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ABSTRACT

In this paper, we present an Integrated Semi-Supervised Graph
(IntSSG) approach to automatically segment face from color-depth
video. In the first step, IntSSG performs skin color detection and
online SIFT matching to initialize some face and non-face pixels.
Then, the labels of these pixels are refined by conducting adap-
tive depth thresholding. Finally, based on a semi-supervised graph
framework, IntSSG segments face by propagating the refined labels
to other pixels. Experimental results show that IntSSG is able to
accurately segment faces in difficult situations such as large pose
changes and illumination variations.

Index Terms— Skin detection, face segmentation, depth

1. INTRODUCTION

Face segmentation from video has wide applications in many fields,
such as human computer interaction, video editing [1], virtual real-
ity [2]. However, this remains a challenging problem. On the one
hand, efficient face segmentation requires a full face output without
any holes and noises. On the other hand, face segmentation must
overcome the problems of large head pose variation, occlusion and
illumination changes that often exist throughout a video sequence.

Face segmentation was usually conducted through the stepwise
use of face color detection and region segmentation [3, 4, 5, 6]. Chai
et al. [7] detected skin color pixel with a generic skin model, and
then performed region-based regularization to link separated regions
and find the most likely facial region. By contrast, in [5], following
the classification of each pixels, a binary partition tree is utilized to
merge detected face pixels or regions. In [6], color Gaussian Mixture
Models are adopted to decide the possibilities of each pixel belong-
ing to face or background, which is then followed by a graph-cut
based segmentation to segment face. Although skin detection is in-
sensitive to head pose variations, it tends to fail when the illumina-
tion condition is different to the one when skin detector is trained.

Some approaches employ a top-down scheme to conduct face
segmentation. These approaches adopt a global face model to local-
ize face first, and then segment face boundary. For example, Luo
et. al [8] utilized a blob model to locate head-and-shoulder and then
segment face with a shape model. However, the specified blob and
shape models limit its practical applications. In [9], face is localized
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with a learned frontal face detector. As reported in [9], this approach
may fail when face is not near-frontal.

In this paper, we present IntSSG, an effective approach to auto-
matically segment faces from color-depth videos. By treating face
segmentation as a semi-supervised graph problem, IntSSG success-
fully integrates face pixel detection and segmentation in a single
computation framework. In its first step, IntSSG jointly employs
skin color detection and online SIFT matching to detect possible face
and non-face pixels. Second, IntSSG takes advantage of depth cue
to remove the potential wrong labeled pixels in them, by which only
most reliable pixels are preserved as prior labels. Finally, with the
preserved labeled pixels as prior, IntSSG relies on graph propagation
to find all face pixels [10]. The main novelties of IntSSG lies in (1)
face pixel classification and region segmentation are unified in a s-
ingle computational framework, without any pre- or post-processing
steps, and (2) skin color, temporal coherence, and depth cues are
employed together to guarantee that prior face pixels are correctly
detected before propagating to other pixels.

The remainder of this paper is organized as follows. The pro-
posed segmentation method is presented in Section 2. In Section 3,
experimental results and analysis are reported. Finally, conclusions
are drawn in Section 4.

2. AN INTEGRATED SEMI-SUPERVISED GRAPH-BASED
FACE SEGMENTATION APPROACH

This section presents details of the Integrated Semi-Supervised
Graph-based (IntSSG) face segmentation approach. With color and
depth images from Kinect, IntSSG integrates skin detection, SIFT
matching, depth reasoning and smoothness propagation in a unified
semi-supervised graph framework.

2.1. Main Framework

Let It be the color image frame obtained at time t, and Dt be the
corresponding depth image. Denote the color value of one pixel by
x ∈ R3, and its class label by y ∈ {1,−1} (1 for face class and
−1 for non-face class). The goal of IntSSG face segmentation is to
classify each pixel as either face or non-face class, i.e., estimating
the labels Yt =

{
yt1, y

t
2, . . . , y

t
n

}
for all the n pixels.

IntSSG follows a semi-supervised graph-based scheme [10] to
obtain Yt: first annotate a small portion of pixels as prior labels,
then propagate the prior labels to all pixels. More precisely, all the
labels are estimated by minimizing the following energy function:

Es + λEf , (1)
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where Es is the propagation energy or smoothness measure, and Ef

is the fitting energy of prior labels. Es plays the role of transferring
prior labels to other pixels. UsuallyEs is represented by a Laplacian
regularization function in the label space. Ef ensures that the esti-
mated labels of annotated pixels do not differ from their given prior
labels. The weighting constant λ balances two energies.

IntSSG works as follows. Skin color detection and SIFT key-
point matching are combined to first annotate partial pixels. In case
that wrong labeled values are included, possible outliers are then re-
jected by investigating the depth cues. The labels of the remaining
pixels are treated as prior labels. After that, the smoothness mea-
sure is retrieved from the color image. At last, the semi-supervised
segmentation is conducted incorporating the two energies in Eqn. 1.
The flowchart is illustrated in Fig. 1.

The uniqueness of IntSSG lies in two aspects. First, unlike
[7], IntSSG integrates skin detection, temporal SIFT matching, and
depth reasoning in a unified graph based framework. Second, al-
though IntSSG is based on semi-supervised graph, the labeling pro-
cess is fully automatic. Interactive sketching in [10] is avoided.
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Fig. 1. The flowchart of the method. It and Dt represent the color
and depth image at frame t respectively, with It−1 the color images
for frame t-1. Skin color detection and SIFT point matching between
two frames provide labels for partial pixels. The possible outliers are
rejected with the aid of depth image. A smoothness term is estimat-
ed from the color image. With the labeled pixels and smoothness
constraint, the labels for all pixels Yt are calculated.

2.2. Smoothness Term

Smoothness term is to ensure that neighboring pixels have similar
labels. Among the various definitions [10, 11], we utilize the one
in [10] based on two specific reasons. First, it defines a discrimi-
native smoothness term, which is particularly suitable for face seg-
mentation. Second, the nonlinear essence between pixel feature and
labels are captured in the local spline model of [10]. The smoothness
term is usually defined as the Laplacian kernel of unlabeled data [11]

Es = yTMy. (2)

To construct the Laplacian matrix M, we follow [10] that local
pixel colors and labels are correlated with a spline regression func-
tion. Unlike linear regression [11], spline regression handles the ex-
ception that spatially continuous pixels have very different labels.
Correspondingly, the segmented image is more accurate with [10]
especially at the boundaries.

2.3. Generating Prior Labels

Prior labels are automatically generated by two complementary tech-
niques: skin color detection and SIFT keypoint matching. Skin color
is a relatively unique and robust feature to localize face. Even under
severe pose and emotion variances, face can be still identified by its
color. On the other hand, skin color is easily affected when lighting

condition changes. Accordingly, skin color detection alone is inad-
equate to provide accurate prior labels. Fortunately, some features
like gradients does not change heavily when lighting varies among
successive frames. Therefore, besides skin detection, we match SIFT
keypoints detected at two successive frames such that the labels at
previous time can also be used at current time. By combining the
two methods, reliable prior labels are generated in facing various
challenges such as large pose, lighting and facial emotion variations.

The mathematical summary of labeling terms is as follows

Ef =

n1∑
i=1

(yli − ŷ
tc
li )

2 +

n2∑
j=1

(ymj − ŷ
ts
mj

)2, (3)

where n1 and n2 are the numbers of prior labels of skin color detec-
tion and SIFT keypoint matching, respectively. ŷtcl and ŷtsm are their
prior labels, while yl and ym are the labels to derive. The implemen-
tation details of skin detection and SIFT matching are as follows:

Skin Color Detection. The robust detection of human skin re-
mains a challenge although many efforts have been made. Learning-
based skin detection is recently proven efficient [12]. Since we pre-
fer small-scale training, we utilize the most recent linear regression
tree based skin detection approach [12]. The tree structure of this ap-
proach allows hierarchical discriminations of skin and nonskin pix-
els and only requires a small number of training data.

The linear regression tree for skin detection is constructed as
follows. At each internal node, we linearly regress each color feature
x into its label y, and splits the node into its left or right child node
with a threshold. At a leaf node, we define the likelihoods for skin
P (x|y = 1) and nonskin P (x|y = −1) as the frequencies that skin
and nonskin pixels arrive this node. The final segmentation decision
is discriminatively expressed as

ŷ =


1,

P (x|y = 1)

P (x|y = −1) > α

−1, P (x|y = −1)
P (x|y = 1)

> α

0, otherwise

, (4)

where ŷ = 1 is the label for skin, −1 for nonskin, and 0 for no
label. α is the threshold for deciding skin or nonskin points. To train
the tree, we manually annotate faces on 10 color images which are
captured for each scene and randomly sample 3000 skin and 5000
nonskin pixels from each image. The training procedure takes ≈ 2
seconds implemented by MATLAB.

SIFT Keypoint Matching. The purpose of SIFT keypoint
matching [13] is to transfer the labels at previous time to the current
time. The actual procedures are

1. Detect SIFT keypoints on the current frame and match them
with the face SIFT keypoints detected at previous time;

2. Use RANSAC [14] to iteratively remove erroneous match-
es and estimate the affine transformation between the current
and previous frames;

3. Based on the estimated transformation, the labeled pixels at
previous frame are mapped to the current frame, which are
correspondingly as candidate prior.

In general face appearance changes slightly between successive
frames, thus the previous SIFT points can be easily matched with the
currently detected ones. Using affine transformation to mimic head
pose helps to remove the spatially wrong SIFT matches. The insen-
sitivity of SIFT to illumination guarantees that we still have enough
prior labels when skin detection fails due to lighting variations.
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2.4. Removing the Outlier Labels

In some regions, the face and background pixels are very similar.
Thereby, the labels obtained by skin detection and SIFT matching
may contain some errors. With the smoothness term, these errors are
further propagated to more pixels, which finally leads to a visibly
wrong face segmentation. To solve this problem, it is vital to reject
the outlier pixels introduced in skin detection and SIFT matching.

With the availability of depth map, we use depth thresholding
to remove potential outliers. Face lies roughly in a plane when us-
er stays in a front of a camera. The depth values of face pixels are
coarsely equal to each other. Therefore the pixel found by skin de-
tection or SIFT matching with a distinguishably different depth val-
ue can be safely removed as an outlier. Since the depth sensors in
Kinect are immune to visible lights, the influences of lighting varia-
tion on skin detection and SIFT matching are further reduced.

The details of removing outlier labels are listed as follows:

1. Detect edge on depth map and segment the map into several
connected regions by connecting detected edges;

2. Treat the region where skin points or face SIFT points are
mostly located as human region;

3. Conduct over-segmentation on the color image of the human
region [15, 16];

4. Merge the over-segmented regions, where the number of de-
tected skin points or face SIFT points is larger than a thresh-
old, as the head region.

5. Dilate and Erode the head region to create prior labels.

3. EXPERIMENT

For validation purpose, we captured face videos with the commodity
Kinect camera1. The main challenges in these videos include differ-
ent scenes (indoor and outdoor), large head pose motion and drastic
illumination changes.

3.1. Experimental Settings

We compare our integrated semi-supervised graph-based face seg-
mentation approach (IntSSG) with three different segmentation ap-
proaches: GrabCut [11], KinectSeg [17] and GrabCutD [18]. Grab-
Cut works only on color image while KinectSeg and GrabCutD u-
tilize both color and depth images. In KinectSeg, the graph is con-
structed by considering both color and depth features. GrabCutD
fuses color and depth directly into four dimensional feature and learn
GMMs. The three approaches all require initial inputs from user. S-
ince our own approach is automatic, for fair comparison, we choose
the bounding rectangle of the segmented face described in Section 2
as inputs to start these approaches. The original RGB color space is
utilized for all the methods.

The key parameters of these approaches are configured as fol-
lows. In our own approach, γ is experimentally set to 10000 and
α to 1.5. The parameter k which balances color and depth cues in
KinectSeg [17] is 0.8. The value of φ which is the weight of depth
cue in GrabCutD [18] is 0.2.

To quantitatively evaluate the segmentation results, we adopt the
commonly used F-Score metric:

F = 2 ∗ precision ∗ recall
precision+ recall

, (5)

1http://www.xbox.com/en-US/kinect

where precision and recall are the precision and recall rate, re-
spectively. The metric ranges from 0 to 1. A larger F-Score value
indicates a more accurate segmentation.

3.2. Results and Analysis

Fig. 2. Segmentation results on the outdoor video. From left to right:
segmentation window, the results of GrabCut, KinectSeg, GrabCutD
and our IntSSG. From top to bottom are frames 80 103 134 136 163.

Table 1. Mean F-score values of the four methods. IntSSG achieves
higher values on both the indoor and outdoor videos illustrating its
better segmentation accuracy under pose and illumination variations.

Video GrabCut KinectSeg GrabCutD IntSSG
Indoor 0.8473 0.8737 0.7660 0.9346

Outdoor 0.9105 0.9041 0.8986 0.9826

Fig. 2 shows segmentation results on an outdoor sequence.
IntSSG succeeds in segmenting the faces no matter how head pose
varies throughout the sequence. Obviously the segmented face
boundaries of IntSSG are most accurate. For example, ears and
hairs are correctly segmented. To reach the same qualities, the com-
parative approaches often need very selective sketch input. Fig. 3
shows the corresponding F-Scores on this sequence. The inconti-
nuity in the curves comes from the segmentation failures at some
frame. The F-Scores of IntSSG are stable whereas the others vary
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Fig. 3. F-Scores of the four methods on the outdoor video. IntSS-
G achieves higher and more stable values reflecting that it extracts
more accurate faces through the whole sequence.

Fig. 4. Segmentation results on the second video. From left to right:
segmentation window, the results of GrabCut, KinectSeg, GrabCutD
and IntSSG. From top to bottom are frames 69 71 165 179.

drastically. At frame 85, the F-Scores of GrabCut, GrabCutD and
KinectSeg become very small, indicating poor segmentations. This
happens mainly because head pose is too large at this moment.
However, the segmentation of IntSSG remains good because the
skin detection module is insensitive to head pose. Note that we
manually annotated faces every 5 frames.

Fig. 4 shows how IntSSG is robust to illuminations. At the first

Fig. 5. Snapshots of the results on two other videos by our method.
From left to right: segmentation window, the results of GrabCut,
KinectSeg, GrabCutD and IntSSG.

three rows light is strong, but suddenly it becomes weak at the last
two rows. Intuitively, the segmented faces of IntSSG are more ac-
curate than those of the other methods. Table. 1 shows the corre-
sponding F-Scores on this sequence. For evaluating these values,
we manually labeled faces on every five frames, computed F-Score
on each labeled frame, and took the mean of these values as the F-
Score value on this sequence. The values in Table. 1 quantitatively
supports that IntSSG yields more accurate faces.

More results were obtained on other videos as displayed in
Fig. 5. From it, more accurate faces are obtained by our IntSSG.

All the above results show that IntSSG is robust to pose and
lighting variations. Comparatively, the three interactive approaches,
GrabCut, GrabCutD and KinectSeg, are less accurate. One main
reason is that the input to GrabCut, GrabCutD and KinectSeg is a
rough face rectangle, which is inadequate to train the GMM color
models. Moreover, the depth map of Kinect contains noises and even
large black holes. Without a remedy, the data issues are propagated
and lead to segmentation inaccuracy in GrabCutD and KinectSeg.
Fortunately, our IntSSG can avoid these problems by introducing
the outlier removing procedure.

4. CONCLUSION

We have presented an automatic face segmentation method that can
be applied in virtual reality or immersive reality. It relied on color
and depth information without human intervention. Comparative ex-
periments with several methods demonstrated its efficiency in video
segmentation. Accurate face regions were obtained under different
poses, scales and illumination changes. These owe to the reliable
and robust semantics about face. Future work will address its im-
provement for solving occlusions especially by hands and for solv-
ing multi-faces in the video.

2736



5. REFERENCES

[1] H. Li and K.N. Ngan, “Automatic video segmentation and
tracking for content-based multimedia services,” IEEE Com-
mun. Mag., vol. 45, pp. 27–33, Jan. 2007.

[2] Jose Maria Buades Rubio, Francisco J. Perales Lpez, and X-
avier Varona, “Real Time Segmentation and Tracking of Face
and Hands in VR Applications,” in Articulated Motion and
Deformable Objects, 2004, pp. 259–268.

[3] Hayit Greenspan, Jacob Goldberger, and Itay Eshet, “Mix-
ture model for face-color modeling and segmentation,” Pattern
Recognition Letters, vol. 22, pp. 1525–1536, Dec. 2001.

[4] N. Habili, Cheng Chew Lim, and A. Moini, “Segmentation of
the face and hands in sign language video sequences using col-
or and motion cues,” IEEE Trans. Circuits Sys. Video Techn.,
vol. 14, pp. 1086 – 1097, Aug. 2004.

[5] Zhi Liu, Jie Yang, and Ning Song Peng, “An efficient face
segmentation algorithm based on binary partition tree,” Signal
Processing: Image Communication, vol. 20, no. 4, pp. 295 –
314, 2005.

[6] Kuang chih Lee, D. Anguelov, B. Sumengen, and S.B. Gok-
turk, “Markov random field models for hair and face seg-
mentation,” in Proc. IEEE Int’l Conf. Automatic Face Gesture
Recognition, Sep. 2008, pp. 1 –6.

[7] D. Chai and K. N. Ngan, “Face segmentation using skin-color
map in videophone applicaiton,” IEEE Trans. Circuits Sys.
Video Techn., vol. 9, pp. 551–564, Apr. 1999.

[8] Huitao Luo and A. Eleftheriadis, “Model-based segmentation
and tracking of head-and-shoulder video objects for real time
multimedia services,” IEEE Trans. Multimedia, vol. 5, no. 3,
pp. 379 – 389, Sep. 2003.

[9] Hongliang Li, King N. Ngan, and Qiang Liu, “Faceseg: au-
tomatic face segmentation for real-time video,” IEEE Trans.
Multimedia, vol. 11, pp. 77–88, Jan. 2009.

[10] Shiming Xiang, Feiping Nie, and Changshui Zhang, “Semi-
supervised classification via local spline regression,” IEEE
Trans. Pattern Analysis and Machine Intelligence, vol. 32, pp.
2039–2053, Nov. 2010.

[11] Carsten Rother, Vladimir Kolmogorov, and Andrew Blake,
“Grabcut–interactive foreground extraction using iterated
graph cuts,” in Proc. ACM SIGGRAPH, 2004, pp. 309–314.

[12] Jixia Zhang, Haibo Wang, Franck Davoine, and Chunhong
Pan, “Skin detection via linear regression tree,” in Proc. I-
APR Int’l Conf. Pattern Recognition, 2012, pp. 1711–1714.

[13] David G. Lowe, “Distinctive image features from scale-
invariant keypoints,” Int. J. Comput. Vision, vol. 60, no. 2,
pp. 91–110, Nov. 2004.

[14] Martin A. Fischler and Robert C. Bolles, “Random sample
consensus: a paradigm for model fitting with applications to
image analysis and automated cartography,” Commun. ACM,
vol. 24, pp. 381–395, Jun. 1981.

[15] P. Meer D. Comanicu, “Mean shift: A robust approach toward
feature space analysis,” IEEE Trans. Pattern Analysis and Ma-
chine Intelligence, vol. 24, pp. 603–619, May. 2002.

[16] B. Georgescu P. Meer, “Edge detection with embedded con-
fidence,” IEEE Trans. Pattern Analysis and Machine Intelli-
gence, vol. 23, pp. 1351–1365, Dec. 2001.

[17] Z. Tomori, R. Gargalik, and I. Hrmo, “Active segmentation in
3d using kinect sensor,” in Proc. Int’l Conf. Computer Graph-
ics, Visualization and Computer Vision, 2012.

[18] Karthikeyan Vaiapury, Anil Aksay, and Ebroul Izquierdo,
“Grabcutd: improved grabcut using depth information,” in
Proc. ACM workshop on Surreal media and virtual cloning,
New York, NY, USA, 2010, pp. 57–62, ACM.

2737


