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Abstract—This paper introduces an online self-supervised
method that leverages inter- and intra-level variance for video
representation learning. Most existing methods tend to focus on
instance-level or inter-variance encoding but ignore the intra-
variance existing in clips. The key observation to solving this
problem is the underlying correlation between visual and audio,
in which the distribution of flow patterns in feature space is
diverse, but expresses complementary similar semantics. And
in the semantic feature space, the horizontal dimension of
the feature matrix could be regarded as cluster labels. These
cluster labels should be consistent for different modalities of
the same video clip. Based on this idea, we propose an end-
to-end inter-intra cross-modality contrastive clustering scheme
to simultaneously optimize the inter- and intra-level contrastive
loss. Experiments show that our proposed approach is able to
considerably outperform previous methods for self-supervised
learning on HMDB51 and UCF101 when applied to video
retrieval and action recognition tasks.

I. INTRODUCTION

Recent progress in computer vision stems from a huge
number of labeled videos as well as deep convolutional neural
networks. Generally, a network pretrained with ImageNet
consisting of one million high quality labeled images learns the
general visual spatial features and has been used to initialize
the network for multiple downstream tasks. However, the
annotation of video data is labor-intensive and expensive, thus
restricting supervised learning to relish a large quantity of free
video resources on the Internet. Meanwhile, representations
learned from labeled video data lack generality and robustness,
e.g., video features learned for action recognition do not well
for video retrieval task [1], [2].

To tackle the aforementioned challenges, various attempts
have also been made in self-supervised video representation
learning [3], [4]. Particularly, video semantics rely on not
only spatial feature, but also temporal variance, and directly
employing 2D based methods for videos may not make good
use of temporal information which is critical for video appli-
cations, i.e. different clips sampled from different time spans
of a video exhibit different semantic meanings. For example,
jumping and throwing are two different sub-actions although
they are both sampled from a video classified as playing
basketball. Recently, some efforts have been made to learn
multimodal video representations in a self-supervised way,
such as audio and optical flow. The main idea is predicting
whether clips of different modalities are sampled from the
same video [5]–[7]. However, previous approaches overlook

Fig. 1. The idea of our method is the “semantic confusion” problem.
For example, similar audio may correspond to videos with very different
spatial apparent informations. Based on strictly aligned optimization goal, the
general audio-visual synchronization proxy task is prone to be inadequate in
generalization and accuracy of self-supervised video representation learning.

the information exchange between modalities, and they are
pervasively limited by the heterogeneous complexity of audio-
visual/flow scenes, i.e., multiple sound sources, and fast-
moving backgrounds. Although the data semantics of different
modalities may be similar, using contrastive learning in a
single shared feature space directly may cause confusion. For
example, the visual information corresponding to the audio of
a piece of music may be the performance of an orchestra in a
concert hall, or a piece of background music in a movie.

In this paper, we delve into self-supervised video repre-
sentation learning from the perspective of inter-intra cross-
modality contrastive clustering. Our key idea are inspired by
the observations that in the feature space, the specific features
of video with different modes and the same fragment may
be different, but the probability of cluster label attributes is
consistent. As shown in Fig. 1, for a given video dataset, we
use a deep network to learn both the visual and audio feature
matrix whose rows and columns correspond to the instance
and cluster representations, respectively. In other words, we
treat the label as a special representation by projecting input
instances into a subspace with a dimensionality of the cluster
number. This label can be regarded as a semantic attribute
of videos, which strengthens the underlying relationships
between visual and audio at a higher semantic level.

Based on the above observations, we propose a Inter-Intra
Contrastive Learning (IICL) framework to learn instance and
cluster representations for multimodal video understanding.



Specifically, IICL first learns the feature matrix of data pairs
constructed through synchronization across multimodal fea-
tures. After that, the instance/inter- and cluster/intra- level
contrastive learning are conducted in the row and column axis
of the multimodal feature matrix by gathering the positive pairs
and scattering the negatives.

Our contributions can be summarized as follows:
• We propose a novel self-supervised learning framework

namely Inter-Intra Contrastive Learning (IICL) for video
representation learning, exploiting the complementary
information from different modalities of the same data
source;

• As a dual form of instance-level contrast learning, cluster-
level contrast learning has sufficient ability to learn and
express high-level semantic relations among multi-modal
information. The proposed module could produce cluster-
ing favorite representations as proven in our experiments;

• The proposed framework is end-to-end trainable. More-
over, IICL could predict the cluster assignment for each
new arriving data point in a timely manner without
accessing the whole dataset, which allows the model to
work in an online fashion. We demonstrate that the video
representation learned by IICL can be transferred well to
downstream tasks such as action recognition and video
retrieval on UCF101, HMDB51.

II. RELATED WORK

A. Single-modal Self-supervised Learning

There is a growing literature on self-supervised represen-
tation learning from videos [8]–[10]. We divide the existing
self-supervised learning methods into two categories according
to their sampling strategy, namely inter learning and intra
learning. For intra learning, the constraints are in the sam-
ple itself. By using different forms of transformation, some
low-level relations are broken down even though statistical
or semantic information remains. Different proxy tasks are
well-designed to help train the model. The most prevalent
approaches include temporal order prediction [11], video
colorization [12], spatiotemporal puzzling [13] and speed
prediction [14]. These methods generally employ manually
designed tasks to seek the spatio-temporal cues in video data,
but the performance is limited. For inter learning, the distance
in the feature space from the same instance should be close
to each other while the distance between different instances
should be far from each other. After contrastive losses [15]
were proposed, contrastive learning has been proven to be
an effective optimization objective in self-supervised learning.
[7] propose to leverage the consistency between different
modalities to enhance video representation. However, the
video representations learned from these methods are mostly
dominated by the background instead of the dynamic motions
[16], which introduces strong background bias and impairs
generalization ability in downstream applications. Therefore,
we now propose IICL to balance inter-intra feature variances
with multimodal.

B. Multi-modal Self-supervised Learning

Inspired by the human multimodal sensory system [17],
[18], many approaches make good use of multimodal in-
formation, using one modality to promote the training of
another modality. Recent approaches learn from unlabeled
multimodal data for a specific target task, such as sound source
localization [19] and audio-visual co-segmentation [20]. [21]
carried out feature extraction from audio and images data with
two independent variational autoencoders. The advantage of
using multimodal input is restricted to improving the accuracy
of clustering in the testing phase. However, in our experiment,
all sensing data is available for use at testing phase in a single-
modal pattern or combined with any other modal data in a
multimodal pattern, depending on the inference environment,
which will be more conducive to handling the insufficient
capturing conditions in the real scene.

C. Clustering Videos

Benefit from the powerful feature representative capabil-
ity of deep neural networks, deep clustering [22]–[24] has
demonstrate promising performance on large-scale datasets.
The most straightforward way of combining representation
learning and clustering is to apply clustering algorithm after
hidden feature extraction. XDC [25] performed k-means on the
visual and audio features respectively to learn representations.
However, they obtain separate clusters for multimodal data and
treat those clusters as pseudo labels for supervised learning.
Inspired by the idea of “label as representation” [26], [27], we
propose to apply deep clustering to visual and audio to achieve
intra-cluster contrastive learning. Compared with the above
deep clustering methods, our aim at multimodally ”labelling”
an unlabelled video dataset, and our method works well for
this task.

III. METHODOLOGY

As illustrated in Fig. 2, our method consists of four main
components, namely, a multimodal encoder, an co-attention
module, an instance-level contrastive module, and a cluster-
level contrastive module. In brief, visual and audio encoders
construct multimodal data pairs and extracts features from
augmented samples, respectively. Co-attention module models
the intra-modal interactions in audio and visual streams [5].
After that, we decouple the instance/inter- and cluster/intra-
level contrastive learning into two independent subspaces to
enhance representation learning at different levels.

A. Multimodal Encoder

In this paper, we consider visual and audio modalities from
the training video clips. Let X be the set of N unlabeled
video clips, and Ev and Ea be the visual and audio encoders,
respectively. Let Fv = {fv = Ev(x) | x ∈ X} and Fa =
{fa = Ea(x) | x ∈ X} be the set of visual and audio feature
matrix extracted by the multimodal encoder, respectively.



Fig. 2. A schematic illustration of our purposed Inter-Intra Contrastive Learning(IICL) technique. Note that our model is based on the two-stream architecture,
which means IICL is generally applicable for other complementary views, e.g. optical flow or text.

B. Co-attention Module

Inspired by the great success of Self-Attention(SA), we
use cross-modal attention transformer block to enhance the
interactions between RGB and audio streams [5]. The usual
SA block takes queries(Q), keys(K), and values(V) as inputs.
The attended output is computed by

Attention(Q,K, V ) = softmax(
QKT

√
d

)V (1)

where d denotes the dimension of Q,K and V . For visual
stream, we use audio features Fa to guide the attention
learning. In this case, we have Q = Fa,K = V = Fv .
Therefore, the audio-guided attention learning process tends
to focus on the values in the visual stream related to audio in-
formation. Similar to the visual stream, visual-guided attention
has Q = Fv,K = V = Fa. This co-attention module delves
into semantic interaction between different modal and outputs
the attended visual features Hv and audio features Ha. Note
that co-attention module can be stacked in multiple layers to
refine the attention maps.

C. Inter-level Contrastive Module

Similar to learning with triplet loss, we employ a multi-
mudal inter-level similarity constraint to ensure that a audio
content is more similar to matched visual content than un-
matched one, and vice versa. Our goal is to maximize the
similarity between an anchor and a positive instance while
minimizing the similarity between an anchor and a negative
instance in the inter-level space. The constraint of the inter-
level similarity is as follows:

sim(hvi , hai
) > sim(hvi , haj

) + ϵ (2)

where i means the i-th video, and ϵ indicates a margin
constant. sim(hv, ha) stands for the multimodal similarity
features in the embedding space.

To filter the representation gaps of multimodal data, we
stack a two fully-connected layer gins(·) to map the attended
hidden feature matrix H to an instance-level subspace via
z = gins(h). By measuring similarity with cosine distance

sim(hv, ha) = (hv · ha)/(||hv||1 · ||ha||1), our goal can be
achieved by optimizing a contrastive loss. For visual stream:

Lvins
= − 1

N

N∑
i=1

log
exp(sim(zvi , zai

)/τins)∑N
j=1 exp(sim(zvi , zaj

)/τins)
(3)

where τins is an instance-level temperature controlling the
concentration of the feature embedding distribution. And the
total inter-level contrastive loss is computed by

Lins = Lvins
+ Lains

(4)

D. Intra-level Contrastive Module

Considering the cluster consistency of visual and audio
information in the subspace, we regard the cluster label as
feature representation for contrastive learning. Note that after
the hidden vector is projected into the subspace, the i-th
element of the feature vector can be regarded as its probability
of belonging to the i-th class, and it’s similar to classification
tasks.

Similar to the inter-level contrastive module, we employ
another two fully-connected layer gclu(·) to map the hidden
feature matrix into an C-dimensional intra-level space via y =
gclu(h), where C equals the number of clusters. For cluster-
level contrastive learning, we calculate the cluster feature
matrix of visual and audio stream separately, Yv, Ya ∈ RN×C .
Let ỹi be the i-the column of Y and ỹi can be regarded as a
feature vector of the current batch data in the i-th cluster.

Intuitionally, given a video clip, its visual and audio stream
clustering should be similar. We assume that each sample
belongs to only one cluster, the rows of Y tend to be one-
hot, which means that all columns should differ from each
other. Based on these considerations, Eq.3 is adopted to
achieve cluster-level contrastive learning. Again, we use cosine
distance to measure the cluster-level similarity. For visual
stream:

Lvclu = − 1

C

C∑
i=1

log
exp(sim(ỹvi

, ỹai
)/τclu)∑C

j=1 exp(sim(ỹvi , ỹaj )/τclu)
(5)



where τclu is the cluster-level temperature parameter to
control the softness. To avoid the trivial solution that most
instances are assigned to the same cluster [28], we add an
entropy of cluster assignment probabilities within a mini-
batch under each modal H(Y ) = −

∑C
i=1[P (ỹvi)logP (ỹvi)+

P (ỹai)logP (ỹai)], where P (ỹi) =
∑N

j=1 Yji/||Y ||1. And the
total intra-level contrastive loss is computed by

Lclu = Lvclu + Laclu
−H(Y ) (6)

E. Optimization

The optimization of IICL proceeds in two stages: initializa-
tion and co-training.

Initialization. First, the multimodal encoder are only trained
with instance-level contrastive loss. Specifically, the visual and
audio encodes are pretrained by optimizing Lins respectively.

Co-training. Two level losses are optimized at the same
time and the final objective function is the combination of
the instance- and cluster- level contrastive loss:

L = Lins + λLclu (7)

where λ is a weight parameter applied to balance the
clustering contrastive loss across the training process.

IV. EXPERIMENTS

A. Datasets

The UCF101 [29], HMDB51 [30], Kinetics400 [31], Au-
dioSet [32] and IG65M [33] datasets were used because of
the widespread evaluation in video self-supervised learning
methods. Note that we filter out around 7K videos in Kinetics
that have no audio.

B. Implementation Details

We choose the R(2+1)D [34] and ResNet [35] architecture
as Ev and Ea, respectively. We use a 32-frame RGB clip
as Ev’s input at 30 fps. The resized video spatial resolution
is 128 × 128. Ea’s input is a 2D Q × P spectrogram image
extracted from the audio data, where Q is the number of MEL
filters and P is the number of audio frames. We sample 2
seconds and use Q = 40 MEL filters and P = 100 audio
frames. And the depth of co-attention module is set to 1.

For the inter-level contrastive module, the dimensionality
of the row space is 1024, and the instance-level temperature
parameter τins is fixed to 0.5 in all experiments. As for the
intra-level contrastive module, the dimensionality of the cluster
space is naturally set to the number of clusters, and the intra-
level temperature parameter τcls is set to 0.5 for all datasets.

At the initialization stage, we train both visual and audio
encoders with instance-level contrastive loss for 300 epochs,
and the batch size is 256. At the co-training stage, the weight
factor λ = 0.5 is adopted to simultaneously optimize the two
level contrastive module and the backbone network for another
300 epochs. For optimization, we use Adam with 5 × 10−4

learning rate and 10−6 weight decay.

C. Downstream Tasks for Evaluation

1) Video Retrieval: In this task, the features extracted
by the encoder is directly used for nearest-neighbor (NN)
retrieval. We use the testing set videos to query the k-NNs
from the training set and report recall at k (R@k). If the top
k nearest neighbors contain at least one video of the same
class, a correct retrieval is counted.

2) Video Action Recognition: In this task, we experiment
on two settings: (1) fc-only: we fix the pretrained encoder
and train a single linear classifier with cross-entropy loss,
(2) finetune: we finetune the whole pretrained encoder on the
downstream task.

3) Audio Event Recognition: To assess the audio repre-
sentation, we train a linear classifier on the frozen audio
encoder for the audio event classification dataset DCASE [36]
as previous work [37] to provide a fair comparison.

D. Ablation Study

1) The Number of Clusters: This section demonstrates the
effectiveness of changing the hyperparameter C in contrastive
clustering. IICL is pretrained on AudioSet and we monitor
the top-1 accuracy of action classification and retrieval perfor-
mance on UCF101 split 1.

We explore the effects of changing the hyperparam-
eter C in clutser-level contrastive module, using C =
100, 200, 400, and 800. The results shown in Table I demon-
strate that our clutser-level contrastive learning is indeed
effective for the downstream tasks. We hypothesize that it is
because the number of clusters directly affects the semantic
complexity of feature representation. We set C = 400 for the
following experiments.

TABLE I
THE EFFECT OF THE NUMBER OF CONTRASTIVE CLUSTERS C ON IICL

PERFORMANCE.

C Classification Top1 Retrieval
fc-only finetune R@1

100 72.6 93.1 57.6
200 72.8 93.5 58.1
400 73.5 94.3 59.3
800 73.2 94.1 59.5

2) Inter- and Intra-level Contrastive Module: To verify the
effectiveness of the inter- and intra-level contrastive module,
we evaluate the clustering performance of features and conduct
ablation studies on UCF101 and HMDB51 by removing one of
the two module. Note that we perform k-means in the instance
space instead when the cluster-level contrastive module is re-
moved. Normalized Mutual Information (NMI) and Accuracy
(ACC) are empolyed to evaluate the clustering results. Higher
values of these metrics indicate better clustering performance.
The results are shown in Table II.

According to the experimental results, we can find that inter-
and intra-level contrastive module complement each other to
improve the overall performance of the whole model.



Fig. 3. The qualitative retrieval results of IICL. In each box, the most left data are the anchor data samples, and the data on the right is the nearest neighbor
instances of the same and different modes retrieved. (The upper and lower lines of visual and audio information do not correspond)

TABLE II
THE EFFECT OF THE INTER- AND INTRA-LEVEL CONTRASTIVE MODULE.

IICL IS PRETRAINED ON KINETICS400.

Dataset Loss NMI ACC
Lins + Lclu 0.523 0.583

HMDB51 Lins 0.495 0.561
Lclu 0.402 0.457

Lins + Lclu 0.748 0.771
UCF101 Lins 0.735 0.767

Lclu 0.712 0.728

3) Cross-modal Retrieval: This experiment evaluate the
cross-modality representation ability of cluster-level con-
trastive module. Specifically, we utilize the cosine value on
Kinetics400 to calculate the instance-level retrieval similarity
between different modalities, and employ the average of
all returned accuracy (mAP) to evaluate our method. This
metric measures the ranking information and accuracy jointly.
Specifically, we summary the mAP results of two comparison
methods for cross-modal retrieval tasks: retrieving audio using
visual queries (Visual2Audio) and retrieving video using audio
queries (Audio2Visual). The results are shown in Table III,
more fully proves the effectiveness of cluster-level contrastive
module.

TABLE III
THE PERFORMANCE OF CROSS-MODAL RETRIEVAL TASK. IICL IS

PRETRAINED ON KINETICS400.

Dataset Loss Visual2Audio Audio2Visual

Kinetics400 w Lclu 0.745 0.759
w/o Lclu 0.728 0.742

Fig. 3 shows examples of the qualitative results of our
method. Considering the label of each cluster is unknown, the
ground truth are shown as the reference. In each box, the most
left data are the anchor data samples, and the data on the right
is the nearest neighbor instances of the same and different

modes retrieved. From the figure, we can observe that our
method successfully retrieves instances of similar semantics
from a single modality data, even though the training process
is conducted in a multimodal manner.

E. Comparison to State-of-the-Art

Given one of our best learning setups from ablations, we
extend training time and compare our feature representations
to the state-of-the-art in multimodal downstream benchmarks

For video retrieval task, which evaluates the quality of
features extracted by the pre-trained instance-level contrastive
module. To make a fair comparison, all models are pretrained
on UCF101. Testing set are utilized to query the top k nearest
samples based on their corresponding visual features. We
consider k equals to 1, 5, 10, 20, specifically. As shown in
Table IV, IICL significantly beats all other self-supervised
methods.

TABLE IV
COMPARISON WITH OTHERS ON NEAREST-NEIGHBOUR VIDEO RETRIEVAL

ON UCF101.

Method UCF
R@1 R@5 R@10 R@20

Buchler [1] 25.7 36.2 42.2 49.2
VCOP [38] 14.1 30.3 40.4 51.1
CoCLR [7] 55.9 70.8 76.9 82.5
Huang [39] 41.7 57.4 66.9 76.1
MCN [40] 53.8 70.2 78.3 83.4
IICL(ours) 56.8 73.3 82.1 85.3

For action recognition task, we finetune the pretrained
encoder for UCF101 and HMDB51 video classification, and
compare against state-of-the-art self-supervised methods in
table V. IICL performs well on both datasets. When comparing
the models that are only trained on the RGB stream, e.g.
ST-Puzzle and SpeedNet, the proposed method significantly
outperforms all previous approaches. When pretraining on the
Kinetics datasets, IICL achieves state-of-the-art performance



among all listed self-supervised methods. When pretraining
on the AudioSet dataset, we also have good results, similar to
GDT [37].

TABLE V
COMPARISON ON VIDEO ACTION RECOGNITION.

Method Dataset Architecture UCF HMDB
ST-Puzzle [13] Kinetics400 R3D 63.9 33.7
SpeedNet [14] Kinetics400 S3D-G 81.1 48.8

CoCLR [7] Kinetics400 S3D 90.6 62.9
XDC [25] Kinetics400 R(2+1)D-18 86.8 52.6
AVTS [41] Kinetics400 MC3-18 85.8 56.9
CPD [42] Kinetics400 3D-Resnet50 88.7 57.7
AVID [43] Kinetics400 R(2+1)D-18 87.5 60.8
GDT [37] Kinetics400 R(2+1)D-18 89.3 60.0

IICL(ours) Kinetics400 R(2+1)D-18 90.8 61.5
AVTS [41] AudioSet MC3-18 89.0 61.6
XDC [25] AudioSet R(2+1)D-18 93.0 63.7
XDC [25] IG65M R(2+1)D-18 95.5 68.9
GDT [37] AudioSet R(2+1)D-18 92.5 66.1
GDT [37] IG65M R(2+1)D-18 95.2 72.8
ELO [44] Youtube2M R(2+1)D-50x3 93.8 67.4

IICL(ours) AudioSet R(2+1)D-18 92.8 63.9
IICL(ours) IG65M R(2+1)D-18 95.8 72.5

For audio classification task, we also achieve state-of-the-
art performance among all listed self-supervised methods on
DCASE (see Tabel VI).

TABLE VI
COMPARISON ON AUDIO EVENT RECOGNITION.

Method DCASE
Ensemble [45] 78
SoundNet [46] 88

AVTS [41] 94
XDC [25] 95

IICL(ours) 96.8

V. CONCLUSION

Grounded on the idea that the semantic information about
different modalities is complementary but not exactly the same
and the idea of ”label as representation”, we proposed the
Inter-Intra Contrastive Learning (IICL) method which dually
conducts contrastive learning at the instance- and cluster- level
under a unified framework for multimodal video representa-
tion learning. The proposed cross-modality cluster contrastive
module shows promising clustering performance in clustering.
In the future, we plan to extend it to other modalities and
tasks where other features can be interpreted as provide
complementary information.
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