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Abstract: Fault detection and isolation (FDI) plays an important role in guaranteeing system
safety and reliability for unmanned aerial vehicles (UAVs). This paper focuses on developing
a method for detecting UAV sensor faults by using existing sensors, such as pitot tube, gyro,
accelerometer and wind angle sensor. We formulate the kinematics as a nonlinear state space
system, which requires no dynamic information and thus is applicable to all aircraft. To illustrate
the method, we investigate five fault-detection scenarios, namely, faulty pitot tube, angle-of-
attack sensor, sideslip sensor, accelerometer and gyro, and design a FDI structure including
five faulty sensors. Then, considering the unknown disturbance, the proportional and multiple
integral (PMI) fault detection filter (FDF) is proposed for the state and input estimation. A
structure including two residuals are employed to detect and isolate the faults of the proposed
faulty sensors. Finally, the performance of the proposed methodology is evaluated through flight
experiments of the UAV.
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1. INTRODUCTION

The mobility and economic efficiency of unmanned aerial
vehicles (UAV) afford them a high number of applications
Rossi (2016). UAV is a typical multi-sensor system, includ-
ing inertial measurement unit (IMU), Global Positioning
System (GPS), Air Data System (ADS), magnetometer,
etc. Sensor faults have catastrophic consequences for the
systems that operate under feedback control. In order to
achieve precise control and navigation of the UAV, the
reliability of the sensor system must be ensured. For the
UAV application, it is highly desirable to develop an air-
craft flight control system with reconfigurable capabilities:
able to detect and isolate failures of sensors and then to
apply a control algorithm that has been specially designed
for the current failure mode status. Traditional approaches
to sensor fault tolerance for UAV have been based on hard-
ware redundancy Hajiyev and Caliskan (2003). Multiple
hardware components provide protection against damages.
Such schemes operate in a triplicated or quadruplicated
redundancy configuration. However, faults on any individ-
ual pitot tube are also likely to occur on other pitot tubes
under certain weather conditions.
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For this purpose, various approaches have been proposed
in the literatures Brumback adn Srinath (1987). A general
approach for UAV sensor fault detection is hypothesis
testing of the innovation Hajiyev and Caliskan (2003),
Cao et al. (2017). Already back to the 1970s, the use of
analytical redundancy was employed for sensor fault iden-
tification as reported for example in Deckert et al. (1977).
There, a bank of sequential probability ratio tests compute
probabilities on whether a sensor is faulty over a time-
window of residuals. However, these approaches cannot
isolate the sensor fault from actuator faults. Another tech-
nique is the multiple model adaptive estimation technique
Maybeck (1999) based on an idea from Magill (1965).
Fault estimation Chen et al. (2016) was used for UAV
sensor FDI and is easily influenced by the disturbance. The
genetic algorithm back propagation based neural-network
Chen et al. (2017) and other data driven methods Fan
et al. (2017) have large computation burdens in online
operation. Castaldi et al. (2016) proposed a nonlinear
geometric approach for the UAV actuators and sensors
based on the mathematical model. However, this method
need the identification parameters of the model.

One approach to detecting sensor faults is to use measure-
ments from a set of sensors to estimate a state or input and
then compare the estimate with the measurement from a
suspect sensor that is not used for the estimation. In the
case where the suspect sensor corresponds to a state of a
dynamic system, state estimation techniques, such as the
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Kalman filter and its nonlinear variants, can be used. In
the case where the suspect sensor corresponds to an input
of a dynamic system, state estimation techniques that
include input estimation can be used. The present paper
focuses on above sensor FDI method for UAV. In this
application, two distinct classes of sensors are available.
Inertial sensors including rate gyros and accelerometers
measure the motion of the vehicle relative to an inertial
frame. Noninertial sensors include position measurements
from GPS as well as aerodynamic sensors, such as a pitot
tube for measuring forward velocity relative to the air and
angle-of-attack (α) and sideslip (β) sensors for measuring
the direction of the relative wind in the body frame. In this
paper we use combinations of inertial and aerodynamic
sensors along with fault detection filter (FDF) techniques
to detect and isolate sensor faults. For the unknown input
estimation in the second scenario, a proportional multiple
integral(PMI) based FDF described is used Gao and Ding
(2007).

The remainder of this paper is structured as follows.
Following a brief problem statement in Section II, the
method for extended PMI based FDI is proposed in
Section III. Finally, the presented approach is validated
using actual flight data from the Ultra Stick UAV.

2. PROBLEM FORMULATION

Before developing the aircraft equations of motion, it is
necessary to define reference frames and sign conventions.
All reference frames are right handed and with mutually
orthogonal axes. Inertial frame (i frame) has its origin at
the center of the earth and not rotating with the fixed
stars. The local level NED (North-East-Down) frame is
selected as navigation frame (n-frame). Body frame (b
frame) xbybzb. Origin is at the aircraft center of gravity,
with positive xb axis pointing forward through the nose of
the aircraft, positive yb axis out the right wing, and pos-
itive zb axis through the underside. Wind axes XwYwZw.
Origin is at the aircraft center of gravity, with positive
Xw axis forward and aligned with the air-relative velocity
vector, positive Yw axis out the right side of the aircraft,
and positive Zw axis through the underside in the XwYw

plane in body axes.

The flat-earth, body-axes 6-Dof equations of the UAV can
be expressed in body frame as follows Stevens et al. (2016)




u̇ = rv − qw − g sin θ + (FAx + FT )/m
v̇ = pw − ru+ g sinϕ cos θ + (FAy)/m
ẇ = qu− pv + g cosϕ cos θ + (FAz)/m
ṗ = [L+ (Iyy − Izz)qr + Ixz(ṙp+ pq)]/Ixx
q̇ = [M + (Izz − Ixx)rp+ Ixz(r

2 + p2)]/Iyy
ṙ = [R+ (Ixx − Iyy)pq + Ixz(ṗp+ qr)]/Izz

(1)

where Va = [ u v w ]T denotes the body-axis airspeed
component, Ω = [ p q r ]T stands for the angular velocity
vector of the body-axis component, Euler attitude angles
Φ = [ ϕ θ ψ ]T stands for roll, pich and yaw respectively.
FA = [ FAx FAy FAz ]T stands for the aerodynamic force
and FA = fA(Va, δe, δa, δr), δe, δa, δr denotes the control
surface position of the elevator, aileron and rudder, respec-
tively. FT is the propulsive force. M = [L M R ]T stants
for the aerodynamic moment and M = fM (Va, δe, δa, δr).
Ixx, Iyy, Izz, Ixz are the moments of inertia.

And the kinematic equations is given below




ϕ̇ = p+ tan θ(q sinϕ+ r cosϕ)

θ̇ = q cosϕ− r sinϕ

ψ̇ = (q sinϕ+ r cosϕ)/ cos θ

α = tan−1
(w
u

)

β = sin−1

(
v√

u2 + v2 + w2

)
(2)

(1) and (2) give the dynamic and kinematic equation of
the UAV. Aerodynamic forces and moments acting on the
aircraft result from the relative motion of the air and
the aircraft. Generally, modern computational methods
and wind-tunnel testing can provide, in many instances,
comprehensive data about the aerodynamic characteristics
of an aircraft. Therefore, a nonlinear model in terms of the
state variables including Va,Ω,Φ and the input δe, δa, δr
will be constructed. In this paper, for the FDI of the UAV,
IMU is used to measure accelerations and angular rates.

am =
1

m
[ FAx + FT FAy FAz ]

T

ωm = [ p q r ]T (3)

am and ωm are outputs of accelerometers and rate gyro-
scopes. In this model, the input is replaced by the mea-
surements of the accelerometer and the gyro. It should be
pointed out that there are multiple possible sources of error
in the accelerometer and rate gyroscope measurements,
such as calibration errors, alignment errors, and sensor
noise, which can be modeled as

am = a+Wa

ωm = ω +Wω

where

a = [ ax ay az ]
T

ω = [ ωx ωy ωz ]
T

denote specific outputs. Wa and Wω are zero mean
Gauss white noise. Therefore (1) is transformed to airspeed
kinematics equation.

[
u̇
v̇
ẇ

]
=

[
0 ωy −ωz

ωx 0 −ωy

ωz −ωx 0

][
u
v
w

]
+ Cb

n

[
0
0
g

]
+

[
ax
ax
ax

]

[
p
q
r

]
=

[
ωx

ωy

ωz

]
(4)

where Cb
n is the transfer matrix from the navigation frame

to the body frame. Generally in aircraft control systems,
the aerodynamic parameters can provide more accurate
results than the measurements of the IMU. However, for
the FDI of UAVs, which is different from aircraft control,
the airborne IMU can satisfy the required precision and
help to reduce the complexity of the FDI system. And
more importantly, based on the replaced equation (4) and
the kinematic equation (2), we can easily design the FDI
system for the UAV’s sensors, including the IMU, the pitot
tube, the α-sensor and β-sensor. Fig.1 shows the structure
of the proposed FDI system.

In Fig.1, this paper designs five different models and
filters for each faulty sensor. Each model can generate an
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Kalman filter and its nonlinear variants, can be used. In
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(2007).
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the center of the earth and not rotating with the fixed
stars. The local level NED (North-East-Down) frame is
selected as navigation frame (n-frame). Body frame (b
frame) xbybzb. Origin is at the aircraft center of gravity,
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ṗ = [L+ (Iyy − Izz)qr + Ixz(ṙp+ pq)]/Ixx
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(1)
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)
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of an aircraft. Therefore, a nonlinear model in terms of the
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IMU is used to measure accelerations and angular rates.
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am and ωm are outputs of accelerometers and rate gyro-
scopes. In this model, the input is replaced by the mea-
surements of the accelerometer and the gyro. It should be
pointed out that there are multiple possible sources of error
in the accelerometer and rate gyroscope measurements,
such as calibration errors, alignment errors, and sensor
noise, which can be modeled as

am = a+Wa

ωm = ω +Wω

where

a = [ ax ay az ]
T

ω = [ ωx ωy ωz ]
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denote specific outputs. Wa and Wω are zero mean
Gauss white noise. Therefore (1) is transformed to airspeed
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=
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+
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=
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where Cb
n is the transfer matrix from the navigation frame

to the body frame. Generally in aircraft control systems,
the aerodynamic parameters can provide more accurate
results than the measurements of the IMU. However, for
the FDI of UAVs, which is different from aircraft control,
the airborne IMU can satisfy the required precision and
help to reduce the complexity of the FDI system. And
more importantly, based on the replaced equation (4) and
the kinematic equation (2), we can easily design the FDI
system for the UAV’s sensors, including the IMU, the pitot
tube, the α-sensor and β-sensor. Fig.1 shows the structure
of the proposed FDI system.

In Fig.1, this paper designs five different models and
filters for each faulty sensor. Each model can generate an

IFAC SAFEPROCESS 2018
Warsaw, Poland, August 29-31, 2018

819



820 Dingfei Guo  et al. / IFAC PapersOnLine 51-24 (2018) 818–823

  

  































Fig. 1. Structure of FDI system for UAV sensors

innovation based residual and an estimation result of the
corresponding sensor. Another residual is the difference
between the estimation result and the actual output of
the sensor. For example, for the faulty pitot tube, this
paper constructed the state equation based (4) and output
equation using the measurements of the α-sensor and β-
sensor. Then two different residuals can be acquired using
the state estimation, such as the Kalman, and then the
FDI of the pitot tube can be achieved. Based on the
formulation, A continuous-time state-space model can be
formulated as

ẋ(t) = fc(x(t),uk(t),uu(t)) +D1(t)w(t)

y(t) = h(x(t)) +D2(t)v(t) (5)

where x is the state, uk is the known input, uu is
the unknown input, w is the process noise, y is the
output measurement, and v is the measurement noise,
and the functions fc and h are known. It should be
noted that uk and uu are not the traditional control
inputs. We used the measurements of IMU to replace the
control inputs (3). And there are some faults occurred
in IMU possibly. Therefore, when the inertial sensors are
the estimated objects, they are defined as the unknown
inputs uu. Otherwise defined as the known inputs uk.
Table 1 defines x, uk, uu and y for five fault-detection
scenarios, in particular, faulty pitot tube, α-sensor, β-
sensor, accelerometer and rate gyro. It should pointed out
that the five different sensors are located in the states or
the inputs. Therefore, in order to obtain the estimation of
the faulty sensors, we should design FDF methods for the
FDI system.

3. EXTENDED PMI BASED FDI FOR UAV

In Section II, the FDI system for UAV sensors is formu-
lated as a problem of state and input estimation. We use
the extended Kalman filter (EKF) for state estimation and
PMI based state estimation for input estimation. The well
known EKF is familiar with us and it is the spacial case
of the PMI based estimation. Therefore, we directly give
the PMI based FDF.

Table 1. Scenarios for sensor fault detection

Faulty Sensor x y uk uu

ax, ay , az
Pitot tube u, v, w α, β ωx, ωy , ωz

ϕ, θ

ax, ay , az
α-sensor u, v, w u, β ωx, ωy , ωz

ϕ, θ

ax, ay , az
β-sensor u, v, w u, α ωx, ωy , ωz

ϕ, θ

Accelerometer u, v, w u, α, β ωx, ωy , ωz ax, ay , az
ϕ, θ

Rate Gyro u, v, w u, α, β ax, ay , az ωx, ωy , ωz

ϕ, θ

3.1 Design of Extended PMI FDF

In the case where the input is partially or fully unknown,
(5) does not explicitly account for the unknown input uu.
The effect of uu(t) can be included in the process noise
w(t) by a suitable choice of the covariance matrix of the
system noise. A more effective approach is to estimate
uu(t) and include it in (5) with its estimate ûu(t). In
this case, the unknown input uu(t) is approximated by
the following polynomial function

uu(t) = B0 +B1t+B2t
2 + · · ·+Bq−1t

q−1 (6)

where Bi(i = 0, 1, · · · , q−1) are unknown constant vectors
with q ≥ 1. Define

ξi(t) = u(q−i)
u (t) (i = 1, 2, · · · q) (7)

It follows from (6) and (7) that


ξ̇1(t) = 0

ξ̇2(t) = ξ1(t)
...

ξ̇q(t) = ξq−1(t)

(8)

Augmenting (5) and (8) yields

˙̄x(t) = f̄c(x̄(t),uk(t)) +D1(t)w(t)
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y(t) = h̄(x̄(t)) +D2(t)v(t) (9)

where

x̄(t) = [ xT (t) ξT1 (t) ξT2 (t) · · · ξTq (t) ]T

f̄c(x̄,uk) =




fc(x,uk, ξq)
0 0 · · · 0 0
0 1 · · · 0 0
...
...
. . .

...
...

0 0 · · · 1 0




h̄(x̄) = h(x)

In order to implement these equations in a discrete-time
filter, a first-order discretization is used

x̄(k + 1) = f̄(x̄(k),uk(k)) + D̄1w(k)

y(k) = h̄(x(k)) +D2v(k) (10)

where k is the time step, D̄1 = TsD1, Ts is the sampling
time.

f̄(x̄,uk) =




f(x,uk, ξq)
0 1 · · · 0 0
0 T · · · 0 0
...

...
. . .

...
...

0 0 · · · T 1




For k = 1, 2, ..., perform the following steps:

1. Perform the time update of the state estimate and
estimation-error covariance as follows:

ˇ̄x(k) = f̄(ˆ̄x(k − 1),uk(k − 1))

ˇ̄P (k) = F̄ (k − 1) ˆ̄P (k − 1)F̄T (k − 1) + ˆ̄D1
ˆ̄D
T

1

where

F̄ (k − 1) =
∂ f̄

∂x̄
| ˆ̄x(k−1),uk(k−1)

2. At time k, incorporate the measurement y(k) into the
state estimate and estimation covariance as follows:

K̄(k) = ˇ̄P (k)H̄(k)T (H̄(k) ˇ̄P (k)H̄(k)T +D2D
T
2 )

−1

ˆ̄x(k) = ˇ̄x(k) + K̄(k)(y(k)− h̄(ˇ̄x(k)))

ˆ̄P (k) = ˇ̄P (k)− ˇ̄P (k)H̄(k)T

×(H̄(k) ˇ̄P (k)H̄(k)T +D2D
T
2 )H̄(k) ˇ̄P (k)

where

H̄(k) =
∂h̄

∂x̄
| ˆ̄x(k)

Table 2 lists the on-board sensors for fault detection. The
matrices D1 and D2 are determined using Table 2 and are
given as follows.

Scenario 1) Faulty pitot tube:

D1 = [Dω Da ], D2 = diag(σα, σβ) (11)

where

Table 2. The additive noise for each sensor is
assumed to be white Gaussian

Sensors Measurements Variance of Noise

Pitot tube u σ2
u

Rate Gyro ωx, ωy , ωz σ2
ω

Accelerometers ax, ay , az σ2
a

α-sensor α σ2
α

β-sensor β σ2
β

Dω =

[
0 −w v
w 0 −u
−v u 0

]
diag(σω, σω, σω) (12)

Da = diag(σa, σa, σa)

Scenario 2) Faulty α-sensor : D1 is given by (12) and

D2 = diag(σu, σβ) (13)

Scenario 3) Faulty β-sensor : D1 is given by (12) and

D2 = diag(σu, σα) (14)

Scenario 4) Faulty accelerometer :

D1 = Dω, D2 = diag(σu, σα, σβ) (15)

Scenario 5) Faulty rate gyro:

D1 = Da, D2 = diag(σu, σα, σβ) (16)

Rewrite the gain K̄ as

K̄(k) = [ K̄P (k)
T K̄1(k)

T · · · K̄q(k)
T ]T

where K̄P (k) denotes the proportional gain, K̄i(k) (i =
1, 2, · · · , q) denote integral gains. Then ˆ̄x(k) can be re-
expressed in the following form




x̂(k) = fc(x̌(k),uk(k), ξ̂q(k)) + K̄P (k)(y(k)− h(x̌(k))

ξ̂1(k) = K̄1(k)(y(k)− h(x̌(k)) + ξ̂1(k − 1)

ξ̂2(k) = K̄2(k)(y(k)− h(x̌(k)) + T ξ̂1(k) + ξ̂2(k − 1)
...

ξ̂q(k) = K̄q(k)(y(k)− h(x̌(k)) + T ξ̂q−1(k) + ξ̂q(k − 1)

that is the so-called extended PMI based FDF.

It is seen that there are multi-integral information included

in ξ̂i(k)(i = 1, 2..., q). That is to say, ξ̂i(k) is an estimation
of the (q − i)th derivation of the unknown input uu(k)

in the form (6), and ξ̂q(k) is an estimation of uu(k). At
the same time, the estimation of x(k) includes innovation

y(k) − h(x̌(k) and input estimation ξ̂q(k). Therefore,
choosing suitable q ≥ 1, the proposed method can achieve
accurate state estimation x̂(k) with the unknown input
ûu(k).

It should be noted that when the faulty sensor is defined
as state and the input is known, the unknown input ûu(k)
is not exist. For the PMI based FDF

ûu(k) = 0 (17)

Therefore, the extended PMI based FDF can be regressed
to the well known EKF. In other words, the EKF is the
special case of the PMI based FDF when the unknown
input is absent.
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y(t) = h̄(x̄(t)) +D2(t)v(t) (9)

where

x̄(t) = [ xT (t) ξT1 (t) ξT2 (t) · · · ξTq (t) ]T

f̄c(x̄,uk) =




fc(x,uk, ξq)
0 0 · · · 0 0
0 1 · · · 0 0
...
...
. . .

...
...

0 0 · · · 1 0




h̄(x̄) = h(x)

In order to implement these equations in a discrete-time
filter, a first-order discretization is used

x̄(k + 1) = f̄(x̄(k),uk(k)) + D̄1w(k)

y(k) = h̄(x(k)) +D2v(k) (10)

where k is the time step, D̄1 = TsD1, Ts is the sampling
time.

f̄(x̄,uk) =




f(x,uk, ξq)
0 1 · · · 0 0
0 T · · · 0 0
...

...
. . .

...
...

0 0 · · · T 1




For k = 1, 2, ..., perform the following steps:

1. Perform the time update of the state estimate and
estimation-error covariance as follows:

ˇ̄x(k) = f̄(ˆ̄x(k − 1),uk(k − 1))

ˇ̄P (k) = F̄ (k − 1) ˆ̄P (k − 1)F̄T (k − 1) + ˆ̄D1
ˆ̄D
T

1

where

F̄ (k − 1) =
∂ f̄

∂x̄
| ˆ̄x(k−1),uk(k−1)

2. At time k, incorporate the measurement y(k) into the
state estimate and estimation covariance as follows:

K̄(k) = ˇ̄P (k)H̄(k)T (H̄(k) ˇ̄P (k)H̄(k)T +D2D
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T
2 )H̄(k) ˇ̄P (k)

where

H̄(k) =
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Table 2 lists the on-board sensors for fault detection. The
matrices D1 and D2 are determined using Table 2 and are
given as follows.

Scenario 1) Faulty pitot tube:

D1 = [Dω Da ], D2 = diag(σα, σβ) (11)

where

Table 2. The additive noise for each sensor is
assumed to be white Gaussian

Sensors Measurements Variance of Noise

Pitot tube u σ2
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Rate Gyro ωx, ωy , ωz σ2
ω

Accelerometers ax, ay , az σ2
a

α-sensor α σ2
α

β-sensor β σ2
β

Dω =

[
0 −w v
w 0 −u
−v u 0

]
diag(σω, σω, σω) (12)

Da = diag(σa, σa, σa)

Scenario 2) Faulty α-sensor : D1 is given by (12) and

D2 = diag(σu, σβ) (13)

Scenario 3) Faulty β-sensor : D1 is given by (12) and

D2 = diag(σu, σα) (14)

Scenario 4) Faulty accelerometer :

D1 = Dω, D2 = diag(σu, σα, σβ) (15)

Scenario 5) Faulty rate gyro:

D1 = Da, D2 = diag(σu, σα, σβ) (16)

Rewrite the gain K̄ as

K̄(k) = [ K̄P (k)
T K̄1(k)

T · · · K̄q(k)
T ]T

where K̄P (k) denotes the proportional gain, K̄i(k) (i =
1, 2, · · · , q) denote integral gains. Then ˆ̄x(k) can be re-
expressed in the following form
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ξ̂q(k) = K̄q(k)(y(k)− h(x̌(k)) + T ξ̂q−1(k) + ξ̂q(k − 1)

that is the so-called extended PMI based FDF.

It is seen that there are multi-integral information included

in ξ̂i(k)(i = 1, 2..., q). That is to say, ξ̂i(k) is an estimation
of the (q − i)th derivation of the unknown input uu(k)

in the form (6), and ξ̂q(k) is an estimation of uu(k). At
the same time, the estimation of x(k) includes innovation

y(k) − h(x̌(k) and input estimation ξ̂q(k). Therefore,
choosing suitable q ≥ 1, the proposed method can achieve
accurate state estimation x̂(k) with the unknown input
ûu(k).

It should be noted that when the faulty sensor is defined
as state and the input is known, the unknown input ûu(k)
is not exist. For the PMI based FDF

ûu(k) = 0 (17)

Therefore, the extended PMI based FDF can be regressed
to the well known EKF. In other words, the EKF is the
special case of the PMI based FDF when the unknown
input is absent.
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3.2 Multisensor Fault Detection and Isolation

This paper uses the difference between the virtual “mea-
surements”, estimated using other sensors, and the output-
s provided by real sensors to indicate the fault information
of the sensors.

For the extended PMI based FDF of the accelerometers,
the velocity gyros, the pitot tube and the wind vanes,
define the residual as

Σi(k) = yi(k)− ŷi(k) = yi(k)− h(x̂i(k)) (18)

where i stands for the different sensors u, α, β,a, ω. Note
that the output Σi(k) did not include the information of
the faulty sensor. If the other used sensors are healthy, the
following result is easily achieved.

Σi(k) ∼ N(0, RΣi) (19)

Introduce the residual evaluation

JΣi(k) =
1

N + 1

k∑
j=k−N

ΣT
i (j)R

−1
Σi

(j)Σi(j) (20)

Based on (19), the JΣi(k) follows a central χ2 distribution
with corresponding degrees of freedom. For example, the
degree of the airspeed estimation is 2. Therefore, we can
use JΣi(k) as an evaluation function and monitor the
status of the sensors. Choose a false alarm rate (FAR)
εi; then, the threshold can be determined based on the χ2

distribution.

J1Σi = χ2
εi (21)

On the other hand, define the residual ri as

ri(k) = im(k)− î(k) (22)

where i stands for the different sensors u, α, β,a, ω, im(k)

is the measurement of the sensor, î(k) is the estimation

of the sensor output. It should be noted that, α̂ and β̂
are not estimated directly. They are calculated by û, v̂, ŵ
using (2).

The fault detection procedure is designed to determine
whether the observed changes in the residual signal ri(k)
can be justified in terms of the disturbance (measurement
noise) or modeling uncertainty. We use the well-known
filter used for the detecting the abrupt change of ri(k),
named Cumulative Sum (CUSUM) filter Basseville and
Nikiforov (1993). The CUSUM filter is defined by the
following equation Campa et al. (2002):

Jri(k) = sup

(
0, Jri(k − 1)− τ(τ − 2ri(k))

2σ2
0

)
(23)

where The values of the parameter τ is the value of the ex-
pected fault amplitude. σ0 is the standard deviation which
is calculated in advance. The fault detection threshold for
the CUSUM signal Jri(k) was selected as a compromise
between the need for a fast fault detection and the need
for low false alarm rates. An acceptable trade-off was found
by setting the threshold equal to 1.5 times the maximum
value of the CUSUM signal observed in fault-free condi-
tions for a validation simulated flight.
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Fig. 2. The pitot tube fault diagnosis

J2ri = 1.5 ·max (Jri(k)) (24)

Based on (18) and (22), the fault detection logic of the
UAV sensors can be expressed as Table 3. Where × means
if the evaluation functions go beyond the thresholds, this
detect logic will alarm, i.e. JΣi(k) > J1Σi or Jri(k) > J2ri .√

stands for no alarm happened. For example, if the pitot
tube is faulty, the evaluation function Jru will exceed the
threshold J2ru and JΣu keeps below the threshold J1Σu .
According to indication of these evaluation functions, we
can easily detect these sensors’ faults and isolate them.

4. SIMULATION

The research platform used in this study is the Ultra Stick
25e UAV. The onboard avionics system, features a an
Analog Devices iSensor ADIS16405 IMU, accelerometers
with 50mg initial bias error and 9 mg RMS noise, and
gyroscopes with 3◦/sec initial bias error and 0.9◦/sec RMS
output noise.

4.1 Fault detection for pitot tube failure

In the following cases, the pitot tube fails by becoming
stuck at the constant value 0.6m/s, beginning at 360s for
40s. Based on (21) and (24), we choose J1Σu = 5.99 in
advance. Consider the CUSUM detector in (23). We need
to estimate the airspeed and obtain the error between
the estimation and the measurement in fault free state.
By calculating the error and the stand deviation, the
parameters τ and σ0 of CUSUM can be determined. Due to
space limitations in this paper, we choose the J2ru = 267
based on the above statements.

First, we estimate the airspeed û using state estimation
and obtain the two residuals based on (18) and (22).
Fig. 2 shows the filter residual JΣu and the CUSUM
residual Jru . According to this figure, before t = 360s, the
CUSUM signal remains well below the threshold. With the
chosen threshold detection, the first signs that indicate the
airspeed sensor fault occurred at approximately t = 360.2s
according to the blue line. At the same time, the residual
JΣu always remains well below the chosen threshold. It
is obvious that there is a fault in the pitot tube at t =
360s. From these results, we can conclude that these two
residuals can provide good performance for the pitot tube
fault diagnosis.
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Table 3. Fault detection and isolation logic table

Faulty Sensor Σu ru Σα rα Σβ rβ Σa ra Σω rω
Pitot tube

√
×

α-sensor
√

×
β-sensor

√
×

Accelerometer
√

×
Rate Gyro

√
×
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4.2 Fault detection for accelerometer failure

For accelerometer fault diagnosis, we use PMI based input
estimation to estimate acceleration ay. We consider cases
where the accelerometer has a bias at 400s and the
threshold J1Σay

= 7.81 and J2ray
= 141 is chosen. Fig.

3 shows that the residual JΣay
and the CUSUM residual

Jray
. Note that the CUSUM residual Jray

jumps exceeding
the threshold at t = 400s when the bias begins and the
residual JΣay

always remains below the chosen threshold.
The acceleromter fault can be easily detected.

5. CONCLUSIONS

In this paper, we presented a method for detecting UAV
sensor faults using state and input estimation. We used the
EKF and PMI based input estimation to estimate states
and inputs, respectively. For the estimation framework, we
used the kinematics to formulate a nonlinear state space
system. The fault detection logic is constructed for faulty
pitot tube, wind vanes and IMU. In order to illustrate
sensor fault detection, we used Ultra Stick 25e UAV and
presented cases for detecting stuck and bias sensor faults.
For the pitot tube and accelerometers, we showed that the
sensor residual can be used to detect sensor faults. For
other sensors, this proposed approach can also give good
performance.
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4.2 Fault detection for accelerometer failure

For accelerometer fault diagnosis, we use PMI based input
estimation to estimate acceleration ay. We consider cases
where the accelerometer has a bias at 400s and the
threshold J1Σay

= 7.81 and J2ray
= 141 is chosen. Fig.

3 shows that the residual JΣay
and the CUSUM residual

Jray
. Note that the CUSUM residual Jray

jumps exceeding
the threshold at t = 400s when the bias begins and the
residual JΣay

always remains below the chosen threshold.
The acceleromter fault can be easily detected.

5. CONCLUSIONS

In this paper, we presented a method for detecting UAV
sensor faults using state and input estimation. We used the
EKF and PMI based input estimation to estimate states
and inputs, respectively. For the estimation framework, we
used the kinematics to formulate a nonlinear state space
system. The fault detection logic is constructed for faulty
pitot tube, wind vanes and IMU. In order to illustrate
sensor fault detection, we used Ultra Stick 25e UAV and
presented cases for detecting stuck and bias sensor faults.
For the pitot tube and accelerometers, we showed that the
sensor residual can be used to detect sensor faults. For
other sensors, this proposed approach can also give good
performance.
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