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ABSTRACT

In the domain of 3D point cloud classification, deep learning

based classifiers have made significant progress, while they

have been also proven to be vulnerable on the adversarial at-

tack at the same time. Some recent works employ the attack

methods that devised for image classification such as pro-

jected gradient descent (PGD) to attack the 3D classifiers, but

their performances seem quite limited when faced with sta-

tistical operations including point cloud denoising and point

cloud upsampling. In this paper, we propose ‘SmoothAttack’,

a new attack that can craft adversarial point clouds robust to

statistical operations. SmoothAttack can be easily applied in

both global constraint and pointwise constraint. Besides, we

analyze the directions of perturbations onto the point cloud

during the iteration process, where SmoothAttack can some-

how stabilize the direction and make full use of the adver-

sarial budgets. Experiments validate that our ‘SmoothAttack’

can raise the attack success rates against statistical defenses

up to 98% for untargeted attack and 91% for targeted attack

on ModelNet40 database when fooling the classifiers Point-

Net and DGCNN.

Index Terms— Adversarial example, point cloud classi-

fication, SOR defense, denoiser and upsampler network de-

fense, deep learning

1. INTRODUCTION

The deep neural networks (DNNs) based classifiers towards

3D point data have been rapidly developed in the last few

years. Different sorts of classifiers including [1] and [2] can
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Fig. 1: Visualization of adversarial point clouds crafted by

our proposed SmoothAttack with the global constraint and the

pointwise constraint.

achieve a classification accuracy around 90% on the popu-

lar ModelNet40 database [3]. With the rapid development in

the domain of adversarial attack towards 2D image classifica-

tion task, several recent attackers(e.g., [4, 5, 6, 7, 8]) employ

the traditional attack algorithms to the 3D domain by care-

fully crafting adversarial point clouds that cannot be visually

discriminated, and bring the classification accuracy down to

nearly 0%, meaning that 3D point cloud classifiers are very

vulnerable to adversarial examples. As a category of exist-

ing 3D adversarial attacks, point shifting focuses on how to

modify the positions of the component points within a small

range (named adversarial budget) and maximize the classifi-

cation loss. For example, Liu et al. [5] and Yang et al. [8]

employ the well-known projected gradient descent (PGD) at-

tack ([9]) coming from the image adversarial attack, which

greedily moves the positions of all points in the direction of

gradient with a α-stepsize during each iteration.

By applying the statistical outlier removal (SOR) and

point cloud upsampling of the PU-Net ([10]), Zhou et al. pro-

pose to restore 3D adversarial objects to benign objects. In

fact, SOR is a simple defense strategy that removes outlier
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points within the point cloud. The SOR method computes the

average distance from the k-nearest neighbors for each com-

ponent point firstly, and those points whose average distance

exceed the threshold μ+ c · σ are considered as outlier points

and discarded, where μ and σ are the mean and standard de-

viation of the average distances. Here k and c are hyper-

parameters, which are default set as 10 and 1.0, respectively.

The SOR defense can effectively defend various of existing

attacks reported in [11], and can raise the classification accu-

racy on adversarial examples crafted by [4] from 0% to 81%.

Besides, the point cloud upsampling operation of PU-Net can

further improve the performance by 4%. According to our ex-

perimental results, SOR can suppress the attack success rate

of PGD method from 100% to 41% and 60% with global

constraint and pointwise constraint respectively on database

ModelNet40 ([3]) with the classifier PointNet([1]).

In this paper, we introduce a new attack named

‘SmoothAttack’ to overcome the statistical defense in [11].

We observe that the gradient information from neighbour-

hoods of the current data will enhance the robustness against

simple statistical operations, because the directions of average

of gradients tend to be more consistent during iteration pro-

cess, which avoids dropping into poor local maxima and be-

ing easily defended. We view this average of gradients as the

smooth operation, and design our ‘SmoothAttack’ by gener-

ating the adversarial point clouds based on updating the point

position on the ‘smoothed’ gradient.

The main contributions of our work are:

• We propose a new attack method named ‘SmoothAt-

tack’, which can craft adversarial point clouds that ro-

bust to statistical operations, and can be easily applied

in both global constraint and pointwise constraint. Our

‘SmoothAttack’ can stabilize the direction and make

full use of the adversarial budget by smoothing the gra-

dients of several sample times.

• We implement comprehensive evaluations on our

‘SmoothAttack’, validating the effectiveness on the

ModelNet40 database with classifiers PointNet and

DGCNN, in which the attack success rates up to 98%

for untargeted attack and 91% for targeted attack.

2. RELATED WORK

The point cloud adversarial attack is a new and developing

research field, where the attack methods can be divided into

three categories: point shifting, point adding, and point drop-

ping.

As for the point shifting attack, it is quite similar with the

adversarial perturbation on 2D image pixels, which means the

number of points in the point cloud keeping unchanged. Nat-

urally, the attacking algorithms on image classifiers can be

freely adapted onto the field of point cloud classification. The

general idea of point shifting attack is either to search the min-

imum magnitude of perturbation or to iteratively perturb the

point data with a fixed magnitude. For instance, Xiang et al.

[4] is the first to craft adversarial point clouds by utilizing the

optimization framework of CW-�2, where they apply binary

search to find the most imperceptible shifting of points. Sub-

sequently, Wen et al. [12] add more terms related with local

curvatures information to the loss function of [4], in order to

generate adversarial point clouds with more natural geometry

properties. On the other hand, Liu et al. [5] [13] add perturba-

tions onto the given point cloud iteratively, same as the image

adversarial attack [9]. Furthermore, they propose two heuris-

tic resampling methods (i.e.farthest point sampling (FPS) and

radial basis function sampling (RBF)) to refine the perturbed

point cloud after each iteration, trying to keep the density of

points uniform all the time. Hamdi et al. [6] also use the it-

eration equation in [9], but expanded with a novel term. They

need to train a deep neural network with an encoder-decoder

architecture model to do point cloud denoising at first, then

attack both the original point cloud and the denoised point

cloud all together during iterations.

However, none of the above methods even tries to analyze

the defense mechanism of DUP-Net [11], not to mention the

way to evading the defense. We have studied the success rate

of dodging DUP-Net defense in later experiments for those

methods with released codes ([4], [5], [13]), and have referred

to their own reports about the success rate for those without

released codes ([12], [6]). The success rates of [4], [12] and

[6]) are less than 40%, which is quite limited. Although the

success rate of [5] and [13] can be up to 86%, but this is ac-

companied by a extreme distortion on point cloud shape.

The point adding attack has only been practiced by Xiang

et al. [4], including adding points, clusters, or tiny objects

near the critical points for the classifier. The point dropping

attack such as [14] and [15] iteratively drop points with strate-

gies. However, Zhou et al. [11] report that the success rates

of the two attacks can be suppressed down to about 8% and

52%. Since both the adding methods and the dropping meth-

ods change the number of point cloud, we will not discuss

them in this paper.

3. PROPOSED METHOD

3.1. Notations

The point cloud classification model is denoted as f : X →
Y , with X ∈ R

N×3 being the space of the point cloud, and

Y = {1, 2, . . . ,K} being the output classification space. The

pair of the benign point cloud and the ground-truth label is

denoted as (X, y), where X = [x1; . . . ;xN ] ∈ R
N×3 with

xi ∈ R
1×3 being the i-th point. Our goal is to fool f by

crafting an adversarial point cloud X∗ which is similar with

its corresponding X in appearance. Besides, let f(·) denote

the probability vector predicted by the classifier, L(f(X), y)
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be the classifier loss function taking a point cloud X and a

label y as inputs, while D(X,X∗) denotes a distance metric

between a benign point cloud and its adversarial counterpart,

and S(X) denotes the point cloud processed by the SOR de-

fense.

3.2. Our SmoothAttack

The performances of 3D classifiers are deteriorated when

faced with statistical operations such as the statistical outlier

removal(SOR) in the DUP-Net defense proposed by Zhou et

al. [11].

The SOR algorithm computes the average of the k-nearest

neighboring distances for each point xi, formulated as

di =
1

k

∑

xj∈knn(xi)

‖xj − xi‖2 . (1)

Here, knn(xi) denotes the set of the k-nearest points around

xi. Then the mean and standard deviation of all di (i ∈
{1, · · · , N}) can be calculated and represented as μd and σd.

Finally, the points contained in the set {di|di > μd + td · σd}
are removed from the point cloud, so the point number of de-

noised point cloud will be less than the original point cloud.

Intuitively, those outliers, which are relatively far away from

their neighboring points, are more likely to be abandoned. In

terms of the point shifting attack, the attacker tends to make

just a few points off the surface of the object, and such out-

liers contribute most to causing the wrong classification [11].

After this denoising operation, the denoised point cloud may

be non-malicious to classifiers. The DUP-Net defense is by

far the most efficient defense against the adversarial attacks to

point cloud classification. Both the denoising and the upsam-

pling steps endeavor to pull the adversarial point clouds back

to the natural manifold of benign ones.

Our ‘SmoothAttack’ can overcome the statistical defense

methods by gather the information from neighbourhoods of

the current data during the attack process, and the whole

process is equivalent of attacking an ensemble of classifiers

termed as smooth classifier. Similar with [16] and [17], the

classification are formulated as

g(X) =
1

T

T∑

i=1

fi(X) =
1

T

T∑

i=1

f(X+ δi), (2)

where δi denotes a random noise following a uniform distri-

bution δ ∼ U(r), and T denotes the sample times. Further-

more, the objective function of untargeted attack against the

smooth classifier can be written as

maxL(g(X∗), y), subject to D(X,X∗) � ε. (3)

When employing the targeted attack, y should be the tar-

get class t, and the max operator should be replaced with

the min operator. We choose the projected gradient descent

method to optimize the objective function. For untargeted at-

tack, the update process is specified as

X∗ ← X∗ + α · ∇X∗L(g(X∗), y)
‖∇X∗L(g(X∗), y)‖ (4)

= X∗ + α ·
∑T

i=1 ∇X∗L(fi(X
∗), y)∥∥∥

∑T
i=1 ∇X∗L(fi(X∗), y)

∥∥∥
. (5)

Note that the ·/ ‖·‖ denotes a method of normalization ac-

cording to the type of norm ‖·‖. If considering the �2 norm

between the entire clean point cloud and the entire adversar-

ial point cloud, we can view the attack method as the global

PGD ([9]), which utilizes the global constraint. If considering

the �2 norm for each component point, we can view it as the

pointwise PGD ([8]), which utilize the pointwise constraint.

Our SmoothAttack is summarized in Algorithm 1. In or-

der to generate the adversarial point cloud X∗, we use the

original point cloud X to initial X∗, then repeat to update X∗

in n steps based on Eqa 5. After this computation, the adver-

sarial point cloud X∗ can be obtained that can fool the classi-

fiers effectively even after different defense methods like SOR

or DUP.

Algorithm 1 SmoothAttack Algorithm.

Input: A point cloud classifier f with loss function L; be-

nign point cloud X; true label (untargeted) or target label

(targeted) t; number of iterations n; point-wise perturba-

tion constraint ε; step size α.

Output: Adversarial point cloud X∗

Initialize X∗ ← X
If targeted attack: L ← −L
for i = 1 to n do

Initialize Δ ← 0
for i = 1 to T do

Compute and accumulate the gradient Δ ← Δ+
∇X∗L

(
fi(X

∗), y
)

end for
Update the point cloud as X∗ ← X∗ + α · Δ

‖Δ‖ .
end for
return Adversarial point cloud X∗

4. EXPERIMENTAL RESULTS

4.1. Setup

Our experiments are implemented on the public database

ModelNet40 ([3]), which contains 9843 samples for training

and 2468 samples for testing. ModelNet40 contains 40 dif-

ferent classes, and all the point clouds have 2048 points with

xyz-coordinates. For a fair comparison, we make a down-

sampled version of ModelNet40 by randomly sampling 1024
points from 2048 points for each object in both the training

and testing set, which are same with all the existing works.

We evaluate the attacks on two classifiers PointNet [1] and

3
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Table 1: The attack success rates (%) on untargeted attack

against different settings, namely No Defense (ND), SOR de-

fense (SOR), and DUP-Net defense (DUP). Best results in

each column are highlighted in bold, and second best results

are in blue.

Attacks
PointNet DGCNN

ND SOR DUP ND SOR DUP

CW [18] 99.9 75.6 41.8 99.7 95.5 91.5

PGD (global) [9] 100.0 58.7 41.6 99.9 70.7 41.8

PGD (pointwise) [5] 100.0 75.1 59.1 100.0 90.7 72.3

Our SmoothAttack (global) 100.0 77.7 68.2 100.0 99.0 90.5

Our SmoothAttack (pointwise) 100.0 97.7 95.9 100.0 99.5 93.7

DGCNN [2], both of which are pretrained with the downsam-

pled version of ModelNet40 training set and achieve 86.8%
and 92.0% accuracies on the testing set.

4.2. Attack Evaluation

We compare the attack success rates of our ‘SmoothAttack’

with the PGD method under global constraint and pointwise

constraint, as well as the CW attack1 proposed in [18]. We

use ε = 3.0 and α = 0.1 under the global constraint, and use

ε = 0.1 and α = 0.01 under the pointwise constraint, with

iteration step being 40. Note that only the examples which

can be correctly predicted are chosen for the attack evalua-

tion for each classifier, and the attack success rate is a ratio

between the number of successful adversarial examples and

the number of correctly classified examples.

4.2.1. Untargeted Attack

Table.1 shows the untargeted attack performance on both

PointNet and DGCNN for different settings, namely no de-

fense, SOR defense, and DUP-Net defense. In general, our

SmoothAttack examples can successfully fool the classifiers

with a 100% success rate when there is no defense. Aiming at

the SOR defense, the success rates of PGD attack decrease at

different level. Our ‘SmoothAttack’ can improve the success

rate by 19.0% for PointNet and 28.3% for DGCNN under

the global constraint, and improve by 22.6% for PointNet and

8.8% for DGCNN under the pointwise constraint. Addition-

ally, the attack ability of CW seems limited, which shows a

similar performance with PGD (pointwise). We find that the

attacks under the pointwise constraint shows stronger abil-

ity, which have been also reported in [5] and [7]. The reason

of this fact is that the global constraint tolerates the perturba-

tion vectors containing large values on some certain elements,

making the points in corresponding positions moved off the

object surface too far, which are further considered as the out-

lier points and discarded by the SOR algorithm, as these out-

lier points contribute most to the adversarial effect. In com-

1https://github.com/jinyier/ai pointnet attack
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Fig. 2: The update trajectories of a certain point within the

point cloud for PGD (red) and our SmoothAttack (green)

during the iteration process when fooling PointNet. The up-

date trajectory of our SmoothAttack shows more continuously

trend to the extreme value.
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 PGD 
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Fig. 3: The histograms of perturbation size for PGD examples

(red) and our SmoothAttack (green) examples under point-

wise constraint, with adversarial budget being 0.1. The x-axis

indicates the perturbation size, and the y-axis shows the pro-

portion by observing 1000 adversarial examples. We can see

that our SmoothAttack can use the adversarial budget more

effectively.

parison, the pointwise constraint avoids this situation and still

maintains the object surface after point shifting, which en-

hances the attack ability to overcome the SOR defense.

4.2.2. Targeted Attack

Both the best case and the average case are considered in our

experiment, whose definition are detailed as

• Best Case: select the ”runner-up” class as the target.

• Average Case: select the target class randomly among

K classes excluding the most probable one.

Table.2 shows the targeted attack performance for no de-

fense, SOR defense, and DUP defense. OUr ‘SmoothAt-

tack’ outperforms PGD and CW when fooling PointNet, and

can achieve a relative lower rate with CW when fooling

DGCNN, as DGCNN performs less robust than PointNet. In

4
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Table 2: The success rates (%) on the targeted attack (best case and average case) against different settings, namely No Defense

(ND), SOR defense (SOR), and DUP-Net defense (DUP). Best results in each column are highlighted in bold, and second best

results are in blue.

Attacks

PointNet DGCNN

best case average case best case average case

ND SOR DUP ND SOR DUP ND SOR DUP ND SOR DUP

CW [18] 99.9 67.8 36.6 97.1 21.3 6.7 100.0 77.6 13.7 99.7 58.4 7.2

PGD (global) [9] 100.0 43.2 25.0 90.2 6.5 2.9 98.9 51.1 17.3 90.8 15.3 2.7

PGD (pointwise) [5] 99.7 59.0 38.8 79.1 14.8 6.6 96.1 55.2 21.6 80.5 24.2 4.9

Our SmoothAttack (global) 99.9 66.3 52.9 93.1 17.8 12.2 97.0 77.3 43.9 84.1 45.6 15.7
Our SmoothAttack (pointwise) 99.5 90.6 86.2 83.6 53.3 46.6 93.8 74.9 32.0 79.8 47.5 15.0

fact, we evaluate the classification accuracy on the testing set

perturbed by non-malicous Gaussian noise (ε = 0.1), and

PointNet misclassifies 10.7% examples and DGCNN mis-

classifies 56.8% examples. Besides, the performance of our

‘SmoothAttack’ still surpass that of PGD under global con-

straint and pointwise constraint.

4.3. Update Directions

To further explain why our ‘SmoothAttack’ performs better

against statistical defenses, we examine the update trajectory

of a certain point within the point cloud during employing the

PGD attack and our ‘SmoothAttack’ respectively as shown in

Figure.2. We find that by attacking a smooth classifier instead

of the original classifier, our ‘SmoothAttack’ can stabilize the

update directions during the iteration process.

The PGD attack greedily moves the positions of all com-

ponent points in the gradient direction with a specified step-

size, while it is lack of guided information to avoid the ad-

versarial examples getting stuck in poor local maxima during

each iteration. As a result, we find that the size of pertur-

bation computed by the PGD attack preserves limited after

40 iterations, no matter how large the adversarial budget is.

Figure.3 demonstrates that our ‘SmoothAttack’ uses the ad-

versarial budget more effectively than PGD attack when ad-

versarial budget ε, stepsize α, and iteration step in the same

setting, which further illustrates its stronger attack ability.

5. CONCLUSION

In this paper, we propose a new attack method named

‘SmoothAttack’ that can craft adversarial point clouds ro-

bustly to statistical operations. Our ‘SmoothAttack’ can stabi-

lize the direction and make full use of the adversarial budget,

making the adversarial point clouds generation faster and ef-

fectively. Experiments demonstrate that our ‘SmoothAttack’

can raise the attack success rates up to 95% for the untar-

geted attack and 88% for the targeted attack on ModelNet40

database against classifiers PointNet and DGCNN.
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