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Abstract. Data features in real industrial recommendation scenarios are
high-dimensional, diverse and sparse. Rich feature interaction can improve
the model effect and bring practical benefits. Factorization machines
(FMs) can perform explicit second-order feature interactions, while deep
neural networks (DNNs) can perform implicit non-linear feature inter-
actions. A series of models integrating FMs and DNNs are used to per-
form diverse feature interactions. However, most of the previous work
performed feature interaction without considering the diverse interests of
users. In reality, users often have multiple preferences and interests, which
are implicitly included in the features and need to be effectively extracted.
In this paper, we propose an implicit multiple interest network (IMIN),
taking into account the importance of interest. Specifically, the model con-
structs the implicit multiple interests of the user and the item through the
implicit multi-interest layer, and realizes the interest alignment between
the user and the item through the interest alignment layer. We further use
the interest interaction and aggregation layer to construct rich interest fea-
ture interactions. In addition, we introduce an auxiliary loss in the model
optimization part to ensure the difference of interest. We conducted com-
prehensive and rich experiments on three real-world data sets. Experimen-
tal results show that IMIN performs better than other competitive models,
which proves the effectiveness of the model.
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1 Introduction

With the explosion of Internet information, recommendation systems play an
important role in information matching [2], which are used in media, entertain-
ment, e-commerce and other scenarios [16]. At the same time, the number of
users and items increases exponentially, which greatly increases the difficulty
of accurate recommendation. Under the scenario of large-scale recommendation
system, there are rich and diverse features [6], including user attribute features,
item attribute features, user history features, text features, etc. These features
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tend to be high dimensional, sparse, and diverse [18]. How to extract effective
information from massive data features to provide more accurate recommenda-
tion effect is a key problem [24].

With the rise of deep learning [12], deep neural networks (DNNs) have been
widely used in natural language processing, recommendation, computer vision
and other fields due to its strong nonlinear fitting ability [4]. DNNs have been
proved to be able to fit arbitrary functions, so it can be used for complex non-
linear feature combination. However, the implicit learning feature interaction
information of DNNs is not always effective. Therefore, many fusion models use
FMs to learn explicit low-order feature interaction and DNNs to learn implicit
feature interaction [5,7].

However, all previous work concatenates the embedding of all features, and
then uses Factorization Machine (FM) or DNNs to learn the interaction between
features [3,14,20], without considering the diverse interests of users. In actual
situations, users’ preferences are often diverse, which means that users have a
variety of different interests. For example, the user may like fashionable and lux-
urious items in terms of dressing, but prefer high-quality and inexpensive items
in life. The multiple interests of the user can more fully reflect the characteristics
of the user, which needs to be effectively modeled.

Considering the problems mentioned above, we propose an implicit multiple
interest network (IMIN), taking into account the importance of interest. Specif-
ically, the model constructs the implicit multiple interests of the user and the
item through the implicit multi-interest layer, and realizes the interest align-
ment between the user and the item through the interest alignment layer. We
further use the interest interaction and aggregation layer to construct rich inter-
est feature interactions. In addition, we introduce an auxiliary loss in the model
optimization part to ensure the difference of interest. The main contributions of
this work can be summarized as follows:

– We propose an implicit multiple interest representation and interest alignment
layer, which can not only construct multiple interests of users and items, but
also model the matching relationship between interests.

– We propose an implicit multiple interest network (IMIN), taking into account
the importance of interest. The model constructs a variety of interests, and
effectively models interest information through interest alignment and interest
interaction.

– We conduct extensive experiments on three real-world datasets to demon-
strate the effectiveness of our model. Our model IMIN performs best when
compared to other competitive networks.

2 Related Work

Traditional recommendation systems are mainly based on collaborative filtering
models [19], which use the preferences of a group with similar interests and
common experience to recommend information that users are interested in. It
mainly includes user-based and item-based models [17]. The model based on
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collaborative filtering cannot solve the problem of data sparsity, so a series of
models based on matrix factorization (MF) [11] appear. Matrix factorization
introduces the latent factor as the implicit representation of user and item, which
further improves the accuracy of model prediction. Collaborative filtering models
are suitable for small-scale scenarios, but cannot be effectively applied to large-
scale rich scenarios.

DNNs can effectively conduct nonlinear combination between features and
model high-order complex feature interaction, which are widely used in recom-
mendation systems [23]. A series of models fusing DNN and FM are further
derived. Wide & Deep [3] learns high-order feature interactions by using multi-
layer perceptron (MLP), and constructs effective feature combinations based on
manual feature engineering. DeepFM [5] uses FM for the low-order combination
of features on the wide side, avoiding feature engineering. DCN [20] realizes low-
order and high-order combination of features by using cross layer. xDeepFM [13]
introduces a compressed interaction network to generate feature interactions in
an explicit fashion and at the vector-wise level.

In addition to modeling directly from the perspective of feature intersection,
there are models for modeling from a matching perspective. DMF [22] adds
a nonlinear MLP network to the traditional MF. NCF [7] concatenates user
and item embedding vectors together, and then learns high-order interactions
through MLP network. In addition, Many methods based on attention mecha-
nism have also been proposed. AFM [21] learns the importance of different fea-
ture interactions by introducing an attention network when performing feature
interactions. DIN [25] applies the attention mechanism to the user’s sequential
behavior, and fully extracts the user’s interest information contained in the his-
torical behavior. The introduction of interest can model user characteristics more
accurately.

3 Model

In this part, we introduce the various components of the model in detail. First,
we introduce the presentation layer for constructing implicit multiple interests
of users and items. Then we introduce the interest alignment layer to align
the interest information between users and items. Then we introduce the inter-
est interaction and aggregation layer, which is used to effectively construct the
interaction between interest features. Finally, we introduce an auxiliary loss to
ensure the difference between a variety of interests.

3.1 Implicit Multiple Interest Representation Layer

User features are direct expressions of user characteristics and reflect the user’s
personal preferences. In actual situations, users’ preferences are often diverse,
which means that users have a variety of different interests. For example, the user
may like fashionable and luxurious items in terms of dressing, but prefer high-
quality and inexpensive items in life. In order to effectively capture the user’s
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multiple interests, we use a multi-head self-attention mechanism to implicitly
construct it. First, the self-attention mechanism based on the user’s feature set
is as follows:

Aj = softmax(
QT

j Kj√
d

)Vj (1)

where Aj ∈ RM×d represents the feature interaction of attention perception,
which can be regarded as the expression of feature information under the j-th
subspace. dk refers to the matrix dimension. Qj ,Kj , Vj are defined as follows:

Qj = W q
j Zu,Ku = W k

j Zu, V u = W v
j Zu (2)

where Zu ∈ RM×k represents the user feature matrix. M denotes the number
of user fields, and k denotes the embedding dimension of each field feature.
W q

j ,W k
j ,W v

j ∈ Rk×d represents the attention parameter matrix, and d rep-
resents the mapping dimension. Further, we use the maxpooling operation to
extract the most important feature information from Au

j , and use meanpooling
to propose the averaged feature information from Aj , which is defined as follows:

aj = [aj,1; aj,2]
aj,1 = max pooling(Aj)
aj,2 = mean pooling(Aj)

(3)

where aj ∈ R2d is the user feature expression in the j-th subspace, which can be
regarded as the j-th implicit interest representation of the user. Similarly, there
may be multiple selected points of interest for an item. We can get bj ∈ R2d

based on the feature set of item using the above method, which represents the
j-th implicit interest representation of item.

3.2 Interest Alignment Layer

The implicit multi-interest representation of user can be constructed based on
user characteristics, and the implicit multi-interest representation of item can
also be constructed. When a certain interest of the user matches a certain inter-
est of the item, it means that the two have the same preference under the inter-
est space. In order to effectively construct matching information between users’
multiple interests and item multiple interests, we need to align multiple interest
information. By designing user and item to perceive all the interest information
of each other, information alignment can be realized, which is defined as follows:

a
′
i =

lb∑

j=1

exp(ai · bj)∑lb
k=1 exp(ai · bk)

bj

b
′
j =

la∑

i=1

exp(ai · bj)∑la
k=1 exp(ak · bj)

ai

(4)
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where a
′
i ∈ R2d represents the i-th implicit interest representation of the user

who perceives the interest information of the item, and b
′
i ∈ R2d represents the

j-th implicit interest representation of the item that perceives the user’s interest
information. Further, in order to avoid losing the original interest information by
only using the aligned interest, the original interest information and the aligned
interest information need to be fused. We use a gated network to learn the
weights of different interest, which is defined as follows:

γi =Wa[ai; a
′
i; ai � a

′
i; ai − a

′
i] + εa

af
i = γiai + (1 − γi)a

′
i

(5)

where af
i ∈ R2d represents the i-th fusion interest representation of the user, and

γi represents the importance weight. � stands for element-wise multiplication.
The multiplication operator emphasizes the similarity of two vectors, and the
subtraction operator emphasizes the difference between the two vectors. Further,
we connect all the fusion interest representations of the user together, as the
global interest representation of the user as follows:

hu = mean pooling([af
1 ; af

2 ; · · · ; af
la

]) (6)

where hu ∈ R2d represents the global interest representation of the user. Sim-
ilarly, our fusion interest representation based on item can get the item global
interest representation hi ∈ R2d.

3.3 Interest Interaction Layer

The interest representation constructed based on the implicit multi-interest rep-
resentation layer only reflects the feature interaction information of the user or
item itself, which does not learn the feature interaction between the user and the
item. In order to effectively learn rich feature information, we construct feature
interactions based on user implicit multiple interest representations and item
implicit multiple interest representations, which are defined as follows:

Si,j = ai � bj (7)

where Si,j ∈ R2d represents the interaction between the i-th interest feature of
the user and the j-th interest feature of the item. Considering that the impor-
tance of different feature interactions is different, we design a compressed activa-
tion network to learn the importance of feature interactions. First, we perform
the mean pooling operation on feature interaction, which is designed as follows:

ri,j = fsq(Si,j) =
1
2d

2d∑

k=1

Sk
i,j (8)

Then we use the extended network to learn the importance weight, which is
designed as follows:

As = fex(R) = σ2(W2σ1(W1R)) (9)
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where As ∈ Rla×lb represents the weight matrix, and σ2 and σ1 represent the
activation function. We multiply the feature interaction matrix by the weight
matrix, which is defined as follows:

S
′
= As � S (10)

In order to further learn the high-level interactions of features, we stitch all
feature interactions together as follows:

s = sum pooling(S
′
) (11)

where s ∈ R2d represents the low-level feature interaction between user and item.
sum pooling means to sum the matrix S

′
into a one-dimensional vector. Further,

we use residual network to learn low-order and high-order feature interactions,
which is defined as follows:

xl+1 = f(Wlxl + εl) + xl (12)

where xl denotes the feature representation of the l-th layer, x0 is equal to s.
The feature interaction finally learned through the L-layer network is denoted
as x.

3.4 Information Aggregation Layer

The user global interest representation hu and item global interest representa-
tion hi are constructed through the interest alignment layer. The global interest
representation represents the overall feature information of user and item. The
low-order and high-order feature interaction x between user interest features
and item interest features are constructed through the interest interaction layer,
which reflects the feature interaction information. Taking into account the dif-
ferent importance of different information, we design a gated network to control
the transmission of information, which is defined as follows:

h
′
= tanh(Wgx + Ug(β � h) + εg)

q = α � h + (1 − α) � h
′ (13)

where q ∈ Rk represents aggregate feature information, α represents update
gate, and β represents reset gate. Wg, Ug, εg represent network parameters. α
and β are defined as follows:

α = σ(Wαx + Uαh + εα)
β = σ(Wβx + Uβh + εβ)

(14)

Based on the aggregate feature q that combines global interest information and
feature interaction information, the final prediction result is:

p = σ(Wpq + εp) (15)

where p represents the prediction result of the model. Wp and εp represent net-
work parameters.
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3.5 Training Optimization

In this paper, we mainly predict whether the user will interact with the item,
which can be regarded as a classification task. We mainly optimize logloss for
classification tasks, which are defined as follows:

Loss1 = −yilog(pi) − (1 − yi)log(1 − pi) (16)

where yi ∈ {0, 1} represents the label of the sample, and pi represents the pre-
dicted probability that the user clicks on the item. In addition, we design an
implicit multi-interest representation layer for learning multi-interest represen-
tations. In order to ensure the difference of different interests, we introduce
regularized auxiliary loss for multi-interest generation, which is designed as fol-
lows:

Loss2 = −λ1

la∑

i=1

la∑

j=i+1

ai · aj

|ai||aj | − λ2

lb∑

i=1

lb∑

j=i+1

bi · bj

|bi||bj | (17)

where ai denotes the i-th implicit interest representation of the user, and bj

represents the j-th implicit interest representation of item. λ1 and λ2 represent
hyperparameters, which are used to control the degree of regularization. Finally,
we fuse log loss and auxiliary loss to get the total loss as follows:

Loss =
1
N

N∑

i=1

Loss1 + Loss2 (18)

where Loss represents the total loss, and N denotes the number of samples.

4 Experiment

In this section, we solve the following problems by designing different experi-
ments:

– Q1 How does our proposed IMIN compare to state-of-the-art models?
– Q2 Do the various modules and strategies we propose really make sense to

improve the effect of the model?

4.1 Experimental Settings

Datasets. We evaluated model performance on the following data sets:

Frappe1 Dataset [1]. Frappe is a context-aware mobile app recommender sys-
tem. Frappe dataset are composed of application logs that contain ID informa-
tion, weather information, and other rich contextual information. The dataset
contains 192,406 samples.

1 https://www.baltrunas.info/research-menu/frappe.

https://www.baltrunas.info/research-menu/frappe
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MovieLens2 Dataset [6]. It is the baseline dataset in the recommendation
scenario. MovieLens contains a lot of movie recommendation data, including
user information, movie information, time information and other rich features.
We use the dataset of one million samples.

Criteo3 Dataset. It is an open industry benchmark dataset used to develop
models for predicting ad click-through rates, which contains 45million samples.
The dataset describes the prediction of the probability of clicking on the adver-
tisement on the page given a user and the visited page.

Evaluation Metrics. We use AUC to measure model performance. In practical
scenarios, positive and negative samples are often unbalanced, and AUC can
evaluate model performance well in this case. In addition, in order to visually
show the improvement degree of different models compared with the benchmark
model, we introduce RelaImpr [8] metric, which is defined as follows:

RelaImpr = (
AUC(measured model) − 0.5

AUC(base model) − 0.5
− 1) × 100% (19)

Baselines. The competitive models we compare are as follows:

– FM [15]: FM uses latent vector representation to carry out the second-order
interaction between features, which fully improves the model’s predictive abil-
ity. FM is a widely used benchmark model.

– DNN [4]: DNN has powerful representation and fitting capabilities, and can
fully learn the implicit interactions between features. It is a benchmark model
based on neural networks.

– Wide & Deep [3]: It includes both the explicit feature interaction constructed
by feature engineering and the implicit feature interaction constructed by
neural network. It can significantly enhance the model learning ability.

– NFM [7]: NFM first performs second-order feature interaction at the vector
level, and further learns complex interactions through neural networks.

– DeepFM [5]: DeepFM combines the second-order explicit feature interaction
constructed by FM and the implicit feature interaction constructed by DNN.

– DCN [20]: DCN has designed a network that explicitly constructs low-order
and high-order feature interactions, which can effectively construct feature
interaction information.

– xDeepFM [13]: xDeepFM introduces a compressed interaction network to
generate feature interactions in an explicit fashion and at the vector-wise level.
xDeepFM can learn low-order and high-order feature interactions explicitly
and implicitly.

– FiBiNET [9]: FiBiNET can dynamically learn the importance of features via
the Squeeze-Excitation network mechanism. It is able to effectively learn the
feature interactions via bilinear function.

2 https://grouplens.org/datasets/movielens/.
3 http://labs.criteo.com/2014/02/kaggle-display-advertising-challenge-dataset/.

https://grouplens.org/datasets/movielens/
http://labs.criteo.com/2014/02/kaggle-display-advertising-challenge-dataset/
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Parameter Settings. We take 90% of each dataset as the training set, 10% as
the validation set, and 10% as the test set. The validation set is mainly used
for hyperparameter selection. The embedding size is selected in [8, 16, 32, 64,
128, 256, 512]. The number of hidden layers is adjusted sequentially from 1 to 5.
For model optimization, we uniformly adopt Adam [10], which is a widely used
optimizer. Considering the running time and efficiency, we set the batch size to
512, and select the learning rate in [0.0005, 0.001, 0.005, 0.01, 0.05, 0.1]. Neural
network models all use dropout and batch normalization strategies to prevent
overfitting. The dropout rate is adjusted sequentially from 0 to 0.5. In addition,
we also use an early stop strategy during the training process, and stop training
when the model does not improve in 5 consecutive epochs. For simplicity, we
set the embedding size and hidden layer size to be the same. For IMIN, we set
the number of implicit interests of users and items to be the same, and keep the
hidden layer and embedding dimensions consistent.

4.2 Performance Comparison (Q1)

To verify the effectiveness of our model, we conducted comprehensive experi-
ments on three real datasets. The experimental results are shown in Table 1.
First, we can see that compared to the second-order feature interaction model
FM and the implicit high-order feature interaction model DNN, models that
integrate low-order and high-order feature interactions, such as xDeepFM and
DCN, perform better. Second, our model surprisingly outperforms other state-
of-the-art models on all three datasets. The AUC of our IMIN on the Frappe
dataset is 0.9891, which is significantly higher than that of xDeepFM (0.9858),
and is 3.03% higher than that of FM on RelaImpr. Since our model takes into
account various interests of users and items, the matching relationship between
interests is fully established. The experimental results fully verify the effective-
ness of our model.

Table 1. Performance of different models on MovieLens, Frappe and Criteo datasets.

Models MovieLens Frappe Criteo

AUC RelaImpr AUC RelaImpr AUC RelaImpr

FM 0.8072 0.000% 0.9795 0.00% 0.7924 0.00%

DNN 0.8082 0.33% 0.9814 0.40% 0.8004 2.74%

Wide& Deep 0.8105 1.07% 0.9838 0.90% 0.8017 3.18%

PNN 0.8113 1.34% 0.9845 1.04% 0.8028 3.56%

NFM 0.8116 1.43% 0.9844 1.02% 0.8031 3.66%

DeepFM 0.8121 1.60% 0.9847 1.08% 0.8035 3.80%

DCN 0.8118 1.49% 0.9849 1.13% 0.8042 4.04%

xDeepFM 0.8129 1.86% 0.9858 1.31% 0.8069 4.96%

FiBiNET 0.8144 2.34% 0.9872 1.61% 0.8081 5.37%

IMIN 0.8165 3.03% 0.9891 2.00% 0.8095 5.85%
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4.3 Model Ablation Analysis (Q2)

In order to study whether each module is really meaningful for the improvement
of the model effect, we conducted a comprehensive ablation experiment. First,
we remove interest alignment layer (IAL) to explore the role of interest alignment
between users and items, and then we remove the interest interaction layer (IIL)
to explore the role of interest feature interactions. Second, we replaced the gating
fusion mechanism with vector addition and vector connection respectively to
explore the effect of the gating mechanism. We conducted experiments on the
three datasets, and some of the results are shown in Fig. 1.

– we can see that the effect of the model is worse after removing interest align-
ment and interaction. Although the effect of interest interaction layer is better
than interest alignment, interest alignment layer can be used as supplemen-
tary information to further enhance the model effect.

– Whether it is vector addition or vector connection, the performance of the
model is worse. This shows that there is a gap in the feature interaction of
different perspectives and cannot be integrated in a simple and direct way.
The results further verify the effectiveness of our gating mechanism.

Fig. 1. Performance of different modules on MovieLens and Criteo datasets.

5 Conclusion

In this paper, we propose an implicit multiple interest network (IMIN), tak-
ing into account the importance of interest. The model constructs a variety of
interests, and effectively models interest information through interest alignment
and interest interaction. We conduct extensive experiments on three real-world
datasets to demonstrate the effectiveness of our model. Our model IMIN per-
forms best when compared to other competitive networks.
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There are two directions for future study. First, we consider introducing time
series information to enrich interest modeling. We can expand the user’s inter-
est into long-term and short-term dynamic interest, thereby further improving
the accuracy of prediction. Second, we consider the introduction of multi-modal
features. By introducing modal information such as pictures, texts, etc., item
features can be modeled more accurately.
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