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Abstract

Traditional domain adaptation (DA) research generally assume that the source and target
domains have the same label set. However, in many real-world applications, there exists a
more general and practical situation where target label set is just a subset of source label
set, which is formulated as partial domain adaptation (PDA) problem. Compared with DA,
PDA is more vulnerable to negative transfer due to the mismatch of label sets. In this paper,
we propose a novel PDA method based on Progressive sample Learning of Shared Classes
(PLSC), which contains two main parts: shared classes identification and progressive target
sample learning. The shared classes identification component aims to exclude source-private
classes and merely allow source samples within shared classes to participate in the progress of
knowledge transfer. To achieve this goal, following the separation and alignment assumptions
in DA, we minimize the sum of the distances from both source and target samples to their
corresponding source class centers, and then design an adaptive threshold to determine the
shared classes. Furthermore, considering the misleading of target samples that deviate from
the source class centers, we propose to progressively include target samples for subspace
learning by introducing self-paced learning mechanism. Extensive experiments verify the
superiority of our method against the existing counterparts.

Keywords Partial domain adaptation - Domain adaptation - Transfer learning - Self-paced
learning - Low-dimensional subspace learning

B Yonggiang Tang
yonggiang.tang @ia.ac.cn

Lei Tian
tianlei2017 @ia.ac.cn

Wensheng Zhang
zhangwenshengia@hotmail.com

Institute of Automation, Chinese Academy of Sciences, Beijing, China

School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China

Published online: 25 April 2022 9\ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s11063-022-10828-3&domain=pdf
http://orcid.org/0000-0001-9333-8200

L. Tian et al.

1 Introduction

In the machine learning community, one general assumption is that the training data and the
test data follow an identical feature distribution. However, this assumption may be violated
in many usual situations. Besides, it is time consuming and expensive to collect and annotate
massive training data. Thus, there is a strong motivation to transfer the knowledge from
a well-annotated source domain to an unlabeled target domain that has a different feature
distribution. To this end, considerable efforts have been devoted to domain adaptation (DA)
[1]. The goal of DA is to minimize the distribution discrepancy between two domains [2],
such that the classifier trained on source domain can be directly applied to the target domain.
So far, DA has been applied to various tasks, such as object recognition [3, 4], face recognition
[3, 5] and person re-identification [6, 7].

Although DA has been applied in various tasks successfully, it often assumes that the
source domain and the target domain share the same label set. However, in practical applica-
tions, this assumption is hard to hold as the target label set is unknown, and it is difficult and
burdensome to find a source domain with the identical label set as the given target domain.
To surmount this issue, partial domain adaptation (PDA) [8] is naturally introduced, which
assumes that the target label set is a subset of the source label set. The difference between
DA and PDA is shown in Fig. 1. Compared with DA, PDA is more general and practical
since PDA can be applied to many problems when a large-scale dataset (e.g., ImageNet [9]
and MS COCO [10]) is utilized to form the source domain. In this paper, we call the classes
existing in both domains as shared classes [11], and the classes only appearing in source
domain as source-private classes [12].

Due to the mismatch of label sets in PDA, directly aligning the feature distributions
between source and target domains would result in serious negative transfer [8]. To remedy
this issue, in recent years, several PDA methods have been proposed, which can be roughly
divided into three categories. The first category aims to increase the importance of shared
classes between two domains and in the meantime reduce the importance of source-private
classes. For example, Li et al. [13] use a weighted class-wise alignment loss to learn the
different significance of source classes automatically based on the target output probability
distribution. Different from this strategy, the second class of methods develop weighting
mechanism from sample level. For instance, Cao et al. [14] utilize the decision scores of a
domain classifier to develop a weighting scheme to quantify the transferability of each source
sample. The third class borrows advantages of the aforementioned two kinds of methods,
and combines them to tackle the PDA problem. For example, Kim et al. [12] employ an
adaptive graph adversarial network to integrate class-level feature propagation and sample-
level transferability.

Despite the impressive performance achieved by these methods, the samples from source-
private classes still take part into the process of domain adaptation, which may bring about
adverse effects on knowledge transfer of two domains [8]. To handle the negative transfer issue
caused by source-private classes, it is supposed to identify the shared classes as accurately
as possible and only allow source samples within shared classes to make contribution to the
DA process. To achieve goal, in this paper, we present a simple but effective way to identify
the shared classes. Our proposal is inspired by the separation assumption and alignment
assumption in DA [15]. The separation assumption supposes that the source data or the target
data are discriminatively clustered in a suitable feature space, while the alignment assumption
argues that in the suitable feature space, the clusters corresponding to the identical class in
two domains are geometrically close.
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Fig. 1 Illustration of standard Domain Adaptation (DA) and Partial Domain Adaptation (PDA). In DA, the
label sets of two domains are the same, while in PDA, the target label set is a subset of the source label set
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Fig.2 Illustration of our motivation. Our proposal contains two main parts: a shared classes identification and
b progressive target sample learning

Following the separation assumption, we aim to seek a low-dimensional subspace where
the sum of the distance from each source sample to its class center is minimized, such that
the source samples of different classes can be well-separated. Meanwhile, according to the
alignment assumption, in the subspace, we minimize the sum of the distance from each target
sample to its corresponding source class center, so that the target clusters can be aligned with
its corresponding source classes more closely. Ideally, in the projection subspace, each target
sample can be assigned an accurate class label. However, in real-world applications, as shown
in Fig. 2a, the target data generally contain noises, which may make some target samples
(see p1, p2 and p3) be away from the source class centers. In such case, these samples are
misallocated a label of source-private classes, which hinders the correctness of shared classes
identification. To solve this issue, we design an adaptive threshold (> 0) to recognize the
shared classes, i.e., one class is considered as shared class only when the number of samples
in it is larger than the threshold.

On the basis of excluding source-private classes, from Fig. 2b, we can observe that in the
shared classes, the distance from each target sample to its corresponding source class center
is significantly different and in the unsupervised setting of PDA the samples deviated from
source class centers are unable to provide convincing guidance for projection matrix learning.
As a result, how to alleviate the misleading of outlying target samples in shared classes
is another problem we concern. To tackle this issue, we introduce the self-paced learning
mechanism into our proposal. Specifically, we progressively involve target samples into the
process of subspace learning from easy to hard. The difficulty of the samples is determined
by the Euclidean distances from them to their corresponding source class centers. By such
self-paced strategy, we can obtain a projection matrix with higher quality.
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Based on the above introduction, in this paper, a novel PDA method based on Progressive
sample Learning of Shared Classes (PLSC) is proposed. The main contributions of this paper
are summarized as follows:

1. We propose a novel method to identify shared classes for PDA problem. Inheriting the
assumptions of separation and alignment in DA, in the projection subspace, we jointly
minimize the sum of the distances from both source and target samples to their corre-
sponding source class centers, and naturally design an adaptive threshold to determine
the shared classes.

2. Torelieve the misleading of deviated target samples in shared classes, we further introduce
the self-paced learning mechanism, which enables our PLSC to gradually add target
samples into the process of subspace learning from easy to hard. In this way, a projection
matrix with higher quality can be achieved.

3. Extensive experiments on Office31, Office-Home, ImageCLEF and Visda2017 datasets
are conducted, and the experimental results validate the superiority and effectiveness of
our method.

The rest of this paper is organized as follows. In Sect. 2, we review some works about
PDA and self-paced learning. Section 3 elaborates our PLSC, the optimization procedure
and complexity analysis. We conduct extensive PDA experiments in Sect. 4. Finally, Sect. 5
concludes this paper.

2 Related Works
2.1 Partial Domain Adaptation

Domain adaptation (DA) aims to transfer the knowledge from a well-labeled source domain
to an unlabeled target domain [1], which follows a different distribution. Existing DA
approaches can be grouped as three categories: instance reweighting [16, 17], feature adapta-
tion [5, 18] and classifier adaptation [2, 19]. The instance reweighting methods aim to assign
source samples with different weights based on their similarities with target samples, such
that the distribution shift between two domains can be reduced. The classifier adaptation
methods manage to adapt the classifier trained on source domain data to target domain data.
The feature adaptation methods are probably the most popular one. This kind of methods aim
to find a common feature space to reduce the distribution discrepancy between two domains.
Critically, conventional methods assume that the source and target domains share the same
label set, which may be violated in many practical applications. Recently, Cao et al. [§]
propose the partial domain adaption (PDA), where the source label set is large enough to
completely cover the target label set. Traditional DA methods could be vulnerable to negative
transfer in PDA due to the mismatch of label sets between the source and target domains [8].

One way to solve PDA problem is to decrease the influence of the source-private classes
and enhance the influences of the shared classes. For example, Cao et al. [20] develop a
class-level weighting mechanism to down-weigh the samples of the source-private classes.
Lietal. [13] propose the deep residual correction network to intrinsically address the inherent
problem in PDA and introduce a weighted class-wise alignment loss to identify the shared
classes. To entirely circumvent negative transfer, Wang et al. [21] detect and remove the
source-private classes progressively, and employ the label propagation algorithm to assign
the pseudo-labels for target domain data.
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Different from the above strategy to select source samples from class-level, Zhang et al.
[11] propose a sample-level weighting mechanism to recognize the source samples that are
potentially from the shared classes. Cao et al. [14] integrate the discriminative information
to quantify the transferability of source examples and down-weight the negative transfer of
samples from the source-private classes upon the source classifier and the domain discrimi-
nator. Wu et al. [22] design a deep reinforcement learning based source samples selector for
PDA, which owns the ability to automatically keep or filter out source samples based on their
feature representations.

Recently, to borrow the advantages of the class-level strategy and the sample-level strategy,
several works have integrated them to address the PDA problem. For instance, a reweighting
network is designed by Li et al. [23] to provide class-level weights for source samples
and sample-level weights for target samples. Kim et al. [12] propose to unify sample-level
transferability and class-level feature propagation to solve PDA problem, which is based
on adaptive graph adversarial networks, such that intra-domain and inter-domain structures
between data samples can be fully exploited.

Although the above weight based methods can achieve promising performance, all source
samples participate in the domain adaptation process. Consequently, the samples from source-
private classes can still make adverse impact for PDA. Different from these methods, our
PLSC aims to identify the shared classes and only uses the source samples within the shared
classes to train a classifier for assigning the target pseudo-labels, which can relieve the
negative transfer caused by the source-private classes. The SCS-LP method in [21] also
employs the similar idea. However, our PLSC is significantly different from it. First, we
employ a totally different strategy to learn the low-dimensional subspace. Specifically, SCS-
LP uses the supervised locality preserving projection technique, while our PLSC learns the
subspace under the guidance of general separation and alignment assumptions in DA [15],
which makes our PLSC more suitable for PDA problem. Second, our PLSC further considers
the noises in target data and designs an adaptive threshold larger than zero to identify the
shared classes, which is more practical and owns better generalization capacity. Third, PLSC
further introduces the self-paced learning mechanism, which can progressively select target
samples to learn a better low-dimensional subspace.

2.2 Self-paced Learning

The goal of self-paced learning (SPL) [24] is to gradually incorporate the training samples
from easy to hard to learn the model. This learning paradigm is inspired by the learning
process of humans that gradually include easy to complex samples into training [25]. Sup-
posing the training data is X = {(x1,y1), (X2, ¥2), - -, (Xu, ¥»)} and the training model is
f parameterized by 6, the general optimization problem of SPL can be stated as:

f;l’i‘;l;wilz(fo(xi)a%) +h(h, wy) (1

where L(-) is the loss function for the given problem. & (A, w;) denotes the SPL regulation
term, which is independent of L (-) and has various definitions according to different problems.
w = [wy, wy, -, wy]T represents the weight variable, and w; reflects the complexity of
sample x;. X is the learning pace to control the model age, which progressively increases to
incorporate more samples to the training process. When i (A, w;) = —Aw; and w; € {0, 1},
the optimization problem (1) degenerates into the hard-weight form, and we have:
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Table 1 Notations and descriptions

Notations Descriptions Notations Descriptions

X Source domain data X; Target domain data

X Data matrix for all samples 1pxq A p x g matrix with all elements as 1
ng Number of source samples ng Number of target samples

P Projection matrix m Dimension of the original space

d Dimension of the projected space H Centering matrix

Iy A d x d identity matrix Cs Number of source classes

y Shared classes set of two domains W ‘Weight matrix for self-paced learning
Y, Pseudo-labels of target samples R Class centroid of the c-th source class
n§ Number of source samples in class ¢ ny Number of target samples in class ¢

i iL i), Yi) — Aw;
I;}g;w (foxi),yi) — w o

s.t.w; €{0, 1}

When the model parameter @ is fixed, the optimal solution of problem (2) with respect to w;
is:

)L i L(fe(xi), ¥i) < A
w; = : 3)
0, otherwise.

In addition, with w fixed, the optimization problem (2) with respect to # becomes a weighted
loss minimization problem, which can be readily solved with the optimization algorithm for
the original problem.

SPL has been widely studied in recent years. Supancic et al. [26] apply SPL to the long-
term tracking tasks. Jiang et al. [27] consider to employ the prior information and develop
a self-paced curriculum learning framework. To avoid the standard SPL to suffer from the
class imbalance issue, Ren et al. [28] propose two novel soft-weighting schemes, which can
assign weights and select samples locally for each class. Meng et al. [29] prove that solving
the optimization problem of SPL in an alternative way is equivalent to solving a roust loss
minimization problem via a majorization-minimization algorithm, which helps to provide a
theoretical understanding for SPL. Different from the above works which obtain the weights
of samples from losses, Shu et al. [30] propose to learn a weighting function directly based
on deep neural networks. SPL has shown excellent performance in various tasks, such as
feature selection [31, 32], clustering [33, 34] and person re-identification [35, 36].

3 Proposed Method

In this section, the notations frequently used in this paper and their descriptions are first intro-
duced. Then, we describe our proposed method in detail. Next, the optimization procedure
of our proposal is shown. Finally, we provide the complexity analysis about our method.
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3.1 Notations

In this paper, we focus on the unsupervised PDA problem. There exists two domains in PDA
including the well-labeled source domain and the unlabeled target domain. We denote the
source domain data as Dy = {Xs, ys}l_ 1» Where x’s e R"*ljsa sample of source domain
and its label is ys, and n; denotes the number of source samples. The target domain data
are denoted as D, = {x,}l_], where x§ e R”*! represents a sample in target domain, and
n; denotes the number of target samples. The matrix notations of source and target data are
denoted as X; € R™ " and X; € R"™*™ respectively. In PDA, the source label set is a
subset of target label set. In Table 1, we summarize the frequently-used notations and their
descriptions.

3.2 Problem Formulation

Our proposed PLSC contains two main parts: (1) shared classes identification, (2) progressive
target sample learning. The proposed shared classes identification method includes three
items: source samples separation, target samples alignment and shared classes identification
with adaptive threshold. Next, we will introduce our PLSC in detail.

Source samples separation: In DA, there is a general separation assumption that the
source data or the target data are discriminatively clustered in a suitable feature space [15].
Intuitively, for well-labeled source samples, it is expected to thoroughly exploit the precious
discriminative information to make source samples well-separated. To achieve this goal, we
propose to project the source data into a low-dimensional subspace where the sum of the
distance from each source sample to its corresponding class center is minimized. To this end,
the objective function of source samples separation can be written as [38]:

. Cs Toi T o2 T T
ml;nZC:l > P =Py |3 = min tr(PTX, L, X[ P) @

xieD¢

where P € R”*¢ is the projection matrix, D¢ denotes the source samples in the c-th class, (¢
represents the corresponding class centroid and Ly = I — Y (Y;FYX)_IYST. C, is the number
of source classes. Y € R”s*Cs denotes the label matrix of source samples with each element
defined as (Yy);; = 1 if y§ = j,and (Y,);; = 0 otherwise.

Target samples alignment: DA usually assumes that in an appropriate space, the clusters
corresponding to the identical class in two domains are geometrically close, which is known
as alignment assumption [15]. Then, it is expected to make the clusters of two domains with
respect to the same class be aligned closely. For this purpose, we propose to minimize the
sum of distance from each target sample to its corresponding source class center for the
low-dimensional subspace learning. In light of this, the objective function of target samples
alignment can be formulated as:

: T i T 2
mﬁnz Z P x; — P pclly
c€¥ xieD¢
= mmZ > @XEDTP - PTX{uIP — PTo(x) P + PT el P)
cey X} ED‘
= ml;n r(PTX,XP) — w(PTX,ATSTBTXTP)

(&)

— tr(PTX;BSAXTP) + tr(PTX;BSAATSTBTXP))
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where ) is the shared classes set of two domains, Dy denotes target samples in the c-th class,
which is defined based on the pseudo-labels of target samples. In our experiments, we use a
linear SVM! classifier to initialize the pseudo-labels of target samples. We denote C; = ||
and the pseudo-label of target sample xf as S?; Then, S € RS *C7 is a shared class indicator
matrix, whose each element is R;; = 1 if the i-th source class is the j-th shared class, and
R;j = 0 otherwise. A € RE1*M g defined as Aj =1 ifj?f = j,and Aj; = 0 otherwise.
B € R™*Cs is a constant matrix and each entry is calculated as Bjj = ni( if yi = j, and
B;j = 0 otherwise, where n{ is the number of source samples in the c-th clsass.

Shared classes identification with adaptive threshold: In the ideal case, by combining
Eq. (4) and Eq. (5), we can learn a suitable subspace where the separation and alignment
assumptions can be well-satisfied simultaneously. In other words, after projecting the data
of two domains into the subspace constructed by P, we can utilize the source samples to
train a standard classifier, e.g., SVM, to assign pseudo-labels for target samples. Ideally, the
pseudo-label set is ought to keep consistent with the ground-truth shared label set. However,
in practice, noises can be inevitably included in target data, which may make some samples
deviate from the source class centers. As a result, these samples would be misclassified into
source-private classes, which may cause the wrong identification of shared classes. To solve
this issue, we propose an adaptive threshold strategy that first counts the number of target
sample for each source class, and then determines a class to be one of the shared classes if
the corresponding number is larger than an adaptive value y * n,/C. Finally, we can obtain
the following formulation:

Y={cln;>yxn/Cs} (6)

where n¢ is the number of target samples in the c-th class. In our experiments, we set the
hyper-parameter y = 0.8 for all cases.

To obtain a better performance, we alternately learn the low-dimensional subspace and
identify the shared classes until convergence. Specifically, after identifying the shared classes,
we reuse the labeled source data of all classes and pseudo-labeled target data of shared class
to update projection matrix P. And then, the shared classes ) are determined by Eq. (6). In
the iteration process, as shown in Eq. (5), we involve all target samples of shared classes
for subspace learning. However, in practical applications, the distances of target samples to
their corresponding source class centers are significantly different. The subspace learning
step may be misled by the target samples deviated from the source class centers. To tackle
this issue, in the following, we further propose to learn target sample progressively.

Progressive Target Sample Learning: We borrow the advantage of self-paced learning
mechanism and gradually include the target samples into the low-dimensional subspace
learning process. We determine the difficulty of target samples by the Euclidean distances
between them and their corresponding source class centers. For the sake of simplicity but
without loss of generality, we adopt the hard-weight form for self-paced learning, i.e., the
weight is 0 or 1. Then, based on Eq. (5), the objective function of progressive target sample
learning can be stated as:

min PTxi — PT ) Wii||% — AW
P,WZ Z IIC X; He) ll”F ii
ceVxieDf

= {)nivlvl(tr(PTx, WWIXP) — c(PTX, WWTATSTBTXTP)

1 https://www.csie.ntu.edu.tw/~cjlin/liblinear/.
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—tr(PTX;BSAWWTXTP) + tr(PTX;BSAWWTATSTBTX, P))
sit. Wi €{0,1} )

The Overall Formulation of PLSC: To avoid overfitting, we futher impose an F-norm
regularization term ||P||%p on the projection matrix P. So far, by combining Eq. (4), (7) and
||P||%,, we can get the final formulation of our proposed PLSC:

Cs
. T i T 2
min E E P —P .
PWY Il " Mc”p

c=1xieD¢
T i T 2 2 ®)
Fa | Yo D I®TX =P u)Wlly — AW | + BIPIE
c€¥ xieD¢
s.t. PTXHXTP =1,;, W;; € {0, 1}
where X = [X{, X;] is the data matrix for all source samples and target samples. H
is centering matrix defined as H = I, 1, — ﬁl(nﬁ_,,r)x(ns_,_n[). o and B are hyper-

parameters. The first constraint is inspired from principal component analysis, which
aims to maintain the data property in the projected feature space [5]. We denote L. =
L; + «BSAWWTATSTBT —o¢BSAWWT
—aWWTATSTBT aWWT
reformulated as:

], and then the optimization problem (8) can be

Juin w(PTXLXTP) +a 3 3T Wi + IPI;
ce¥xieDg ©)
s.t. PTXHX™P =1, W;; € {0, 1}

Kernelization: Similar to [5, 18, 37], the proposed PLSC approach can be extended for
solving nonlinear problems through kernelization. Suppose the kernel mapping is ¢ : x —
¥ (x), and then using the kernel tricks, we can obtain the kernel matrix of all samples, i.e.,
K = y XDy (X) e RUsTm)x(s+m) Following [5, 18, 37], the nonlinear version of our
proposal can be written as:

. T T AW 2
Pfrvlé?ytr(P KLK™P) +a ) Z AWii + BIP|I%
ceVxieDf (10)
s.t. PTKHK™P = 1,;, W;; € {0, 1}
It is worth noting that optimization problem (10) and optimization problem (9) have the same

formulation, which means they can be solved with the same optimization algorithm. Next,
we will describe the detailed optimization procedure for problem (9).

3.3 Optimization Procedure

In the objective function of our PLSC in Eq.(9), we need to optimize three variables P, W
and Y. As the objective function is not jointly convex for all variables, we update each of
them alternatively while taking the other variables as constants. Specifically, we solve each
subproblem as follows:
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Algorithm 1: The Optimization Procedure of PLSC
Input: Source domain data {xf;, y_f:}?; 1> Target domain data {xi}?’: 1: Hyper-parameters «, 8 = 0.01;
Subspace dimension d; Initial proportion pg = 0.5; Proportion increasing rate n = 0.1;
Maximum iteration 7 = 10.
Output: Target pseudo-labels Y, ; Projection matrix P.
Initialize: Initialize target pseudo-labels Y; with a linear SVM classifier in the original space and
initialize the shared classes ) by (6); Initialize A in the original space by (15) and W by (14).
t=1;
while 7 < T do
/I Projection matrix P
Update P by solving (12);
/] Assign target pseudo-labels
Train a linear SVM classifier on the source samples within the shared classes };,_1 and use it to
update target pseudo-labels;
/I Shared classes identification
Identify the shared classes ) according to (6);
/! Update self-paced learning parameter
Update proportion p; by (16) and calculate its corresponding self-paced learning parameter A by
s);
/] Weight matrix W
Update weight matrix W by (14);
t=t+1;
end

Return Target pseudo-labels ' Projection matrix P.

P-subproblem: When W is took as a constant matrix and ) is fixed, we have the following
subproblem:

min tr(PTXLX"P) + B|P|%
P (11
s.t. PIXHX™P = 1,

We can readily transform the above optimization problem to a generalized eigenvalue
problem as follows:

XLX" + B1,,)P = XHX'P® (12)

where ® = diag(¢1, ¢2, -+, Pq) € R9%d jgq diagonal matrix and each diagonal element is
a Lagrange Multiplier. Then, we can obtain the optimal P by computing the eigenvectors of
(12) regarding the d-smallest eigenvalues.

Y-subproblem: In the projection subspace constructed by P, we first train a linear SVM
classifier on the source samples within the shared classes ;1 and use the classifier to assign
pseudo-labels for all target samples. Then, we can update the shared label set ); according
to (6).

W-subproblem: When P and ) are fixed, the problem (9) becomes:

min > D @ = PruoWillh — 2 Wii, Wi € (0. 1) (13)
€Y xieDs
Denote [; = ||PTX§ —PTu, |2, then the optimal weight for each sample is:

1, ifl; <AAce),
Wi = Hhi=nneey (14)
0, otherwise.
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The parameter A controls the learning pace of new target examples, which usually iteratively
increases during optimization.

Update self-paced learning parameter A: We set A to guarantee that p, % n, easy target
samples are selected, where p; is the proportion in the 7-th iteration. In this iteration, we
can calculate the Euclidean distance d; of each target sample xf to its corresponding source
class center in the low-dimensional subspace. Then, we can sort these distances from small

to large. Denote the sorted distances as d! ., d2 ., -, di . and we have:
A= d:‘(gfr(Pt*”I) (15)

where floor(-) is the round toward negative infinity function in MATLAB, which rounds
the input to the nearest integer less than or equal to the input. At last, the update of self-
paced learning parameter X is transformed to update the proportion p in each iteration by the
following function:

pr=min(p—1 +1, 1) (16)

where 7 denotes the proportion increasing rate.

We use a linear SVM! to assign the pseudo-labels for target samples. We initialize the
proportion to 0.5, i.e. pp = 0.5, and set the proportion increasing rate n = 0.1. Algorithm 1
summarizes the optimization procedure of PLSC.

3.4 Complexity Analysis

The optimization Algorithm 1 contains two main parts, project matrix learning and learning
pace parameter updating, within 7 iterations. Note that the time cost to assign target pseudo-
labels by a linear SVM is ignored as it can be very fast. Concretely, constructing problem
(11) costs O(nsntz) and obtaining the projection matrix P occupies O@m2d). Calculating
the distances of target samples to the source clusters and sorting the distances to update
the learning pace parameter A needs a time cost of O(nlzlog(n,)). Therefore, the overall
computational complexity is O(Tmzd + Tnsnt2 + Tntzlog(n,)).

4 Experiment and Analysis

In this section, we first illustrate the four benchmark datasets used for evaluation. Then,
the details of the experimental setup including comparison methods, parameter setting and
evaluation metric are described. Next, we show the experimental results of PDA. Finally,
several analytical experiments are further conducted to understand our method more deeply.

4.1 Datasets and Descriptions

We evaluate the performance of our method and other methods on four widely used public
datasets in PDA: Office31 [39], Office-Home [40], ImageCLEF2 and Visda2017 [41]. We
summarize the overall descriptions of these datasets in Table 2. For simplicity, in our exper-
iments, each PDA task is denoted by S — T, where S represents the source domain and T is
the target domain. Next, we will introduce these datasets and the corresponding PDA tasks
in detail.

2 http://imageclef.org/2014/adaptation.
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Table 2 Statistics of the four benchmark datasets

Datasets Subsets (Abbr.) Samples Classes
Office31 Amazon (A) 2,817 31
DSLR (D) 498
‘Webcam (W) 795
Office-Home Art (Ar) 2,421 65
Clipart (Cl) 4,379
Product (Pr) 4,428
RealWorld (Re) 4,357

ImageCLEF ImageNet ILSVRC2012 (I) 600 12
Caltech-256 (C) 600
Pascal VOC2012 (P) 600

Visda2017 train (T) 152,397 12
validation (V) 55,388

Office31 [39] includes 4,110 images with 31 classes. These images are collected from three
domains: Amazon (A), DSLR (D) and Webcam (W). Amazon domain downloads images
from the online merchants. DSLR domain obtains images by a digital SLR camera while
Webcam domain captures images by a web camera. In our experiments, we employ the
Resnet50 features® provided by [42], which are extracted by a Resnet50 model [43] pre-
trained on ImageNet. Following [20], we use all 31 classes for source domain and 10 classes
shared between Office31 dataset and Caltech-256 dataset [44] for the target domain. We have
six PDA tasks, i.e., A—D, A—W, ---, W—D.

Office-Home [40] consists of 15,585 object images in 65 categories from four domains:
Art (Ar), Clipart (Cl), Product (Pr) and RealWorld (Re). Images of Art domain are artistic
description of objects. Clipart domain contains clipart images. Images of Product domain
have no background. RealWorld domain obtains images by a regular camera. Similar to [20],
we utilize the Resnet50 features® in our experiments. Besides, the source domain contains
images of all 65 categories, while the target domain includes the images of the first 25
categories in alphabetical order. Finally, we can obtain twelve PDA tasks, i.e., Ar—Cl,
Ar—Pr, ---,Re—Pr.

ImageCLEF? dataset is first presented in the ImageCLEF Domain Adaptation challenge,
which is held in 2014. This dataset contains three different domains: ImageNet ILSVRC2012
(I), Caltech-256 (C), and Pascal VOC2012 (P). Each of the three domains has 12 classes and
each class consists of 50 images. Following the previous work [45], for each PDA task, the
source domain includes all 600 images and the target domain contains the images of the first
six 6 classes in alphabetical order. In our experiments, similar to [45], we utilize the Resnet50
model* pretrained on ImageNet to extract the Resnet50 features. Finally, six PDA tasks are
established, including I-C, I-P, -- -, P—>C.

Visda2017 [41] is first released in the 2017 Visual Domain Adaptation Challenge. This dataset
is made up of large number of synthetic images and real images. Specially, the training data
has 152,397 synthetic images while the validation data has 55,388 real images. Following

3 https://github.com/hellowangqian/domainadaptation-capls.

4 https://github.com/jindongwang/transferlearning/tree/master/code/feature_extractor/for_image_data.
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[20], each of the training data and validation data can form a domain, which is abbreviated as
T and V, respectively. The resnet50 features® provided by [4] are employed for experiments.
Like [20], images of all 12 categories comprise the source domain, while the first 6 categories
in alphabetical order do the target domain. In our experiments, we have two PDA tasks, T—V
and V—>T.

4.2 Experimental Setup

Comparison Methods: The proposed method is compared with several PDA methods includ-
ing:

e PADA, Partial Adversarial Domain Adaptation [20], which identifies source-private
classes and down-weighs their importance based on label predictions of target samples.

e ETN, Example Transfer Network [14], which introduces a progressive weighting strategy
to quantify the transferability of each source instance based on its similarity to target
domain.

e SAN, Selective Adversarial Network [8], which selects the source-privates classes based
on the output of C; class-wise domain discriminators.

e DRCN, Deep Residual Correction Network [13], which plugs a residual block into a
unified network to further capture the feature discrepancy and develops a weighting
scheme to identify the shared classes.

e AGAN, Adaptive Graph Adversarial Networks [12], which designs a class-relational
graph module to achieve structure-aware domain alignments and a sample-level com-
monness predictor to compute the commonness for each sample.

e RTNet,sy, Reinforced Transfer Network with the the reinforced data selector into the
domain-adversarial training of neural networks [46], which employs the selector to filter
out the source-private classes and introduces a state containing high-level information to
select sample.

e DMP, Discriminative Manifold Propagation [45], which employs the manifold align-
ment and discriminative embedding to learn domain-invariant features and develops a
weighting scheme to alleviate negative transfer from the source-private classes.

e SCS-LP, Source Class Selection with Label Propagation [21], which progressively detects
and excludes the source-private classes, and employs the label propagation to assign the
target pseudo-labels.

e DRL-DS, Deep Reinforcement Learning based source Data Selector [22], which utilizes
a deep reinforcement learning based source data selector to eliminate the source samples
from the source-private classes.

Parameter Setting: In current PDA task, target ground-truth labels are unavailable, thus a
standard cross-validation procedure can not be performed to select the optimal parameters.
For each comparison method, for fairness, we directly cite the results from the original
paper. In our methods, there are four hyper-parameters: «, 8, y and d. We fix g = 0.01,
y = 0.8 for all datasets, leaving « and d tunable. We obtain the optimal parameters by
searching o € {0.5,1.0,2.5} and d € {50, 100, 150, 200}. We also provide the optimal
parameters used in this paper for PDA task: Office31 (o« = 2.5, d = 50), Office-Home
(¢ = 1.0, d = 150), ImageCLEF (@ = 1.0, d = 50) and Visda2017 (¢ = 2.5, d = 200).
In our experiments, we use the kernel version of our PLSC on Office31, Office-Home and

5 https://github.com/LeiTian-qj/CMMS/tree/master/data/Visda2017.
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Table 3 Accuracy (%) of all methods on Office31 dataset

Task PADA ETN SAN DRCN AGAN RTNet,gy DMP DRL-DS SCS-LP PLSC

A—D 82.2 95.0 943  86.0 94.3 97.6 96.4  96.0 100.0 100.0
A—>W 86.5 945 939 885 97.3 96.2 96.6  96.6 99.0 99.3
D—A 92.7 96.2 951 95.6 95.7 92.3 95.1 954 94.3 96.0
D—>W 99.3 1000 993 100.0 1000 100.0 100.0 100.0 100.0 100.0
W—A 95.4 946 887 958 95.7 95.4 954 953 95.4 96.6
W—D 1000 100.0 994 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Average  92.7 96.7 950 943 97.2 96.9 972 972 98.1 98.7

ImageCLEF datasets, and Gaussian kernel with kernel width 1.5 is adopted. On Visda2017
dataset, we use the original version due to limited memory space.

Evaluation Metric: Similar to many previous PDA methods [13, 20], we adopt the accuracy
of target samples as the evaluation metric, which can be computed by:
[x:xeX;Ny=y|

accuracy = X xeX | (17
: t

where x is a target sample with the ground-truth label as y, and y is the label obtained by the
proposed PDA method.

4.3 Experimental Results

Results on Office31 Dataset: The experimental results of all methods on Office31 dataset
are displayed in Table 3. In Table 3, the highest accuracy for each task is boldfaced. As we
can see, our proposal achieves 98.7% average classification performance, which leads the
best competitor SCS-LP by 0.6%. Besides, our method works the best for five out of all six
tasks. It is worth noting that the second best method SCS-LP does not perform better than
our approach on any task. The above results can illustrate the superiority of our method over
the counterparts.

Results on Office-Home Dataset: We summarize the classification results of all methods
on Office-Home dataset in Table 4. We can observe that our proposal is superior to all
competitors with respect to the average classification accuracy. Specifically, our method
owns 1.2% improvement against the best competitor SCS-LP in average performance. Our
method is the best one for six out of all twelve tasks, while the best competitor SCS-LP only
wins three tasks. These results confirm the significant effectiveness of our proposal.

Results on ImageCLEF and Visda2017 Datasets: The classification performances of sev-
eral competitors and our PLSC on ImageCLEF dataset and Visda2017 dataset are displayed
in Table 5. As we can see, on ImageCLEF dataset, our PLSC is the best method on five out
of all six tasks and leads the best competitor DMP by 1.8% in average performance, which
demonstrates the superiority of our method. Besides, on Visda2017 dataset, our proposal
wins both tasks and owns 4.4% improvement over the second best method AGAN in terms
of the average accuracy. This phenomenon indicates that our PLSC has excellent capability
to deal with PDA tasks with massive samples.
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Table4 Accuracy (%) of all methods on Office-Home dataset

Task PADA ETN SAN DRCN AGAN RTNet,gy DMP DRL-DS SCS-LP PLSC

Ar—Cl 520 592 444 540 56.4 63.2 59.0 61.0 65.0 63.2
Ar—Pr 670 710 687 764 713 80.1 812  80.8 81.2 85.7
Ar—Re 78.7 795 746 830 85.1 80.7 863 845 90.0 91.6
Cl-Ar 522 629 675 621 74.2 66.7 68.1 755 70.0 72.1
Cl—-Pr 538 65.7 650 645 73.8 69.3 728 758 81.7 80.2
Cl-Re 59.0 750 778 710 81.1 772 78.8  80.1 81.7 82.7
Pr—Ar 526 683 598 708 70.8 71.6 712 76.0 70.2 78.7
Pr—Cl 432 554 4477 498 515 539 576  60.1 554 56.1
Pr—Re 78.8 84.4 80.1 80.5 84.5 84.6 849 834 82.8 86.0
Re—Ar 737 757 722 715 79.0 714 713  79.0 79.2 76.6
Re—Cl 56.6 57.7 502  59.1 56.8 579 615 643 60.3 58.9
Re—Re 77.1 845 787 799 83.4 85.5 829 832 87.4 87.6
Average 62.1 70.5 653 69.0 72.8 72.3 735 753 75.4 76.6

Table 5 Accuracy (%) of several methods on ImageCLEF and Visda2017 datasets

Method [-C I-P C—I C—P P—I P—C Average Method T—V V—T Average

PADA 946 81.7 898 7717 82.1 94.1 88.3 PADA 535 76.5 65.0
SAN 959 81.6 904 785 911 97.1 89.1 DRCN 582 732 65.7
DMP 96.7 824 943 787 945 964  90.5 AGAN 67.7 80.5 74.1

PLSC 983 850 963 780 973 990 923 PLSC 74.9 82.2 78.5

4.4 Analytical Experiments

In this section, several experiments are further conducted to pursue deeper understanding for
our proposed PLSC approach.

Effectiveness of self-paced learning: In our approach, we employ the SPL to gradually
select target samples for training. To verify the effectiveness of SPL, we propose a variant of
our proposal, which Removes the SPL. mechanism and always trains the model with all target
samples (PLSC;s). The results of our PLSC and the variant PLSC, are shown in Table 6. As
we can see, PLSC performs better than PLSC; on all four datasets, which demonstrates the
effectiveness of SPL. By introducing the SPL, our method can gradually select easy target
samples, which can provide more convincing guidance for projection matrix learning, and
thus boosting the performance of PDA.

The consistency between identified shared classes by our method and the ground-truth
shared classes: In our PLSC, we design an adaptive threshold to identify the shared classes.
In Table 7, we display the shared classes identified by our method and the real shared classes
on task W—A, Cl—Re, I-P and T— V. We can see on task W— A, the identified shared
classes and the real shared classes are the same. On task Cl—Re, the identified classes do
not include the 12-th and the 16-th classes while contain an addition class. On task I—P,
compared with the real shared classes, the identified classes contain one other class. On task
T—V, the identified shared classes do not contain the 6-th class and have two others. As we
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Table 6 Average classification -
Office31 Office-H I CLEF Visda2017
accuracy (%) of PLSCys and ce ce-Home mage 1aa
PLSC on four datasets PLSCrg 96.1 753 91.7 73.2
PLSC 98.7 76.6 92.3 78.5

Table 7 The shared class numbers of the two domains selected by our method and the real shared class
numbers on task W—A, Cl—-Re, [P and T—>V

Task D—A Cl—Re I->P T—-V
Selected 1,2,6,11,12,13,16,17,18,23 1-11,13-15,17-25,30 1-6,12 1-5,8,9
Real 1,2,6,11,12,13,16,17,18,23 1-25 1-6 1-6

Table 8 Average classification accuracy (%) on Office31 dataset with varying p (p € {0.2,0.3,---,0.8})
and n (n € {0.02,0.04, ---,0.2})

0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20

0.2 95.6 96.2 97.0 97.6 98.5 97.9 98.5 97.4 97.7 97.7
0.3 96.1 96.6 91.7 97.5 98.5 98.5 97.6 96.9 97.0 98.2
0.4 96.3 97.3 97.8 97.0 98.6 97.9 972 97.8 97.1 97.6
0.5 96.4 97.1 97.8 98.7 98.7 97.4 97.8 97.3 97.3 97.1
0.6 96.8 91.7 975 97.8 98.6 975 97.2 97.5 97.2 97.2
0.7 96.9 96.7 96.9 96.9 96.9 97.0 96.4 96.1 96.2 96.0
0.8 95.5 95.6 95.7 95.2 95.1 94.7 94.7 94.6 94.4 94.6

see, the shared classes identified by our method have little difference with the real shared
classes. The above results verify that even in an unsupervised manner, our method owns a
great potentiality to identify the real shared classes, which validates the effectiveness of our
method.

Influence of initial proportion and increasing rate when involving target samples pro-
gressively: In this part, we investigate the sensitivity of initial proportion p and increasing
rate 1 in Algorithm 1. To be specific, we fix other parameters and vary p in the range of
{0.2,0.3,---,0.8} and 7 in the range of {0.02, 0.04, - - - , 0.2}. The average classification
accuracy on Office31 dataset are summarized in Table 8. Carefully looking at this table, we can
observe that we can obtain a relative good average performance when setting p € [0.2, 0.6]
and n € [0.06, 0.12]. In addition, the results of this table also verify the effectiveness of SPL,
since the majority of the average classification accuracies are higher than that of PLSC in
Table 6 (i.e., 96.1%). Actually, we set p = 0.5 and n = 0.1 in this paper. It is worth noting
that in our PLSC, we set the parameter A controlling the learning pace to ensure that p * n;
samples are selected. Specifically, we can sort the distances of target samples to their source
clusters from small to large and set A to the value of the floor(p * n;)-th largest distance,
where floor(-) is the round toward negative infinity function in MATLAB. The formulation
to update A is (15).

Impact of varying number of target classes: To verify the effectiveness of our method with
varying number of target classes, we select task Cl—Pr and compare the performances of our
method and the best competitor SCS-LP on this task. We show the results in Fig. 3, where the
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Fig.3 Classification accuracy with varying number of target classes

Table 9 Average accuracy (%) of PLSC with differenet kernels on Office31, Office-Home and ImageCLEF
datasets. o represents the width of gaussian kernel

kernel Office31 Office-Home ImageCLEF Avearage
linear 96.1 73.0 922 87.1
gaussian (o = 1.0) 97.4 73.8 92.2 87.8
gaussian (o = 1.25) 97.9 75.0 922 88.4
gaussian (o = 1.5) 98.7 76.6 92.3 89.2
gaussian (o = 1.75) 97.7 75.6 92.6 88.6
gaussian (o = 2.0) 97.6 75.5 924 88.5

number of target classes is set to {5, 15, 25, 35}. Besides, the results of SCS-LP are obtained
by running the public codes with default parameters. We can see that our PLSC consistently
outperforms SCS-LP when the number of target classes is smaller than 35. Besides, it is
observed that our PLSC is more effective for PDA when the label mismatch between two
domains is larger.

Influence of kernels configuration: In our experiments, we use the gaussian kernel with
1.5 on Office31, Office-Home and ImageCLEF datasets. In this part, we further conduct
experiments to explore the influences of kernels on the performance of our PLSC. Specifically,
we run our PLSC with linear kernel and gaussian kernel with different kernel widths. These
two kinds of kernel are widely utilized by previous domain adaptation works [5, 18, 38]. In
Table 9, we summarize the average accuracies of PLSC with different kernels on Office31,
Office-Home and ImageCLEF datasets, where o represents the width of gaussian kernel. As
we can see, the gaussian kernel with ¢ = 1.5 achieves the highest average performance.
Thus, we choose this kernel in our experiments.

Parameter sensitivity and convergence analysis: In our PLSC, there exists four parame-
ters: d, a, f and y. We have conducted extensive experiments to investigate the sensitivity of
the four parameters. Specifically, we vary one parameter once in a wide range with the other
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parameters fixed as the optimal values. The results of task W— A, Cl—-Re, [P and T—>V
are displayed in Fig. 4a—d, where the results of the best competitor for each task are also shown
as the dash lines. First, we run our PLSC as d varies d € {25, 50, - - - , 250}. From Fig. 4a,
we can find that our PLSC can perform consistently better than the corresponding best com-
petitor when d is located within a wide range [50, 250]. Next, we investigate the influence of
a by varying it in a wide range [0.001, 0.01, 0.1, 0.5, 1.0, 1.5, 2.0, 2.5, 5.0]. Theoretically, a
small o will make the target samples to source clusters progressively minimization term less
ineffective. In such case, each target sample is not near to its corresponding source cluster,
which hinders the correctness of target pseudo-labels assignment. By contrast, a large o will
dominate the objective function and the source within-class scatter minimization is not per-
formed. Then, the source samples can not be well cluster, which can also effect the accuracy
of target pseudo-labels assignment. We empirically observe that when « is located in a rea-
sonable range, i.e., o € [0.2, 2.0], our PLSC can be superior to the best competitor. Then, we
explore the influence of S by setting 8 € [0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1.0, 5.0, 10.0].
As we can see from Fig. 4c, it is infeasible to determine the optimal value of S, since it
highly depends on the domain prior knowledge of the datasets. However, we empirically find
that,when g is located within the range [0.005, 0.5], our PLSC can obtain better classification
results than the most competitive competitor. Next, we vary the value of y from 0.0 to 1.8
to evaluate its influence. Theoretically, as a result of the noises containing in target data, too
small values of y will make some source-private classes to be identified as shared classes,
which causes negative transfer. By contrast, too large values of y will hinder some real shared
classes to be identified as shared classes. A proper value of y helps to identify the shared
classes more accurately, thereby improving the performance of partial domain adaptation.
From Fig. 4d, we can discover that y € [0.2, 0.8] is an optimal choice. In our experiments,
to avoid tuning too many parameters, we fix § = 0.01 and y = 0.8 for all tasks. Finally, we
depict the convergence analysis in Fig. 4e, where the maximum iteration number is set to 15.
It is observed that the proposed method can quickly converge within 10 iterations.
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5 Conclusion

In this paper, we propose a novel method named PLSC for solving PDA problem. In PLSC, we
borrow the idea of separation and alignment assumptions in DA to identify the shared classes.
To instantiate these two assumptions, we propose to minimize the sum of the distances from
both source and target samples to their corresponding source class centers. Considering the
fact that in practical applications the noises in target data may result in wrong identification
of shared classes, we design an adaptive threshold strategy to determine the shared classes.
Additionally, to relieve the misleading of target samples that deviate from their corresponding
source class centers, we further introduce the self-paced learning mechanism into our PLSC
to progressively select target samples for projection matrix learning. Extensive experiments
on Office31, Office-Home, ImageCLEF and Visda2017 datasets validate the superiority of
our method against the current PDA methods. In the future, we will manage to apply our
strategy to deep learning scenario and elaborately design an end-to-end method.
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