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Abstract— Collective behavior of multi-agent systems brings
some new problems in control theory and application. Espe-
cially, flocking problem of multi-agent systems with uncertain
nonlinear dynamics and unknown external disturbances is a
challenging problem. Some existing works assume that the
intrinsic nonlinear dynamics of virtual leader is the same as
those of the agents, which is unreasonable and impractical.
To solve this issue, we consider an adaptive flocking problem
of multi-agent systems with uncertain nonlinear dynamics and
unknown external disturbances in this paper, where the intrinsic
nonlinear dynamics of virtual leader is allowed to be different
from the agents. Firstly, to approximate the uncertain nonlinear
dynamics of each agent, an adaptive neural network is used,
whose weights are updated online. Furthermore, an adaptive
robust signal is designed to counteract the unknown external
disturbances and neural network approximation errors, which
is independent with the upper bound of the unknown external
disturbances and neural network approximation errors. More-
over, an adaptive flocking control law is designed, which is
proved that the flocking can be realized and the velocity errors
converge to a small neighbor of the origin based on Lyapunov
stability theory. Finally, the robustness and superiority of the
proposed robust adaptive flocking control law are validated by
two representative simulations.

I. INTRODUCTION
Flocking is the collective behavior [1], which exists in the

nature with various forms such as the flocking of birds, the
swarming of bacteria, and the schooling of fishes [2], [3]. In
recent years, flocking behavior has attracted a considerable
amount of attention from many scientists in the fields of
ecology, evolutionary biology, computer science, and control
engineering [4]. These related researches focus on how
a group of agents can form a uniform behavior by only
using local interactions, which has promising applications
in disaster rescue, reconnaissance, mobile sensor networks
[5], etc.

In recent years, some works have focused on the flocking
of multi-agent systems with nonlinear dynamics. In [1],
adaptive controllers and update laws for heterogeneous multi-
agent systems with nonlinear dynamics were presented by
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Zhang et al. Li et al. proposed a novel output feedback
consensus algorithm for the flocking of disturbed nonlin-
ear multi-agent systems in [6]. In [7], based on event-
triggered control, the flocking problem of nonlinear multi-
agent system with time varying delay was investigated by
Sun et al. In some existing works, it is assumed that the
nonlinear dynamics of all agents are the same with virtual
leader. However, it is unreasonable and impractical in the
target tracking problem where the target can be regarded
as the virtual leader, since the dynamics of targets may
not be the same with those of the agents. Besides, in real-
world applications, unknown external disturbances coexist
with uncertain nonlinear dynamics. Some unknown external
disturbances are time-varying in the working process, which
would deteriorate the control performance and even make
systems break down [8], [9]. To reduce the impact of external
disturbances, some attempts have been made in [10], [11].
Dong et al. proposed a dynamic position feedback control
law to solve the problem of the flocking subject to external
disturbances. It is assumed that the external disturbances
are generated by linear exogenous system. In practice, the
external disturbances are more complicated and cannot be
known in advance.

Due to the property of universal approximation [12],
neural networks have been employed in system identification,
control, and uncertainty estimation [13]. In [14], the problem
of tracking control with switching formation in constrained
space for multi-agent systems based on neural network
was researched by Liu et al. Xiong et al. investigated the
time-varying formation tracking control problem with model
uncertainties and presented a fixed-time observer based on
adaptive neural network with minimal learning parameter
approach for time-varying formation tracking problem in
[15]. These works show the superiority performance of
neural networks handling the uncertainty estimation.

To the best of our knowledge and based on the above-
mentioned works, the research of the flocking of multi-agent
systems with uncertain nonlinear dynamics and unknown ex-
ternal disturbances is still an open problem, which motivates
our research in this paper. Firstly, to solve the problem that
the intrinsic nonlinear dynamics of virtual leader is different
from those of all agents, an adaptive neural network is used to
approximate the uncertain nonlinear dynamics of each agent,
whose weights are updated online, which is more practical
compared with conventional methods. Secondly, an adaptive
robust signal is designed to counteract the unknown external
disturbances and neural network approximation errors, which
is independent to the upper bound of the unknown external
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disturbances. Thirdly, an adaptive flocking control law is
designed, and the Lyapunov stability analysis is conducted
to guarantee that the velocity errors converge to a small
neighbor of the origin. Finally, two representative simulations
are given to verify the robustness and superiority of the
proposed robust adaptive flocking control law.

The rest of this paper is organized as follows: the pre-
liminaries are given in Section II. Section III provides the
proposed robust adaptive flocking control law for the flocking
of multi-agent systems with uncertain nonlinear dynamics
and unknown external disturbances. The stability analysis is
given in Section IV. Section V demonstrates the simulation
results. The conclusions and future work are represented in
Section VI.

II. PRELIMINARIES

A. Graph Theory

The information of communication among agents can be
denoted by an undirected graph G = (V,E,A), where V =
{1, · · · , N} is the node set, E ⊆ V ×V is the edge set, and
A = [αij ] ∈ RN×N is the adjacency matrix where element
αij denotes the node i can receive the information of the
node j. An edge from node i to node j is denoted as (i, j) ∈
E. The set of neighbors of the node i is defined as Ni =
{j|(j, i) ∈ E, i 6= j}. For adjacency matrix A, if j ∈ Ni,
then αij = 1, otherwise αij = 0. The degree of the node i is
defined as di =

∑
j∈Ni αij , and the degree diagonal matrix

of the graph G is represented as D = diag(d1, d2, · · · , dn).
The Laplacian matrix of the graph G is defined as L =
[lij ] ∈ RN×N , namely, L = D − A, where lii = di and
lij = −αij ,∀i 6= j.

B. Problem Formulation

In this paper, N agents in a m-dimensional Euclidean
space are taken into consideration. The dynamic model of
each agent is described by{

q̇i(t) = pi(t)
ṗi(t) = fi(pi(t)) + ui(t) + di(t), i = 1, 2, · · ·N, (1)

where, for agent i, qi(t) ∈ Rm is the position vector, pi(t) ∈
Rm is the velocity vector. fi(pi(t)) ∈ Rm is the unknown
nonlinear dynamics. di(t) ∈ Rm represents the unknown
external disturbances. ui(t) ∈ Rm is the control input.

Definition 1: When all the agents have the same velocity
and the distances among the agents are stable, the behavior
of the agents is said to be flocking.

Assumption 1: It is assumed that the communication
capability of all agents is limited, and each agent has the
same interaction range. The interaction range is denoted as
rc. Then the neighbor set of agent i is defined as

Ni = {j ∈ V : ||qj − qi|| < rc} , (2)

where || · || is the Euclidean norm in Rm.
The goal of the flocking of the multi-agent systems is to

design a decentralized control law for every agent by using
local interactions such that Definition 1 can be satisfied. To

avoid regular fragmentation, a virtual leader is considered,
and its dynamic model is characterized by{

q̇r(t) = pr(t)
ṗr(t) = fr(pr(t))

, (3)

where qr(t) ∈ Rm is the position vector of the virtual leader,
pr(t) ∈ Rm is the velocity vector of the virtual leader.
fr(pr(t)) ∈ Rm is the internal dynamics of the virtual leader.
In most current literature, it is assumed that the dynamic
model of the virtual leader is the same as that of the agents,
which is unreasonable and impractical. In this paper, the
dynamic model of the virtual leader can be different from
the agents. It is assumed that every agent in the group can
obtain the velocity information of the virtual leader, and the
virtual leader moves with a constant velocity.

Assumption 2: [16] The unknown external disturbances is
bounded, i.e.,

||di(t)|| ≤ diM . (4)

The boundary is unknown for the controller design, and it
will only be used in the stability analysis.

C. Neural Network and Function Approximator

The accurate model of agents with nonlinear dynamics
may not be acquired in practice, which may cause the
failure of the flocking. Therefore, the uncertain nonlinear
dynamics of the agents need to be estimated. Due to satisfied
nonlinear function approximating capability, neural networks
are employed to approximate unknown functions. The radial
basis function neural network (RBFNN) is a reliable method
to realize the function approximator. Then, for any uncertain
function f(x), there exists an ideal constant weight matrix
W ∗ ∈ Rl×m such that the following equation holds:

f(x) = W ∗TS(x) + ε,∀x ∈ Ωx, (5)

where S(x) ∈ Rl×1 is the basic Gaussian function vector
with l nodes, ε is the function approximation error satisfying
|ε| ≤ εN with positive and bounded εN .

It is worth highlighting that the ideal weight matrix W ∗

is merely used for qualitative analysis, and can not be
obtained directly. In engineering applications, Ŵ is used for
actual function approximation. Therefore, the approximation
of f(x) denoted as f̂(x) can be selected by

f̂(x) = ŴTS(x), (6)

where Ŵ is current weight of RBFNN and will be updated
online. In addition, the error of the weight matrix is repre-
sented as W̃ = W ∗ − Ŵ .

III. ADAPTIVE FLOCKING CONTROL LAW

In this section, a decentralized robust adaptive flocking
control law is designed for the flocking of the multi-agent
systems in the presence of uncertain nonlinear dynamics
and unknown external disturbances. In particular, uncertain
nonlinear dynamics are compensated by adaptive neural
networks, which handle the flocking with uncertain nonlinear
dynamics under the situation that the dynamics of the agents
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is different from virtual leader. An adaptive robust signal
is designed to counteract the unknown external disturbances
and neural network approximation errors, which does not
rely on the upper bound of the unknown external distur-
bances. The specific robust adaptive flocking control law is
designed as:

ui = u1i + u2i + u3i, (7)

where u1i embodies basic control rules of the Boild’s model
for each agent [17], u2i is the adaptive compensative term,
u3i is an adaptive robust signal. The basic control rules of
the Boild’s model is composed of three components:

u1i = fgi + fdi + fri , (8)

where fgi is a gradient term, which regulates the distance
between agent i and its neighbor. The second term fdi is
the velocity alignment term, which regulates the velocity of
agent i to be consistent with its neighbor. A navigation term
fri guides agent i to follow the virtual leader. Therefore, u1i
is presented as follows:

u1i =− g1
∑

j∈Ni(t)

∇qiψα(||qi − qj ||%)

−
∑

j∈Ni(t)

aij(t)(pi − pj)− c1(qi − qr)− c2(pi − pr),

(9)
where g1 is the gradient gain, c1, c2 are the tracking gains,
Ni(t) satisfies Assumption 1, || · ||% is the %-norm and is
differentiable everywhere, which is specially defined as

||y||% =
1

ι
[
√

1 + ι||y||2 − 1], ι > 0. (10)

ψα is a positive potential function with minimum at y = rα
as follows:

ψα(y) =

∫ y

dα

φα(s)ds, (11)

where rα = ||rc||% and dα = ||d||%, d is the desired distance
between its neighbor. φα(y) is the function as following:

φα(y) = ρh(y/rα)φ(y − dα), (12)

where ρh(y) is the following bump function:

ρh(y) =


1 , y ∈ [0, h)
1
2 [1 + cos(π (y−h)

(1−h) )] , y ∈ [h, 1], h ∈ (0, 1].

0 , otherwise

and φ(y) is the sigmoidal function defined as:

φ(y) =
1

2
[(ιa + ιb)σ1(y + ιc) + (ιa − ιb)], (13)

where σ1(y + ιc) = (y + ιc)/
√

1 + (y + ιc)2, 0 < ιa ≤ ιb,
ιc = |ιa − ιb|

√
4ιaιb. In addition, A(t) = [aij(t)] ∈ RN×N

is the adjacent matrix defined as

aij(t) = ρh(||qj − qi||%/rα) ∈ [0, 1], j 6= i (14)

Based on the neural network approximation character pre-
sented in Section II-C, it is known that fi(pi) can be
expressed on prescribed compact set Ωpi by

fi(pi) = W ∗Ti Si(pi) + εi, (15)

where W ∗i ∈ Rl×m is the ideal weight matrix for agent i, and
εi is the bounded approximation error satisfying |εi| ≤ εNi
with positive and bounded εNi. Therefore, to approximate
the uncertain dynamics fi(pi) in (1), the compensative term
ui2 is designed as following:

u2i = −ŴT
i Si(pi), (16)

where Ŵi ∈ Rl×m is current weight of RBFNN for agent i,
which is updated online with the following adaptive updating
law:

˙̂
Wi = βS(pi)p̃

T
i − βαŴi, (17)

where p̃i ∈ Rm is the velocity error, which is defined as
p̃i = pi − pr. α, β are positive tunable parameters.

Considering the unknown external disturbances and neural
network approximation error, an adaptive robust signal is
additionally designed as follows:

u3i = − δ̂ip̃γ−1i sign(p̃γi ), (18)

where δ̂i ∈ Rm is an adaptive robust gain. It is the estimation
of the upper bound of the unknown external disturbances and
the neural network approximation error denoted as δi > 0,
which means that ||diM + εNi|| ≤ δi. γ is a parameter to
tune the converging rate, which should satisfy the following
constraints: {

0 < γ < 1 , |p̃| < 1
γ ≥ 1 , |p̃| ≥ 1.

It can induce that δip̃i − δip̃γi ≤ 0.
The adaptive robust gain δ̂i is designed as

˙̂
δi = χ|p̃γ | − ηδ̂i, (19)

where χ, η are tunable parameters. In addition, the estimation
error of the upper bound is denoted as δ̃i = δi − δ̂i.

Remark 1: It is noted that the adaptive robust signal can
handle any bounded unknown external disturbances without
extra constraints required like the linear exogenous system
[11]. With the adaptive robust gain, it is more practical in
the engineering applications.

IV. STABILITY ANALYSIS OF FLOCKING
In the above section, a decentralized robust adaptive

flocking law has been put forward for each agent to realize
the flocking in the presence of the uncertain nonlinear
dynamics and unknown external disturbances. In this section,
the stability analysis for our proposed control law is given
by Lyapunov theorem.

Theorem 1 For the multi-agent systems (1) and (3), under
the robust adaptive flocking law (7), the velocity of all the
agents will converge to the neighbor of the velocity of the
virtual leader, and collision avoidance is always guaranteed.

Proof: Construct the following Lyapunov function Q(t) =
Q1(t) +Q2(t) +Q3(t) +Q4(t) with

Q1(t) =
1

2

N∑
i=1

[

N∑
j=1,j 6=i

1

g1
ψα(||qi − qj ||%)

+ c1(qi − qr)T (qi − qr)],

(20)
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Q2(t) =
1

2

N∑
i=1

(pi − pr)T (pi − pr), (21)

Q3(t) =
1

2β

N∑
i=1

tr(W̃T
i W̃i), (22)

Q4(t) =
1

2χ

N∑
i=1

δ̃Ti δ̃i. (23)

Let q̃i = qi − qr, q̃ij = q̃i − q̃j . Then (7), (20) and (21) are
rewritten as the following form:

ui =−
∑

j∈Ni(t)

g1∇q̃iψα(||q̃ij ||%)− ŴT
i S(pi)− c1q̃i

− δ̂ip̃γ−1i sign(p̃γi )−
∑

j∈Ni(t)

aij(t)(p̃i − p̃j)− c2p̃i,

(24)

Q1(t) =
1

2

N∑
i=1

[
N∑

j=1,j 6=i

1

g1
ψα(||q̃ij ||%) + c1q̃

T
i q̃i], (25)

Q2(t) =
1

2

N∑
i=1

p̃Ti p̃i, (26)

Considering the symmetry of the potential function ψα and
the adjacent matrix A(t), then the derivative of Q1 with
respect to time obtains

Q̇1(t) =

N∑
i=1

[

N∑
j=1,j 6=i

g1∇q̃iψα(||q̃ij ||%)p̃i + c1q̃
T
i p̃i]. (27)

Using (24), the derivative of Q2 + Q3 with respect to time
obtains

Q̇2(t) + Q̇3(t) =

N∑
i=1

[−p̃Ti
∑

j∈Ni(t)

g1∇q̃iψα(||q̃ij ||%)

− p̃Ti
∑

j∈Ni(t)

aij(t)(p̃i − p̃j)− c1p̃Ti q̃i

− c2p̃Ti p̃i + p̃Ti W̃
T
i S(pi) + p̃Ti (εi + di)

− p̃Ti δ̂ip̃
γ−1
i sign(p̃γi ) +

1

β
tr(W̃T

i
˙̃Wi)].

(28)

Considering the fact that yT z = tr(zyT ), ∀y, z ∈ Rn and
tr(AB) = tr(BA), (28) can be rewritten as

Q̇2(t) + Q̇3(t) =

N∑
i=1

[−p̃Ti
∑

j∈Ni(t)

g1∇q̃iψα(||q̃ij ||%)

− p̃Ti
∑

j∈Ni(t)

aij(t)(p̃i − p̃j)− c1p̃Ti q̃i

− c2p̃Ti p̃i +
1

β
tr((βS(pi)p̃

T
i −

˙̂
Wi)W̃

T
i )

+ p̃Ti (εi + di)− p̃Ti δ̂ip̃
γ−1
i sign(p̃γi )].

(29)

Substituting the adaptive updating law into (29), it has

Q̇2(t) + Q̇3(t) =

N∑
i=1

[−p̃Ti
∑

j∈Ni(t)

g1∇q̃iψα(||q̃ij ||%)

− p̃Ti
∑

j∈Ni(t)

aij(t)(p̃i − p̃j)− c1p̃Ti q̃i

− c2p̃Ti p̃i + αtr(ŴiW̃
T
i ) + p̃Ti (εi + di)

− p̃Ti δ̂ip̃
γ−1
i sign(p̃γi )]

=

N∑
i=1

[−p̃Ti
∑

j∈Ni(t)

g1∇q̃iψα(||q̃ij ||%)

− p̃Ti
∑

j∈Ni(t)

aij(t)(p̃i − p̃j)− c1p̃Ti q̃i

− c2p̃Ti p̃i + αtr(W ∗i W̃
T
i )− αtr(W̃iW̃

T
i )

+ p̃Ti (εi + di)− p̃Ti δ̂ip̃
γ−1
i sign(p̃γi )].

(30)

The derivative of Q4(t) is

Q̇4(t) =

N∑
i=1

−δi|p̃γ |+ δ̂i|p̃γ | −
η

χ
δ̂2i +

η

χ
δiδ̂i. (31)

Using (27), (30), and (31), the derivative of Q with respect
to t changes to

Q̇(t) =

N∑
i=1

[−p̃Ti
∑

j∈Ni(t)

aij(t)(p̃i − p̃j)− c2p̃Ti p̃i − δi|p̃γ |

+ αtr(W ∗i W̃
T
i )− αtr(W̃iW̃

T
i ) + p̃Ti (εi + di)

− p̃Ti δ̂ip̃
γ−1
i sign(p̃γi ) + δ̂i|p̃γ | −

η

χ
δ̂2i +

η

χ
δiδ̂i].

(32)

According to Young’s inequality, the derivative of Q with
respect to t is

Q̇(t) ≤
N∑
i=1

[−p̃Ti
∑

j∈Ni(t)

aij(t)(p̃i − p̃j)− c2p̃Ti p̃i −
η

2χ
δ̂2i

+ α||W̃i||F ||W ∗i ||F − α||W̃i||2F +
η

2χ
δ2i ].

(33)

Define P̃ = [p̃T1 , p̃
T
2 , · · · , p̃TN ]T , δ̂ = [δ̂T1 , δ̂

T
2 , · · · , δ̂TN ]T ,

W̃ = diag[W̃1, W̃2, · · · , W̃N ], W ∗ = diag[W ∗1 ,W
∗
2 , · · · ,

W ∗N ], ∆ =
∑N
i=1

η
2χδ

2
i . Then (33) is rewritten as

Q̇(t) ≤− σ((L+ C2)⊗ I2)||P̃ ||2 − η

2χ
||δ̂||

+ α||W̃ ||F ||W ∗||F − α||W̃ ||2F + ∆

≤−

 ||P̃ ||||δ̂||
||W̃ ||F

T σ((L+ C2)⊗ I2) 0 0
0 η

2χ 0

0 0 α


·

 ||P̃ |||δ̂||
||W̃ ||F

+

 0
0

α||W ∗||F

T ·
 ||P̃ ||||δ̂||
||W̃ ||F

+ ∆,

(34)
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where σ((L + C2) ⊗ I2) denotes the min eigenvalue of the
symmetric positive definite matrix (L+ C2)⊗ I2.

According to Stone-Weierstrass approximation theorem
[18], there exists positive real number WM , such that
||W ∗|| ≤ WM . Define ξ = [||P̃ ||, ||δ̂||, ||W̃ ||F ]T , ω =

[0, 0, αWM ]T , M =

σ((L+ C2)⊗ I2) 0 0
0 η

2χ 0

0 0 α

 . Then,

Q̇(t) ≤− ξTMξ + ωT ξ + ∆

=−Qξ(ξ).
(35)

It is clear that the matrix M is positive definite. Hence, Qξ(ξ)
is positive definite if

||ξ|| ≥
−||ω||+

√
||ω||2 + 4σ(M)∆

2σ(M)
. (36)

Therefore, according to the Lyapunov theory, ξ(t) is invariant
to the following sets:

||ξ|| ≤
−||ω||+

√
||ω||2 + 4σ(M)∆

2σ(M)
. (37)

Furthermore, it can be obtained that P̃ , δ̂, and W̃ are
bounded. Hence, the velocity of every agent can converge to
the neighbor of the virtual leader under the robust adaptive
flocking control law (7). On the basis of the property of
the potential function in (11), it is obtained that the smaller
the distance of the agent with its neighbor the bigger the
repulsive force by choosing the parameters of the poten-
tial function appropriately. Therefore, collisions among the
agents can be avoided. This completes the proof.

Remark 2: By choosing parameters η, χ, α appropriately,
||ξ|| can reach to a small neighbor of the origin.

V. SIMULATION RESULTS

In this section, two representative simulations are given
to verify the effectiveness of the proposed robust adaptive
flocking control law (7).

Consider 40 agents described by (1) moving in a 2-
dimensional space. The following uncertain nonlinear dy-
namic function fi(pi) is used for simulations.

fi(pi) =

(
10 sin(kix · px(t))py(t)
10 cos(kiy · py(t))px(t)

)
, (38)

where kix and kiy are selected randomly in the range [-
2,2]. The initial positions and velocities of the 40 agents
are selected randomly in the range [0, 25] × [0, 25] and
[−2, 2] × [−2, 2], respectively, as shown in Fig. 1, where,
the black dots are the positions, and the red arrows indicate
the velocities. The initial position and velocity of the virtual
leader are set as qr(0) = [10, 9]T and pr(0) = [1, 2]T . The
sensing range rc is set as 3.6, and the desired distance d is set
as 3. ι = 0.1 is chosen for the % norm. h = 0.9 is selected for
the function ρh(·). ιa = 10 and ιb = 10 are chosen for the
function φ(·). c1 = 3, c2 = 4 are chosen for the navigation
feedback, g1 = 2 is chosen for the gradient term. Besides, the
same configurations of the RBFNN are chosen for all agents.

-5 0 5 10 15 20 25

-5

0

5

10

15

20

25

Fig. 1. Initial configuration.

The number of hidden neurons for each RBFNN l are chosen
as 5. The centers of the RBFNN basic Gaussian functions
are distributed uniformly in the range [−5, 5]× [−5, 5], and
the variances are all set to be 10. The initial weight matrix
Ŵi(0) is randomly chosen in the range [−1, 1], and the gains
α and β are selected as 0.5, 50 respectively. For the adaptive
robust signal, χ, η are set as 2, 0.8 respectively. If |q̃| < 1,
then γ is chosen as 0.8, otherwise γ is chosen as 2.

Scenario 1: In the first scenario, the simulation is con-
ducted by applying the proposed robust adaptive flocking
control law to the flocking of the multi-agent systems with
uncertain nonlinear dynamics and unknown external distur-
bances. The unknown external disturbances di is assumed
as

di(t) =

(
wi exp(−2t)
wi exp(−t)

)
, (39)

where wi is selected randomly in the range [-3,3]. The
uncertain nonlinear dynamics is the same as (38). The
simulation results are shown in Figs. 1 - 3. Fig. 2 depicts
the final configuration of the 40 agents and the virtual leader
after 30 seconds with the robust adaptive flocking control
law (7), where the green pentagram represents the virtual
leader, and the black line denotes the communication link.
From Fig. 2, it is obvious that the 40 agents have the same
velocity with the virtual leader and the distance between
nearby agents is stable. Fig. 3 is the velocity errors on the
X-axis, Y-axis, respectively. It is illustrated that although
there have small jumps at the beginning caused by the new
neighbors joining, the velocity errors ultimately converge to
zero after 10 seconds, which indicates the flocking can be
realized by the robust adaptive flocking control law.

Scenario 2: In order to show the practicability and ro-
bustness of the robust adaptive flocking control law, a more
general disturbance is considered. The unknown external
disturbances di for every agent is modeled by

di(t) =

(
wi sin(2t)
wi cos(−t)

)
. (40)

where wi is also selected randomly in the range[-3,3]. The
simulation results are shown in Fig. 4. Fig. 4 is the velocity
errors on the X-axis, Y-axis, respectively. It is illustrated
that the velocity errors also finally converge to the small
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Fig. 3. Velocity errors on X-axis and Y-axis for the agents under the robust
adaptive flocking control law in Scenario 1.

neighbour of the origin after 10 seconds, which further
demonstrates the effectiveness and robustness of the robust
adaptive flocking control law.

0 5 10 15 20 25 30

-10

-8

-6

-4

-2

0

2

4

6

8
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Fig. 4. Velocity errors on X-axis and Y-axis for the agents under the robust
adaptive flocking control law in Scenario 2.

VI. CONCLUSION

This paper investigates the flocking of the multi-agent
systems with uncertain nonlinear dynamics and unknown
external disturbances. A decentralized robust adaptive flock-
ing control law is proposed, in which the intrinsic non-
linear dynamics of the agents is allowed to be different
from the virtual leader. The uncertain nonlinear dynamics
is approximated by the neural network with online updating.
The unknown external disturbances and neural network ap-
proximation error are counteracted by the designed adaptive
robust signal. The stability analysis is theoretically explored
through Lyapunov function approach. Two representative

simulation results are given to demonstrate the effectiveness
of the proposed robust adaptive flocking control law. In our
future work, the adaptive flocking with uncertain nonlinear
dynamics and time delay will be considered for the flocking
of multi-agent systems.
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