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ABSTRACT

In recent years, the feature-based point cloud registration
methods have attracted more attention. However, most ex-
isting methods focus on extracting features with strong anti-
interference ability from a single point cloud while neglecting
the differences within point cloud pairs. In this paper, unlike
these methods treating each point cloud independently, we
instead consider the information between point cloud pairs
when extracting features. Specifically, we propose a cross-
attention-based network for modeling the correlation between
a pair of point clouds, where a 3D cross-attention mechanism
is proposed and combined with 3D convolution elegantly for
feature extraction. The extracted features achieve better ro-
bustness under various conditions, such as rotation and trans-
lation changes. Then accurate point cloud registration is
achieved by matching these features. Experimental results
on 3DMatch dataset show that the proposed method achieves
state-of-the-art performance on feature matching and point
cloud registration tasks compared with the previous feature-
based methods.

Index Terms— Point cloud registration, Feature extrac-
tion and matching, Cross-attention, 3D convolution network

1. INTRODUCTION

The goal of point cloud registration is to find an optimal
transformation to match two given partially overlapped point
clouds with unknown point correspondences. It is an ex-
tremely important task in many applications of computer vi-
sion and mobile robots, such as simultaneous localization and
mapping (SLAM) [1] and 3D reconstruction [2]. Recently,
with the rapid development of 3D local features [3, 4, 5, 6, 7],
feature-based point cloud registration has attracted more at-
tention. The state-of-the-art feature-based pipelines for point
cloud registration consist of local feature extraction, feature
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matching, and outlier rejection. From these we can find
that the fundamental task is to build feature correspondence
through feature extraction and matching.

The typical procedure of feature extraction and matching
methods is: first a descriptor is generated with varying de-
grees of invariant to rotation, translation and density [4, 3]
of each point or keypoint in the point cloud, and then these
descriptors are matched between point clouds by comparing
descriptors exhaustively.

Previous algorithms learn descriptors for each point cloud
without considering knowledge of the other point cloud.
Therefore, in order to make the algorithm more robust, the
extracted descriptors need to be strongly invariant to various
changes, such as rotation and density changes. However, with
the increasing invariance of descriptors, their discriminability
decreases, which limits the accuracy of feature matching in
point cloud. Instead, in this paper, we abandon the previous
way and calculate the descriptors considering information on
both point clouds, which allows the descriptors to be changed
based on the differences between the point clouds.

Motivated by [8] in 2D image matching, we propose a
novel network (CAFeat3D) to learn the descriptors consider-
ing information on both point clouds and enhance the discrim-
inability of the learned descriptors under the circumstance of
matching these two point clouds. Considering that D3Feat
[3] utilizes KPConv [9], a convolution operation on 3D point
cloud, as backbone network and achieves state-of-the-art per-
formance in 3D feature extraction, we also adopts KPConv
to build our backbone. Firstly, a U-Net like network devel-
oped for single point cloud feature extraction is implemented.
Secondly, an identical encoder module of previous U-Net like
network and an cross-attention-based module proposed by us
are embedded in the previous U-Net like network, which can
effectively provide the information of another point cloud for
the original U-Net like network. Finally, circle loss [10] and
detector loss in [3] are utilized to train our network. Com-
pared with D3Feat [3], the proposed CAFeat3D achieves bet-
ter performance with almost the same number of parameters.

To summarize, our contributions are as follows:



• We propose a novel network to learn the features con-
sidering information on both point clouds in point cloud
pairs. To our best knowledge, our work is the first at-
tempt to realize feature matching between point clouds
by considering differences within the point cloud pair.

• An cross-attention-based module is proposed to lever-
age differences between a point cloud pair.

• Quantitative experimental results of both feature
matching and point cloud registration on public
datasets show that our framework presents the superior
performance over the previous methods.

The rest of this paper is organized as follows. The related
work is reviewed in Section 2 and the details of CAFeat3D are
described in Section 3. Experiments are presented in Section
4, followed by conclusion in Section 5.

2. RELATED WORK

2.1. Point Cloud Registration

Traditional algorithms of point cloud registration have been
reviewed in [11]. In traditional algorithms, Iterative Closest
Point (ICP) [12] is one of the most popular algorithms for its
good performance. However, ICP-based methods is prone to
fall into wrong local minimum when without good initializa-
tion. Recently, learning-based registration algorithms have at-
tracted more attention. The learning-based 3D features, such
as 3DMatch [6], FCGF [4] and D3Feat [3], have strong fea-
ture description ability, which make feature-based point cloud
registration more robust. In addition, end-to-end networks for
registration, such as PointNetLK [13] and RP-Net [14], have
been proposed. However, their robustness needs to be im-
proved in complex scenes [15].

2.2. 3D Features

3D features include 3D local descriptors and keypoints, which
are extremely important in point cloud registration.

For 3D keypoint detection, most existing methods are
hand-crafted. These alogrithms like Harris3D [16] and ISS
[17] utilize local geometric properties of point clouds to de-
tect keypoints. Recently, to make the learning-based detector,
Li et al. [18] proposed USIP, an unsupervised network, to
learn keypoint detector, which can detect keypoints with high
repeatability and accurate localization from 3D point clouds.

For 3D local descriptors, early methods are mainly hand-
crafted such as FPFH [19], which describes the local geom-
etry around a point in point cloud by using surface normal.
However, the hand-craft descriptors usually lack higher ro-
bustness. To solve this problem, learning-based approaches
attract more attention recently. In [7, 6, 5, 20], different rep-
resentations of 3D data have been proposed to learn local de-
scriptors, which need point cloud patches around keypoints as

input and output descriptors corresponding to these keypoints.
However, the features generated by these methods have low
resolution. In [4], a fully convolutional network [21] based on
convolutional neural network in [22] is implemented to obtain
dense feature description corresponding to all points in a point
cloud. But it cannot detect keypoints.

There are also some works of joint learning keypoints and
descriptors. D3Feat [3] is the most representative one, which
uses a full convolutional network by KPConv [9] and gives
a density-invariant keypoint selection strategy and detection
loss function. It achieves state-of-the-art performance.

Different from all the above feature extraction methods,
we aim to learn the descriptors considering information on
both point clouds in the point cloud pair and enhance the dis-
criminability of the learned descriptors when matching these
two point clouds. We construct CAFeat3D by KPConv [9],
which is also used in D3Feat [3]. The number of parameters
in CAFeat3D is almost the same as that in D3Feat [3]. Our
algorithm realizes better feature matching performance than
the above algorithms between a point cloud pair.

3. METHODOLOGY

To learn the descriptors considering information on both point
clouds and realize robust feature matching between a point
cloud pair, we design a deep neural network (CAFeat3D),
which is shown in Fig.1. The input pair of point clouds, P1

and P2, are passed through two weight sharing encoder mod-
ules to obtain self-features of P1 and P2. Our encoder is a
5-layer convolutional network which uses KPConv [9]. Then
the self-features of P1 and P2 from the same layer (denoted
as SF1 and SF2) in encoder are passed through our proposed
cross-attention module to obtain conditioned features. Af-
ter this, the SF1 and its corresponding conditioned features
are concatenated with the fused features generated by corre-
sponding decoder layer. The features after concatenating are
passed from the next layer in decoder to obtain new fused
features. The output of decoder module is the final fused fea-
tures of P1. The final fused features of P2 can be obtained
by swapping P1 and P2. In the following, we describe how
to generate self-features in Section 3.1, and the construction
of the proposed cross-attention module in Section 3.2. How
to obtain the fused features is detailed in Section 3.3. Finally,
how our whole network is trained is described in Section 3.4.

3.1. Self-features

Given two point clouds of same scene, P1 ∈ RN1×3 and
P2 ∈ RN2×3, we obtain multiple self-features of P1 and P2

generated by each layers in encoder, which are at different
point cloud density.

Our encoder is a 5-layer convolutional network. Each
layer contains three blocks and the first one is strided excepts
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Fig. 1. The network architecture of CAFeat3D which can obtain final fused features from a input point cloud pair (Left). The
input pair of point clouds, P1 and P2, are passed through two weight sharing encoder modules to obtain self-features of P1 and
P2, which are shown in blue and purple. Our encoder is a 5-layer convolutional network and each block is a ResNet block using
KPConv [9]. Then the self-features of P1 and P2 from the same layer (denoted as SF1 and SF2) in encoder are passed through
the proposed cross-attention module (Upper right) to obtain conditioned features. After this, the SF1 and its corresponding
conditioned features are concatenated with the fused features generated by corresponding decoder layer. These are passed from
the next layer in decoder to obtain new fused features. Each layer in decoder contains a nearest upsampleblock and a MLP.
The feature blocks corresponding to different colors and main symbols in the Fig.1 are marked in the lower right corner. Best
viewed in color with 200% zoom in.

for the first layer like KP-CNN [9]. Each block in encoder
module is a Resnet block using KPConv [9], which defines
3D convolution on point clouds by utilizing kernel points that
carry weights to simulate the kernel pixels in 2D convolu-
tion. Each block is followed by BN (batch normalization)
and ReLU. KPConv used in [3] is briefly described as below.

Given a point cloud P ∈ RN×3 and a set of features
F ∈ RN×D which is corresponding to P , we denote the i-
th point in P and its feature in F as xi and fi respectively.
The convolution by kernel g at point x is defined as

(F ∗ g) =
1

|Nx|
∑

xi∈Nx

(

K∑
k=1

h(xi − x, x̂k)Wk)fi, (1)

whereNx is the radius neighborhood of x, xi is the supporting
point inNx, h is the function related to the kernel point x̂k and
the supporting point xi, K is equal to the number of kernel
points and Wk is the weight matrix of x̂k. We refer reader to
[9, 3] for more information.

The self-features of P1 will be injected into the decoder.
The self-features of P1 and P2 generated from the same layer
are injected into our proposed cross-attention module, which
is detailed in the next section.

3.2. Cross-attention Module

We hope to fuse features from both point clouds and obtain
conditioned features in order to enhance the discriminability

of the learned descriptors under the circumstance of matching
these two point clouds. However, due to the changes of view-
point, density and the disorder of point clouds, given a point
and its feature in one point cloud, the corresponding feature
in another point cloud is usually not at the same location as
the given point.

Based on this, given a set of self-features, h, and a feature
at location i of h, hi, we propose an attenion mechanism to
dig out the corresponding feature of hi, ĥi, from another set
of self-features, t. For each position i in h, a feature ĥi is
obtained by a weighted sum over all features in t:

ĥi =
∑
j

Aij ∗ tj , (2)

in which A is calculated by

Aij =
exp(γhTi tj)∑
k exp(γhTi tk)

, (3)

and γ is a constant value.
For self-features F1 ∈ RN1×D of P1 ∈ RN1×3 and self-

featuresF2 ∈ RN2×D ofP2 ∈ RN2×3, we apply this attention
mechanism to obtain conditioned features of P1, as shown in
the upper right of Fig.1. The detailed steps are as follows.
First, F1 and F2 are L2-normalized to unit length and denoted
as F̄1 and F̄2 respectively. Second we get A by

A = softmax(γ ∗ F̄1 × F̄T
2 ), (4)



in which γ can adjust the weight of different features in F2.
The larger γ represents the more similar features have higher
weight. A is a correlation map [23] processed by a soft-
max operation. Finally, we obtain conditioned features of P1

through F2 and A:

F a
1 = A× F̄2. (5)

Given the self-features of input point cloud P1 and P2,
features from the same layer in the two weight-sharing en-
coders are put into the cross-attention module to obtain con-
ditioned features corresponding to different density for P1.

3.3. Fused Features

Given the self-features and conditioned features, fused fea-
tures are generated from decoder module. For input pair of
point cloud, P1 ∈ RN1×3 and P2 ∈ RN2×3, the decoder
module is used to get the final point-wise features for the
first input point cloud P1 and the output of our decoder is
a dense feature map Fp1 ∈ FN1×d, where d is the dimen-
sion of feature vector. The feature upsampling strategy in de-
coder is nearest upsampling. Skip links are implemented be-
tween intermediate layers of above encoder and the decoder
and between cross-attention module and intermediate layers
of decoder. Each layer of the decoder has three input sources:
self-features, conditioned features and fused features from the
previous layer. In each layer, there is a feature fusion module
consisting of an upsampling operation, MLP, BN and Leaky
ReLU. Those features are concatenated and put into the fea-
ture fusion module. Then upsampling of point cloud features
is realized and new fused features are obtained.

3.4. Training and Loss Functions

Our network jointly learns descriptors and keypoints, so our
loss function consists of two parts: descriptor loss item and
keypoint detector loss item. We first describe the descriptor
loss item and then the keypoint detector loss item.
Descriptor loss We adapt the circle loss function [10] to train
the parameters of our network.

Given a pair of point clouds P1 and P2, and a set of pairs
of corresponding 3D points. Suppose (Ai, Bi) is a correspon-
dence pair with their corresponding normalized descriptors
pairs (dAi , dBi). The distance between a positive pair is:

dp(i) = ‖dAi − dBi‖2 . (6)

The distance between a negative pair is:

dn(i, j) = ‖dAi − dBj‖2 s.t.(i 6= j). (7)

The circle loss item is defined as follows:

Ldesc = log [1 +
∑
i

∑
j,j 6=i

exp(λαi,j
n (Mn − dn(i, j)))×

∑
i

exp(λαi
p(dp(i)−Mp))], (8)

in which αi,j
n and αi

p are non-negative weighting factors and
can be calculated by di,jn and dip [10]. In Eq.(8), λ is a scale
factor, Mn is the margin for negative pairs andMp is the mar-
gin for positive pairs.
Keypoint detector loss We adopt the detector loss in [3] to
raise keypoint detection scores of the points which are easy to
be correctly matched. The detector loss item is defined as

Ldet =
1

n

∑
i

[(dp(i)−min(dn(i, j)))(sAi + sBi)] , (9)

in which sAi and sBi are the keypoint detection scores of
point Ai and Bi. The keypoint detection scores of point p
can evaluate how salient a point is when it is compared with
its neighborhood and its own distinction. The point with high
keypoint detection score is suitable as keypoint.

The loss function of our network is constructed as follows:

Ltotal = Ldesc + βLdet, (10)

in which β is a constant value and can adjust the component
of Ldet.

4. EXPERIMENTS

In this section, we firstly introduce the implementation details
in Section 4.1. Secondly, we evaluate the feature matching
performance of our model in Section 4.2. Thirdly, the point
cloud registration evaluation using feature correspondence is
described in Section 4.3.

4.1. Implementation Details

CAFeat3D is implemented in Pytorch and two TITAN RTX
GPU cards with 24G memory. We evaluate CAFeat3D on
3DMatch dataset [6]. We follow the same protocols [6] in
3DMatch dataset to obtain the training and test data. The test
data includes 8 scenes and about 2000 point cloud pairs. We
use all the point cloud pairs which are more than 30% overlap
when training. Grid subsampling is used to control the density
of point cloud. During training, we apply data augmentation
same as D3Feat [3] to improve the robustness of our network
and use a batch size of 1. For Eq.(4), the γ is set as 80. We
only put the features which output from the last four layers
of the encoder into the cross-attention module to obtain the
conditioned features for saving video memory. The positive
margin Mp, negative margin Mn, scale factor λ in circle loss
are set as 0.1, 1.4 and 10 respectively. The β in Eq.(10) is
set as 1. We optimize the network using SGD optimizer with
learning rate of 0.01 and the momentum is set to 0.98.

4.2. Feature Matching Evaluation

Following FCGF [4], we use Feature Matching Recall pro-
posed in [20], the percentage of registration whose inlier ratio



Table 1. The comparison of Feature Matching Recall on the
3DMatch dataset.

Methods Feature Matching Recall (%)
Shot [24] 23.8

FPFH [19] 35.9
3DMatch [6] 59.6
PPFNet [20] 62.3

PPF-FoldNet [25] 71.8
PerfectMatch [5] 94.7

FCGF [4] 95.2
D3Feat [3] 95.8

Ours 96.1

is larger than a threshold µ1 = 5%, to evaluate the perfor-
mance of feature matching. In the following experiments,
a match is regarded as an inlier if the distance between the
points is smaller than µ2 = 0.1m under ground truth trans-
formation.

We compare our algorithm with state-of-the-arts on
3DMatch dataset. We report the Feature Matching Recall in
Table 1. The number of keypoints is set to 5000. From Table
1, we can see our algorithm has the highest Feature Matching
Recall. This benefits from that our method takes into account
the information between point clouds and obtains descriptors
that achieve higher precision matching.

Moreover, we demonstrate the robustness of our algo-
rithm by varying inlier ratio threshold (µ1), which is origi-
nally defined as µ1 = 5% in Feature Matching Recall. The
experimental results are shown in Fig.2, from which we can
see our algorithm performs well under different µ1. In more
strict inlier ratio threshold from 15% to 20%, our algorithm
is significantly better than other methods, which indicates the
discriminability of the features generated by our algorithm be-
tween two point clouds to be matched is enhanced.
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Table 2. Feature Matching Recall on the 3DMatch dataset
under different numbers of features. (%)

Features number 5000 2500 1000 500 250
PerfectMatch [5] 94.7 94.2 92.6 90.1 82.9

FCGF [4] 95.2 95.5 94.6 93.0 89.9
D3Feat [3] 95.8 95.6 94.6 94.3 93.3

Ours 96.1 96.0 95.7 94.7 93.8

Table 3. Registration Recall on the 3DMatch dataset under
different numbers of features. (%)

Features number 250 500 1000
PerfectMatch [5] 50.9 64.8 73.4

FCGF [4] 73.0 81.0 85.8
D3Feat [3] 79.3 82.5 84.9

Ours 82.5 83.8 85.7

Since the number of feature points is very important for
feature matching task, we further report the results when re-
ducing the feature points number in one point cloud from
5000 to 2500, 1000, 500 and 250 and the experimental results
are shown in Table 2. Due to lack of keypoint detection, the
performances of FCGF and PerfectMatch drop rapidly with
the decrease of the number of feature points. The perfor-
mance of D3Feat and ours are less affected by the decrease
of the number of feature points for effective keypoints detec-
tion mechanism. Compared with D3Feat, our method always
has better performance under different numbers of keypoints
with almost the same number of parameters and 3D convo-
lution operation, which further demonstrates the superiority
of our algorithm and the effectiveness of our cross-attention
module.

4.3. Using Feature Correspondence for Point Cloud Reg-
istration

Following 3DMatch [6], we use Registration Recall to mea-
sure the quality of features within point cloud registration sys-
tem. Registration Recall is equal to the percentage of cor-
rectly registered point cloud pairs [6]. More specifically, a
registration is correct if the RMSE of the ground truth cor-
respondences under the calculated transformation matrix is
lower than a threshold τ . In our implementation, we use
RANSAC based on feature matching to estimate the transfor-
mation matrix between two point clouds and τ is set as 0.2m.
The maximum number of iterations for random sample selec-
tion is 5000.

We evaluate Registration Recall of PerfectMatch [5],
FCGF [4], D3Feat [3] and ours under different numbers, 250,
500 and 1000, of features. The experimental results are shown



in Table 3, from which we can see our algorithm achieves the
best performance or close to the best performance under dif-
ferent numbers of features. It can be seen from the second
column of Table 3 that our method can even has a good point
cloud registration effect when the number of feature points
is small, which shows enough accurate correspondences can
be constructed to realize the successful registration between
a pairs of point clouds. To some extent, this also shows our
extracted features have strong discrimination and sufficient
invariance between point cloud pairs.

5. CONCLUSION

In this paper, to enhance the discriminability of the learned
features under the circumstance of matching two point clouds,
we propose a novel network to learn the descriptors consid-
ering information on both point clouds. Specifically, we first
develop a U-Net like network for single point cloud feature
extraction as our fundamental network. Then an identical en-
coder module and an cross-attention module proposed by us
are embedded in the U-Net like network. The cross-attention
module can effectively provide the information of another
point cloud for the original U-Net like network. Extensive
experimental results on 3DMatch large-scale dataset demon-
strate the effectiveness of the proposed network on feature
matching and point cloud registration.
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