
A practical framework of multi-person 3D human pose estimation with a
single RGB camera

Le Ma1,4,Sen Lian1,4, Shandong Wang3, Weiliang Meng2,5,4,1*, Jun Xiao1†, Xiaopeng Zhang4,2,1 ‡

1School of Artificial Intelligence, University of Chinese Academy of Sciences,
2Zhejiang Lab,3Intel Labs China, 4NLPR, Institute of Automation, Chinese Academy of Sciences

5The State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences

(a) The pipeline of our framework. (b) 3D pose estimation process for one frame.

Figure 1: Our ’DN-2DPN-3DPN’ framework.DN:DetectNet,2DPN:2DPoseNet, 3DPN: 3DPoseNet.

ABSTRACT

We propose a practical framework named ’DN-2DPN-3DPN’ for
multi-person 3D pose estimation with a single RGB camera. Our
framework performs three-stages tasks on the input video: our De-
tectNet(DN) firstly detects the people’s bounding box individually
for each frame of the video, while our 2DPoseNet(2DPN) esti-
mates the 2D poses for each person in the second stage, and our
3DPoseNet(3DPN) is finally applied to obtain the 3D poses of the
people. Experiments validate that our method can achieve state-of-
the-art performance for multi-person 3D human pose estimation on
the Human3.6M dataset.
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1 INTRODUCTION

In this paper, we mainly focus on the real-time multi-person 3D pose
estimation from a monocular camera in various scenarios. This is
a challenging topic as the 3D information can be ambiguous under
this condition with more information loss because of the occlusion
among multiple people.

We propose a practical framework named ‘DN-2DPN-3DPN’ for
the real-time multi-person 3D pose estimation, consisting of Detect-
Net(DN), 2DPoseNet (2DPN),and 3DPoseNet (3DPN) as shown in
Figure 1. Our DN detects the bounding-box of each person in each
frame from the video, and outputs all the bounding-boxes to our
2DPN in order to predict the 2D pose for each person respectively
based on the original image. Each of our 2D poses contains 17 key-
points following the Human3.6M dataset [2], and these coordinates
are further input to our 3DPN for 3D pose keypoints prediction.
We also design a simple strategy which can effectively conquer
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the occlusion issue, making the 3D pose estimation more effec-
tive and accurate, and reduce the computational complexity of the
pose estimation. Besides, our framework can estimate the poses of
small targets, and be superior to existing methods validated by our
experiments.

2 OUR METHODS

2.1 The network
Our ‘DN-2DPN-3DPN’ framework consists of DetectNet (DN),
2DPoseNet (2DPN), and 3DPoseNet (3DPN).

DetectNet. In order to deal with multi-person simultaneously,
the DetectNet(DN) should be used to obtain all the axis-aligned
bounding boxes for each person individually in the frame and must
be fast and accurate. We evaluated different advanced detection
methods, and extract the detection part of CenterNet [10] as our DN,
and we use the deep residual architecture networks ResNet101 and
ResNet50 respectively as the pre-trained models, making human
detection fast and accurate.

2DPoseNet. Our 2DPoseNet generates accurate 2D keypoints in
high-speed base on our DN results. We have tested different 2D
pose recognition methods and found that using HRNet [1] as our
2DPoseNet is better. HRNet can recognize 2D Pose directly on the
image, but it often fails when the image has lots of irrelevant targets.
Based on the results of DN, these interferences are removed, and the
2D pose recognition is more reliable for the small target.

3DPoseNet. Our 3DPoseNet(3DPN) predicts the 3D coordinates
of each keypoint based on the 2D coordinates. Our 3DPN is a
fully convolutional architecture with residual connections that take
a sequence of 2D poses as the input, and output 3D poses referred to
the network the structure proposed by Martinez et al. [4]. We modify
the first layer of [5] for adapting to the input and design a new loss
function Lset to train our 3DPN. Let Pi = (Xi,Yi,Zi) be the estimated
3D coordinate keypoint by our 3DPN, and the corresponding ground-
truth keypoint is Pg

i , we define the 3D joint MSE loss as Eq. (1) and
the symmetric constraint as Eq. (2):

Lmes = ∑ ||Pi−Pg
i ||22 (1)

Lsym = ∑
(i, j)∈E

(||Pi−Pj||22−||P′i −P′j||22) (2)

where E is the set of all adjacent keypoints pairs, while P′i and P′j
represent the keypoint and its symmetrical part respectively. Our
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Table 1: The comparison base on the Mean Per Joint Position Error(MPJPE)(taking the input 2D keypoints as the ground truth)/the Procrustes
analysis MPJPE (P MPJPE) on Human3.6M dataset. ‘-’ means no value reported in the work, and our method obtains the best results.

Methods Dir. Disc. Eat Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg

Martinez et al. [4] 37.7/39.5 44.4/43.2 40.3/46.4 42.1/47 48.2/51 54.9/56 44.4/41.4 42.1/40.6 54.6/56.5 58.0/69.4 45.1/49.2 46.4/45 47.6/49.5 36.4/38 40.4/43.1 45.5/47.7

Hossain et al. [7] 35.2/35.7 40.8/39.3 37.2/44.6 37.4/43 43.2/47.2 44.0/54 38.9/38.3 35.6/37.5 42.3/51.6 44.6/61.3 39.7/46.5 39.7/41.4 40.2/47.3 32.8/34.2 35.5/39.4 39.2/44.1

Zhao et al. [9] 40.2/- 49.2/- 47.8/- 52.6/- 50.1/- 75.0/- 50.2/- 43.0/- 55.8/- 73.9/- 54.1/- 55.6/- 58.2/- 43.3/- 43.3/- 43.8/-

Pavllo et al. [5] 36.2/34.1 42.3/36.1 36.8/34.4 40.0/37.2 41.8/36.4 50.1/42.2 44.6/34.4 39.9/33.6 50.3/45 52.6/52.5 40.8/37.4 42.0/33.8 42.7/37.8 31.6/25.6 33.9/27.3 41.1/36.5

Yang et al. [8] -/26.9 -/30.9 -/36.3 -/39.9 -/43.9 -/47.4 -/28.8 -/29.4 -/36.9 -/58.4 -/41.5 -/30.5 -/29.5 -/42.5 -/32.2 -/37.7

Ours 34.2/26.1 41.2/31.3 35.9/28.4 37.5/29.1 40.6/32.4 47.0/38.0 40.6/29.8 35.0/27.1 43.6/36.4 46.0/40.1 39.3/31.2 40.9/31.0 39.2/24.0 30.1/33.4 31.6/36.3 38.6/31.2

Figure 2: The detection loss can be solved in the occlusion case. (a)
is a source frame; (b) the estimated 3D pose without our occlusion
processing; (c) the estimated 3D pose with our occlusion processing.

training loss function is to minimize Eq. (3) based on the constant
ω = 0.1.

Lset = Lmes +ωLsym (3)

2.2 Occlusion Processing
We predict the occluded keypoint based on the position information
of the previous frame and the movement direction of the parent
keypoint of the limb. If the entire limb is occluded, we deal with
the arms and legs separately: if one leg is occluded, we can restore
the occluded keypoint from the other leg according to the symmetry;
if both legs are occluded, the body is in the half-blocked state and
no extra processing is required; if the arm is occluded, there are
self-occlusion and other blockings, meaning that we cannot restore
the occluded keypoint based on the symmetry. In this case, we em-
ploy the Evolving Temporal Proposals [6] to determine the position
information of the parent keypoint at the previous frame to obtain
the occluded keypoint position(Eq. (4)).

Pt
i = Pt−1

i +Δ (4)

where Pt
i is predicted the 3D position of occluded keypoint i at time

t, and Pt−1
i denotes the 3D position of the t−1 moment correspond-

ingly. Δ is a vector representing the increment of the unoccluded
parent keypoint. After our occlusion processing, the detection loss
can be solved as shown in Figure 2.

2.3 Data Augmentation
When training our 3DPN model, we search for a 2D-vector λ to
scale the ground truth 2D keypoints P2D of the person, to distinguish
the ”big but far” person and the ”small but near” person. Let the
corresponding ground truth 3D keypoints be P3D, we minimize Eq.
(5) in which Pxy

3D denotes the (x, y) coordinates of the P3D.

argminλ ||λP2D−Pxy
3D||2 (5)

After we obtain the λ , we use the λP2D to train our 3DPN instead
of P2D, which can improve the accuracy 1% higher than our original
results for the 3D human pose estimation.

3 EXPERIMENTS

Training setting. For DN and 2DPN, the pre-trained model can work
well for people detection and 2D pose recognition. We mainly use
the Human3.6M dataset to train our 3DPN with the same settings as

[4, 5, 7–9]. The initial learning rate is set to 0.001 with exponential
decay every 10 epochs and a dropout rate p = 0.25. The training
time is about 10 hours.

Evaluation. The quality evaluation results are given in the accom-
panying video. For quantitative evaluation, we mainly use Mean
Per Joint Position Error(MPJPE)/the Procrustes analysis MPJPE
(P MPJPE)( [5]) to evaluate our method as shown in Table 1. Some
methods such as [3] report better quantitative results by using multi-
frames or multi-views as the input to estimate the 3D poses. To the
best of our knowledge, we get the best quantitative results for the
3D pose evaluation based on the single frame input.

4 CONCLUSION

As a top-down method, our ’DN-2DPN-3DPN’ framework effec-
tively combines the detection and human pose estimation methods
and can generate real-time multi-person 3D poses based on a single
RGB camera in practice. Experiments validate that our framework
outperforms state-of-the-art methods in the Human3.6M dataset.
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