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ABSTRACT

Robust and efficient local descriptor is crucial in a wide range
of applications. In this paper, we propose a novel descriptor
DomainDesc which is invariant as much as possible by learn-
ing local Descriptor with Domain adaptation. We design the
feature-level domain adaptation loss to improve robustness of
our DomainDesc by punishing inconsistent high-level fea-
ture distributions of different images, while we present the
pixel-level cross-domain consistency loss to compensate for
the inconsistency between the descriptors corresponding to
the keypoints at the pixel level. Besides, we adopt a new ar-
chitecture to make the descriptor contain as much informa-
tion as possible, and combine triplet loss and cross-domain
consistency loss for descriptor supervision to ensure the dis-
tinguished ability of our descriptor. Finally, we give a cross-
domain dataset generation strategy to quickly construct our
training dataset for diverse domains to adapt to complex ap-
plication scenarios. Experiments validate that our Domain-
Desc achieves state-of-the-art performances on HPatches im-
age matching benchmark and Aachen-Day-Night localization
benchmark.

Index Terms— local descriptors, domain adaptation,
cross-domain data, consistency loss.

1. INTRODUCTION

Extracting accurate and efficient local features description is
an indispensable processing step for various computer vision
applications [1, 2, 3, 4]. In the traditional hand-crafted feature
extraction method, SIFT [5] plays a vital role in computer
vision tasks because it is scale invariant and rotation invari-
ant. Other methods like HardNet [6], only learn to extract the
descriptor for each patch with deep learning. Unlike patch-
based feature descriptions, extracting dense feature descrip-
tors for the whole image has become a trend in recent years,
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and various fully-convolutional neural networks are proposed
including SuperPoint [7], D2Net [8], R2D2 [9], Aslfeat [10],
CAPS [11], Disk [12], etc.

In general, robust descriptors should be immune from the
changing of the illumination or viewpoint of the same key-
points, required to capture much invariance as possible for
accurate matching. However, it is extremely challenging to
extract robust descriptors for complex scenes including day-
night changes and seasonal variations [2], while many meth-
ods enhance the robustness of descriptors by utilizing large
training datasets. In contrast, we focus on combining domain
adaptation to improve the accuracy of local feature descrip-
tions, which refers to mapping data distributed in different
domains to the same feature domain and makes the distance
in the feature space as close as possible.

To accurately describe similar keypoints in images, we
proposed a novel descriptor ‘DomainDesc’ based on our
cross-domain datasets, feature-level domain adaptation loss
and pixel-level cross-domain consistency loss. As shown in
Fig. 1 (a), our cross-domain dataset contains more diverse
domain data. We design the feature-level domain adaptation
loss to make descriptors more robust by narrowing the high-
level features of different images. Furthermore, we give the
cross-domain consistency loss to compensate for the incon-
sistency between descriptors corresponding to keypoints at
the pixel level.

Excellent local descriptors should also have distinguished
ability, meaning that distinct keypoints from similar textures
or the shapes should not be matched. For this reason, we
adopt a new architecture that contains as much context in-
formation as possible to ensure distinguished ability on both
image matching and visual location tasks, and combine triplet
loss [6] for our descriptor supervision to distinguish outliers.
Our competitive numerical results on Hpatches are shown in
Fig. 1 (b).

In sum, there are three main contributions in this work:

• We propose a novel local descriptor DomainDesc by
introducing domain adaptation in local feature learn-
ing for the first time, and design the feature-level do-
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Fig. 1. Matching results of our method. (a) Two matching results of applying our DomainDesc to image pairs composed of
different source domain images and target domain images. The green lines show correct correspondences. (b) The evaluation
results applying our DomainDesc on the Hpatches dataset. Compared with other state-of-the-art methods, the HA and M.S.
metrics of our DomainDesc are significantly leading.

main adaptation loss to reduce the difference between
the feature domains of image pairs, making our descrip-
tor more robust.

• We present the pixel-level cross-domain consistency
loss to compensate for the inconsistency between the
descriptors corresponding to the keypoints at the pixel,
in turn to enhance the invariance of our descriptor.

• We give a cross-domain dataset generation strategy to
quickly construct diversified domain dataset for our
training, and implement comprehensive experiments in
both image matching and visual localization tasks, val-
idating that our method outperforms the state-of-the-art
methods.

2. PROPOSED METHOD

Our Descriptor with Domain adaptation (DomainDesc) em-
ploys a fully convolutional network, which takes Resnet18 [13]
as the encoder to extract the global domain invariant features,
and then uses a structure similar to FPN as the decoder to out-
put 128-dimensional dense descriptors(Fig. 2(a)). For each
input image, the encoder generates multiple scale feature
maps with dimensions 64, 128, 256, and 512 respectively.
To make our DomainDesc more robust, we carefully design
the feature-level domain adaptation loss and the pixel-level
cross-domain consistency loss, detailed in section 2.1 and
section 2.2 respectively. Besides, we give the strategy of
generating cross-domain datasets and correspondences super-
vision for the training of our DomainDesc in section 2.4.

2.1. Feature-level Domain Adaptation Supervision

As shown in Fig. 2(b), each image pair includes a source do-
main image IS and a transformed target domain image IT .
As the disharmony between the feature domains of IS and
IT can bring some interference to the descriptor generation,
we design a feature-level method to align the distribution be-
tween the high-level feature maps of IS and IT to reduce this
disharmony for improving the robustness of the descriptor.

Specifically, we apply a gradient reversal layer to imple-
ment the domain adversarial learning. Unlike DANN [14],
we use three fully connected layers and our feature-level do-
main loss function to enhance the performance of the domain
classifier that distinguishing the global domain invariant fea-
tures (F (IS), F (IT )) of the two images. Inspired by [15], we
minimize the Shannon entropy predicted by the target sample
to make the model produce high-confidence predictions:

H(ti) = (−tilog(ti)−(1− ti)log(1− ti). (1)

And we define our feature-level domain loss as:

Lfeat(F (IS), F (IT )) =[
1

N

N∑
i=1

(−lilog(ti)−(1− li)log(1− ti)) + tanh(H(ti)

]2

.

(2)
where li is the domain category label of the image, li = 1
denotes the label of IT , and li = 0 denotes the label of the
IS . ti is the domain prediction score of IT .
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Fig. 2. The overview of our DomainDesc.(a) The architecture of our DomainDesc. (b) We conduct training by applying feature-
level domain adaptation loss and pixel-level cross-domain consistency loss on our DomainDesc. (c) We use the translation
network and homographic adaptation to obtain a cross-domain dataset with labels.

2.2. Pixel-level Cross-domain Consistency Supervision

Although IT and IS may be different in appearance or style,
the descriptors corresponding to the keypoints of both im-
ages should be close enough. Therefore, we present a cross-
domain consistency loss to strengthen this premise and make
the descriptors of two domain-specific images more consis-
tent.

For the dense descriptors (D,D′) finally obtained in
Fig. 2, we calculate the mean and maximum value of each
descriptor, so each image pair can get a pair of descriptor
mean maps (D̄, D̄′) and max map(Dmax, D′max). We use
the sampled descriptor mean map and max map as the input,
and we define our pixel-level cross-domain consistency loss
as:

Lconsis(D,D′) =
1

n2

n2∑
i=1

[∣∣d̄i − d̄′i
∣∣+ ∣∣dmax

i − d′
max
i

∣∣]2 .
(3)

where n2 is the number of descriptors sampled during
descriptor supervision, (d̄i, d̄i) and (dmax

i , dmax
i ) are the

mean and maximum of descriptors sampled in (D̄, D̄′) and
(Dmax, D′max) respectively.

2.3. Total Loss

The total loss integrates both our feature-level domain loss
and our pixel-level cross-domain consistency loss, as well as
the triplet loss [6] which is conducive to distinguish outliers.
Given an image pair and its corresponding dense descriptor
sets (D,D′), the positive distance pi and the negative distance
ni between the descriptor di ∈ D and the descriptor d′i ∈ D′

are defined as:

pi = ||di − d′i||2, ni = min
k∈1...N,k ̸=i

(||di − d′k||2). (4)

and the triplet descriptor loss can be defined as:

Ldes = max(0, pi − ni + 1). (5)

In sum, we define the total loss as:

Ltotal = Lfeat + Lconsis + Ldes. (6)

2.4. Training via Novel Cross-domain Data

To construct a comprehensive cross-domain dataset for train-
ing, we use 4479 images of the Aachen-Day-Night dataset
and 11800 image pairs selected in the MegaDepth as source
domain images IS . For generating richer domain changes
and realistic images, we employ HIDM[16] to translate the
IS to the morning, noon, dusk and evening image domains
respectively as shown in Fig. 2(c). Meanwhile, we perform
homomorphic adaptation [7] on all translated images with a
certain probability in order to increase the viewpoint change.
A source domain image IS corresponds to the result of homo-
morphic adaptation processing or an image with only domain
transformation. If IS comes from MegaDepth, it also corre-
sponds to an image with ground truth correspondence. We
regard all these corresponding images as target domain im-
ages IT , and we randomly select 32558 image pairs as our
cross-domain training dataset.

The corresponding relationship between them is already
given for image pairs in MegaDepth. For other image pairs
synthesized using random homomorphic adaptation, we di-
vide one of the images into 20 × 20 grids, and each grid
randomly samples a point uniformly, and the corresponding
point is obtained based on the homography.

3. EXPERIMENTS

3.1. Evaluation on Image Matching

Evaluation Dataset. The HPatches dataset is a common eval-
uation dataset for image matching. Following the protocol of
SuperPoint [7] and D2Net [8], we use 108 sequence scenes
with viewpoint or illumination changes for a fair comparison.
Comparisons. We use three standard metrics for evaluation:
Homography Accuracy (HA) for the ratio of the correct es-



HPatches dataset
DSP-SIFT HesAffNet

+HardNet++ SuperPoint D2Net R2D2 ASLFeat CAPS+SuperPoint Disk(8K) DomainDesc

Illumination
HA 0.815 0.842 0.892 0.646 0.885 0.900 0.827 0.907 0.915

Precision 0.559 0.505 0.694 0.527 0.715 0.775 0.691 0.832 0.756
M.S. 0.172 0.236 0.456 0.274 0.320 0.452 0.285 0.510 0.520

Viewpoint
HA 0.586 0.596 0.571 0.196 0.550 0.546 0.482 0.378 0.604

Precision 0.660 0.620 0.639 0.356 0.693 0.708 0.617 0.619 0.706
M.S. 0.230 0.299 0.394 0.160 0.289 0.388 0.231 0.327 0.435

Table 1. Evaluation results on the HPatches dataset.

timation of homography, Precise for the average matching
accuracy with a threshold of 3 pixels by default, Match Score
(M.S.) following the definition in [9]. As shown in Fig. 1
and Table 1, our DomainDesc has reached the excellent per-
formance under the overall comparison, and is significantly
ahead of other SOTAs on HA and M.S., because our feature-
level domain adaptation loss and pixel-level cross-domain
consistency loss can compensate for the inconsistency be-
tween descriptors of corresponding keypoints to a large ex-
tent.

3.2. Evaluation on Visual Localization

Evaluation Dataset. The Aachen-Day-Night dataset [17]
provides query images of the Aachen city taken during the
day and night. We use the public evaluation benchmark [2]
for evaluation, which generates the percentage of successfully
positioned images within three tolerances.
Ablation study. Our baseline model employs a network with
Resnet18 [13] as the encoder and FPN-like structure as the de-
coder, and uses 23600 image pairs of the MegaDepth dataset
described in section 2.4 for training. To validate the advantage
of our DomainDesc, we apply the same keypoints of Super-
Point to all the methods in our ablation experiment. From the
last 4 rows of Table 2, we can see that our DomainDesc are
superior to the baseline in all metrics.
Comparisons. We compare our DomainDesc with advanced
local descriptors and other deep learning methods shown in
Table 2. Our DomainDesc achieved the highest accuracy
rates of 73.3 and 86.9 in the tolerance under (0.25m, 2◦

and 0.5m, 5◦), which demonstrates that our descriptor based
on domain adaptation has significantly improved the perfor-
mance of the descriptor. Although CAPS [11] and D2Net [8]
gain the advantage under the loosest tolerance, it benefits
from the use of longer dimensional descriptors (256 and
512). In contrast, our DomainDesc has only 128-dimensional
descriptors and we train our model on a dataset that is only
1/20 of D2Net. Moreover, our DomainDesc uses fewer key-
points for each image with a lightweight design structure,
so it achieves a faster real-time speed (29 fps on HPatches
with the image size 480 × 640 under TitanV). Competitive
results under the three error thresholds demonstrate that our
DomainDesc can achieve a balance between the descriptor in-
variance and distinguishability, making it effectively increase
the accuracy of challenging visual localization tasks.

Table 2. Evaluation on Aachen Day-Night v1.1: + Cross-
domain data: using the cross-domain dataset in section 2.4; +
Feature loss: augmenting our feature-level domain adaptation
loss further; + Consis loss: augmenting our pixel-level cross-
domain consistency loss further (our DomainDesc).

Aachen Day-Night v1.1 dataset

Method Kpts Dim Correctly localized queries
0.25m,2◦ 0.5m,5◦ 5m,10◦

ROOT-SIFT [18] 11K 128 53.4 62.3 72.3
DSP-SIFT [19] 11K 128 40.3 47.6 51.3
SuperPoint [7] 7K 256 68.1 85.9 94.8
D2Net [8] 14K 512 67.0 86.4 97.4
R2D2 [9] 10K 128 70.7 85.3 96.9
ASLFeat [10] 10K 128 71.2 85.9 96.9
CAPS + SuperPoint [11] 7K 256 71.2 86.4 97.9
DISK [12] 10K 128 72.8 86.4 97.4
Baseline 7K 128 70.2 84.3 95.3
+ Cross-domain data 7K 128 70.7 86.4 96.9
+ Feature loss 7K 128 72.8 86.4 96.3
+ Consis loss (DomainDesc) 7K 128 73.3 86.9 96.9

4. CONCLUSION

By introducing domain adaptation for local feature descrip-
tion for the first time, we propose a novel local descriptor
DomainDesc to adapt to multiple scenarios. We design the
feature-level domain adaptation loss in order to align the high-
level features of images in different domains, and give the
pixel-level cross-domain consistency loss to reduce the incon-
sistency between the descriptors at the pixel level. As both of
our losses punish the variant features which may impair the
distinguish performance, the triplet loss is combined to make
our descriptor achieve a balance of distinguishability and in-
variance. Besides, we adopt a cross-domain dataset genera-
tion strategy to construct domain dataset for training. Exper-
iments have demonstrated the superiority of our method in
image matching and visual localization tasks.
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