
convolutional layer.

As SSD makes predictions on multiple feature maps, it
is intuitive to choose these feature maps as the guided lay-
ers. The guided layers are defined as those layers which are
responsible for transferring knowledge from the teacher to
student. In consideration of the fact that teacher network is
usually wider than the student network, an adaptation layer
is added to the student’s guided layer to deal with the dimen-
sion mismatch between teacher’s and student’s feature maps.
More specifically, a convolution layer with 1×1 kernel size
followed by ReLU activation function is used as the adapta-
tion layer. The distillation loss combined with attention maps
is tailored to optimize the distance between the features of
teacher and student. Here, the attention maps are generated
according to the classification loss of the student. We will
give a comprehensive explanation on how to construct the at-
tention maps later.

2.2. Attention-guided Distillation

Previous works [7, 8] perform knowledge distillation for ob-
ject detection in a direct way, simply adding an Euclidean



loss between the corresponding feature maps of teacher and
student. However, for the object detection task, different re-
gions of a feature map are not of equal importance for the
student network. For example, most of the samples usually
have relatively simple contents and can be well classified by
the student. Thus, when learning from the teacher, the stu-
dent network should focus on the feature regions of those hard
samples. The whole procedure can be decomposed into two
steps, i.e. distillation weight assignment and attention map
construction.

2.2.1. Distillation Weight Assignment

The first thing we need to do is to assign a weight to each sam-
ple so that the student network can distinguish which samples
are more important and pay more attention on them. It is
widely accepted that those samples which are hard to learn
contribute more to the training. Since the network can’t han-
dle these hard samples well, they should be emphasized dur-
ing training. Inspired by focal loss [11], the classification
loss can be viewed as an indicator to measure whether current
sample is well learned by the network. Small classification
loss indicates that the features are strong enough to make a
satisfying prediction, while large loss value shows that the
corresponding features are not that discriminative to make
a good prediction. Hence, more attention should be paid to
these samples with large loss values.

wk = min(wmax, α× (1− e−lk)β × lk) (1)

We use equation (1) to assign each sample a weight value ac-
cording to its classification loss. lk is the classification loss of
sample Sk. The weight wk increases monotonously with the
classification loss lk. Samples with large classification loss
values will have large weights during distillation. Addition-
ally, we add an upper bound wmax to avoid extremely over-
sized weights during the early training stage, which will make
the training unstable and lead to network divergence. α, β are
two introduced hyper-parameters used to control the weight
of each sample. Figure 2 shows how the weight-loss curve
changes when we fix one of the hyper-parameter and change
the other. We can see that hyper-parameter α is equivalent
to a scaling factor. And β mainly influences the shape of the
curve. Tunning these two parameters together, we are able
to adjust the relative weight gap between the easy and hard
samples. And thus, the student network can better distinguish
easy and hard samples.

2.2.2. Attention Map Construction

During distillation, we emphasize those hard samples by
guiding the student to focus on the corresponding feature map
area of those samples. We accomplish this by integrating the
attention mechanism with knowledge distillation. The fea-
ture regions corresponding to those hard samples should be

Fig. 2: Weight-loss curves when hyper-parameter α and β are set to
different values.

given a greater weight during the distillation process. As we
have already assigned each sample a weight value, the next
step is to construct a spatial attention map according to these
weights. Here we adopt a simple strategy. For pixel in posi-
tion i, j, the weight will be set to 0 if it is not covered by of
any samples. If it is situated in the overlap area of different
samples, the maximal weight of these samples will be selected
as its final weight. The detailed definition can be expressed as
equation (2).

ai,j =

{
0, if Gi,j = ø

max(wgk), if Gi,j 6= ø, gk ∈ Gi,j
(2)

For certain feature map, ai,j means the value of attention
map A in position i, j. Set S represents the set of all the
samples which are selected to compute the loss. For pixel
i, j, we define a set Gi,j , which is a subset of S. The element
of Gi,j is the sample in S whose corresponding feature region
covers pixel i, j. We use gk to denote the element ofGi,j . wgk
is the weight calculated by equation (1) of sample gk. After
the operations above, a spatial attention map with 1×1×H×
W dimension is constructed. However, the dimension of each
guided layer is 1 × C × H ×W . We need to broadcast the
spatial attention map across C channels to make it match the
dimension of guider layer.

In summary, the attention map is constructed in two steps.
First, we calculate a distillation weight for each sample based
on its classification loss using equation (1). Second, a spa-
tial attention map with dimension 1 × 1 × H ×W for each
guided layer is generated according to each sample’s distilla-
tion weight as showed in equation (2). And after the broad-
cast operation, the final spatial attention map with dimension
1× C ×H ×W is constructed.

2.3. Network Optimization

During training, the parameters of teacher network are frozen.
The gradient back propagation is only performed on the stu-
dent network. In addition, it is also necessary to add ground
truth supervision to the student network, since the final goal
is to predict the location and category of the object. How-
ever, due to the limited capacity and learning ability of the
small student network, it is difficult to learn discriminative
features for accurate prediction only under the supervision of
the ground truth. While the knowledge learned by the teacher



network can be effectively transfered to the student network
by the distillation loss. Hence, with the aid of teacher net-
work, student network can learn the deep semantic patterns
hidden in the data.

The overall training loss consists of two parts: the
attention-guided distillation loss and detection loss. In partic-
ular, the former is the weighted Euclidean loss and the latter
is the standard detection loss used in SSD (i.e. classification
loss and bounding box regression loss). We optimize the fol-
lowing function:

Ltotal = Ldet + λ1Ldis (3)

The detection loss is defined as:

Ldet = Lcls + λ2Lreg (4)

where Lcls is the classification loss and Lreg is bounding
box regression loss. λ1, λ2 are loss weight balance parame-
ters(set to 1 by default).

The attention-guided distillation loss can be formulated
as:

Ldis =
1

2N

M∑
m=1

1

Cm ×Hm ×Wm
||Am× (Tm−R(Sm))||2

(5)
Given that SSD detects objects at multiple CNN layers

(corresponding to multiple feature maps), we also generate
multiple attention maps and perform hierarchical distillation
strategy respectively. In equation (5), m is the index of the
distilled feature maps, and M is the total number of prediction
layers. R is the adaptation layer, which is used to increase the
dimension of the student feature map. Am is the generated
attention map for mth distilled feature map. After obtaining
the difference between the teacher feature map Tm and corre-
sponding adapted student feature map R(Sm), the Hadamard
product of attention map Am and the difference is calculated.
Next, we calculate the Euclidean norm and normalize it with
the product of the dimension of feature map.

3. EXPERIMENTS

3.1. Experiments on PASCAL VOC

PASCAL VOC is a common object detection dataset with 20
object categories. In our experiments, we use VOC2012 train-
val and VOC2007 trainval(16551 images) for training, and
test on VOC2007 test (4952 images). The input size is set to
300× 300.

3.1.1. Ablation Studies

We choose the 1/8 VGG16, 1/4 VGG16 and 1/2 MobileNet
as the students, and their corresponding compact networks
as their teachers as showed in Table 1. For comparison,
we train the students fine-tuned from ImageNet pre-trained

Table 1: The mAP(%) of different student networks on VOC2007
test dataset with different distillation strategies. ImageNet indicates
that the student is fine-tuned from ImageNet pre-trained models.
SimpleDis means directly distilling the whole feature map with-
out attention. AttentionDis implies the proposed attention-guided
knowledge distillation.

Teacher&mAP(%) Methods Student mAP(%)

1/8 VGG16 VGG16(77.85)
ImageNet 46.23
SimpleDis 53.96(+7.73)

AttentionDis 57.96(+11.73)

1/4 VGG16 VGG16(77.85)
ImageNet 62.38
SimpleDis 65.62(+3.24)

AttentionDis 69.48(+7.1)

1/2 MobileNet MobileNet(72.00)
ImageNet 58.22
SimpleDis 61.32(+3.1)

AttentionDis 63.92(+5.7)

Table 2: The influence of different hyper-parameters to the student
performance.

wmax α β Student mAP(%)

15 0.05
1 57.81
2 57.96
3 55.22

15
0.03

2
57.75

0.05 57.96
0.1 57.90

10
0.05 2

57.94
15 57.96
20 57.96

model. Because of the limited capacity of such small net-
work, it is not easy to get good performance in this conven-
tional way. To reveal the effectiveness of our attention-guided
distillation method, we make a baseline by directly distilling
the whole feature map without attention. More specifically,
knowledge distillation is performed by simply adding an Eu-
clidean loss between corresponding feature maps of the stu-
dent and teacher. The student model is trained on 4 GPUs
for 240k iterations. During training, we use SGD with ini-
tial learning rate of 0.008, momentum of 0.9, weight decay of
0.0005 , and batch size of 32 on each device. The learning
rate is divided by 10 at 180k and again at 220k. We adopt
a linear warm up learning rate strategy for first 5k iterations
starting from a learning rate of 0.0008. The hyper-parameters
wmax, α, β are set to 15, 0.05, 2, respectively. Table 1 shows
the results of the experiments above.

As shown in Table 1, for 1/8 VGG16, directly distill-
ing the whole feature map can obtain 53.96% mAP, outper-
forming its counterpart fine-tuned from ImageNet pre-trained
model by a large margin, nearly 8 percent. Our attention-
guided distillation method further improves the accuracy by
4 percent compared to distillation without attention. The 1/8
VGG16 can finally reach 57.96% mAP. Similar results can
be observed on the student 1/4 VGG16 and 1/2 MobileNet.
From the results above, we can clearly know that the knowl-
edge distillation is beneficial for training small object detec-
tors, and can significantly improve the performance. With
our attention-guided distillation method, the student net can
adaptively learn important parts from the teacher. Thus the
distillation process becomes oriented and efficient.



Table 3: Performance of the student when it is trained under differ-
ent teacher’s supervision (VOC dataset).

Student FLOPs(B) Teacher&mAP(%) Student mAP(%)

1/2 MobileNet 0.30 MobileNet(72.00) 63.92
VGG16(77.85) 64.40

1/4 ResNet18 0.34 ResNet18(72.12) 57.25
VGG16(77.85) 57.69

Another advantage of this method lies in its robustness to
hyper-parameter chosen, which will save a lot of time to tune
these parameters. At the beginning of training, the network
is unstable and thus extremely large loss values may occur
with a very high probability. Based on equation (1), large loss
value leads to a large distillation weight. Such large weight
will incur network divergence. The upper bound wmax is in-
troduced to reduce the potential divergence risk. Besides, α is
designed to control the overall magnitude of the weight value.
And the duty of hyper-parameter β is to regulate the gap be-
tween easily classified samples and those hard ones. We de-
sign control experiments to investigate the influence of these
hyper-parameters to the student’s performance. The teacher
net is VGG16 with 77.85% mAP. And we choose 1/8 VGG16
as the student. As the results showed in Table 2, our method is
not sensitive to the hyper-parameter changes of α and wmax.
It works well in a fairly wide range of hyper-parameter vari-
ations, which provides us great conveniences in practical use.
And we also observe that a large β causes obvious perfor-
mance degradation since an oversize β suppresses much to
those samples with small loss values, which will ignore too
much useful information.

3.1.2. Experiments of Different Teacher-student Pairs

Our distillation method can efficiently transfer the knowledge
when the teacher and student share the same backbone archi-
tecture, but not limited to this scenario. It also works well
when the teacher and student have different backbone archi-
tectures. We can see from Table 3 that when the student net
is trained under the supervision of a better teacher, its perfor-
mance will get slightly increase. For student 1/2 MobileNet,
when the teacher net is VGG16 with 77.85% mAP, the stu-
dent net obtains 64.40% mAP. It is marginally higher (0.5%)
then the mAP of the student 1/2 MobileNet supervised by the
MobileNet (72.0%). By comparing the performance of 1/4
ResNet18 under different teachers’ supervision in Table 3,
we can draw the same conclusion. In Table 4, when the
teacher is VGG16 (77.85% mAP), although 1/2 MobileNet
has less FLOPs, it still greatly outperforms the other student
1/8 VGG16. This is because the special network structure
of MobileNet endows itself the talent to obtain high perfor-
mance with little computation cost. When we change another
teacher, we can still observe the same phenomenon.

Table 4: Performance of different students when they are supervised
by the same teacher (VOC dataset).

Teacher&mAP(%) Student&FlOPs(B) Student mAP(%)

VGG16(77.85) 1/8 VGG16(0.65) 57.96
1/2 MobileNet(0.30) 64.40

ResNet18(72.12) 1/4 ResNet18(0.34) 57.25
1/2 MobileNet(0.30) 64.34

Table 5: Comparison with state-of-the-art KD method. (VOC
dataset). †: The performance of VGG16 on VOC dataset is not re-
ported. We use their official open source code to conduct experi-
ments.

Method Teacher&mAP(%) Student mAP(%)

1/16 ResNet-18 (Yi Wei et al. )[9] ResNet-18(72.9) 47.0
AlexNet (Chen Guobin et al.)[7] VGG16(70.4) 60.1

1/8 VGG16 (Wang Tao† et al.)[14] VGG16(75.5) 50.8
1/8 VGG16 (Zhu Yousong et al.)[15] VGG16(77.85) 56.88

1/8 VGG16-ours VGG16(77.85) 57.96

1/4 VGG16 (Li Quanquan et al.)[8] ResNet-50(78.78) 48.70
1/4 VGG16 (Wang Tao† et al.)[14] VGG16(75.5) 60.3

1/4 VGG16-ours VGG16(77.85) 69.48

3.1.3. Comparison with State-of-the-art

Up to now, there have been several works that apply knowl-
edge distillation to two-stage object detection pipelines. We
compare our method with other state-of-the-art knowledge
distillation methods and list the results in Table 5. We can
clearly know that our method yields a higher precision when
the student is supervised by the same teacher. And even our
1/8 VGG16 detector outperforms the 1/4 VGG16 detector
in [8] by nearly 11%. Under the condition of approximately
equal backbone computation cost, our distillation method can
surpass other distillation approaches, which strongly shows
the superiority of our method.

3.2. Experiments on CityPersons

To validate the generality of our method, we conduct exper-
iments on CityPersons dataset. CityPersons is a set of high
quality annotations on top of the Cityscapes dataset. The train
set contains 2975 images and the val set has 500 images. Our
experiments are conducted on the ”reasonable” setup (pedes-
trian scale [50, ∞], occlusion ratio[0, 0.35]). The log miss-
rate(MR) which is averaged over the FPPI(false positives per
image) range of [10−2, 100] is used for evaluation.

We first train a SSD512 with a VGG16 backbone as the
teacher. It is worth noticing that the original image in CityPer-
sons has a size of 1024×2048. Directly resize the image to
512×512 when test will severely distort the objects. As a
result, it will bring catastrophic damage to the final perfor-
mance. To tackle this issue, we cut the original image into
three 1024×1024 parts along the long side during test. These
three parts start from the 0, 512, 1024 pixel of the original
image, respectively. We let the detector make prediction on
these 3 sub-images and merge the predictions as final results.



Table 6: The MR(%) of the student on the CityPersons dataset. The
lower, the better.

Student Teacher&MR(%) Method Student MR(%)

1/8 VGG16
VGG16(34.06)

SimpleDis 53.62
AttentionDis 51.15

1/4 VGG16 SimpleDis 39.66
AttentionDis 35.82

Similar to the experiments on PASCAL VOC dataset, we
choose 1/8 VGG16 and 1/4 VGG16 as the students. We use
SGD algorithm with initial learning rate of 0.006, momentum
of 0.9, weight decay of 0.0005, and batch size of 8 on each
device. We adopt a linear warm up learning rate for first 5k
iterations starting from an initial learning rate of 0.0008. The
hyper-parameters wmax, α, β are set to 15, 0.05, 2, respec-
tively. When we choose the 1/4 VGG16 as the student, we
train it on 4GPUs for 180k iterations. The learning rate is di-
vided by 10 at 150k and again at 170k. And when the student
is 1/8 VGG16, as such small network is hard to converge, we
extend the training iterations to 350k. And the learning rate is
divided by 10 at 320k and 340k.

Table 6 gives the final results. Noticing that in these
two groups of experiments, our method displays consistent
improvement over SimpleDis. 1/8 VGG16 distilled by our
method shows 2.5% increase. And the 1/4 student trained by
our method obtains a 3.8% improvement over SimpleDis. Our
1/4 VGG16 student detector achieves a remarkable 35.82%
MR, even on par with the teacher. These results strongly
prove the effectiveness of our method and demonstrate our
attention-guided distillation approach can be well generalized
to other datasets.

4. CONCLUSION

In this paper, we propose a novel approach for training effi-
cient single-stage detectors from scratch. By integrating the
attention mechanism to knowledge distillation, the student
can distinguish which region is more important and thus pay
more attention to these import regions, resulting in a high-
efficiency learning process. Experiment results indicate that
our attention-guided knowledge distillation can bring consis-
tent accuracy improvement to the student detectors over vari-
ous datasets and network backbones.
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