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Abstract For quadruped robots with springy legs, a
successful jump usually requires both suitable elastic parts
and well-designed control algorithms. However, these two
problems are mutually restricted and hard to solve at the
same time. In this study, we attempt to solve the problem of
controller design with the help of a robot without any
elastic mounted parts, in which the untethered robot is
made to jump on a trampoline. The differences between
jumping on hard surfaces with springy legs and jumping on
springy surfaces with rigid legs are briefly discussed. An
intuitive control law is proposed to balance foot contact
forces; in this manner, excessive pitch oscillation during
hopping or bounding can be avoided. Hopping height is
controlled by tuning the time delay of the leg stretch.
Together with other motion generators based on kinematic
law, the robot can perform translational and rotational
movements while hopping or bounding on the trampoline.
Experiments are conducted to validate the effectiveness of
the proposed control framework.

Keywords hopping and bounding gait, compliant
mechanism, compliant contact, balance control strategy,
legged locomotion control, quadruped robot

1 Introduction

Hopping or bounding, which is one of the fundamental
abilities of quadruped robots, can help these robots

overcome obstacles and increase movement speed.
WildCat, Spot, and Spotmini, which were developed by
Boston Dynamics, demonstrated how robots can attain
remarkable agility from dynamic bounding or running.
MIT Cheetah 1 and 2 took advantage of bounding gait to
achieve high-speed movement and obstacle clearance
jumping [1–3]. StarlETH [4] and ANYmal [5] with
pronking gaits are other exemplary results of the advance-
ments made in quadrupedal robotic systems.
Various approaches have been proposed to achieve

stable hopping or bounding. From the perspective of
theoretical analysis, Blickhan [6] proposed the idea of
using a spring-mass model to describe the interdependency
of mechanical parameters from which human running and
hopping can be characterized. Berkemeier [7] analyzed the
stability of quadrupedal bounding and pronking (hopping)
through a simplified spring-damper model and proved that
the linearized bound of the unperturbed model is always
neutrally stable if the dimensionless body inertia is greater
than 1. Ahmadi et al. [8] analyzed the limit cycles of a one-
leg hopping robot and proposed an approach that would
force the system trajectory to converge to the reference
limit cycle. As for controlling real robots, Zabihi and
Alasty [9] used fuzzy logic control to achieve a stable limit
cycle for a hopping robot with two springs on the two
sides. Hale et al. [10] proposed adaptive algorithms to
adjust the hopping height of a one-leg robot, in which the
algorithms were based on information obtained from
previous hops or steps. Park et al. [1,2] proposed a
variable-speed quadrupedal bounding method based on
simple impulse planning. Experiments showed that the
algorithm enabled the MIT Cheetah 2 to successfully
achieve 3D running. Liu et al. [11] proposed a control
approach by converting the time-dependent limit cycle
motions into time-invariant virtual constraints; thus, the
robot could be controlled to converge to a specific state of
bounding. Apart from model-based methods, biologically
inspired methods can offer other perspectives on efficient
jumping. Khoramshahi et al. [12,13] and Buchli et al.
[14,15] proposed different frequency adaptive oscillators
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to automatically converge to the resonance frequency of a
hopping system with springy legs, and their proposed
scheme resulted in reduced energy cost. However, majority
of existing proposed controllers are designed for torque-
controlled robots, which are unsuitable for small-sized
prototype tests. Moreover, in small-sized prototype tests,
position-controlled motors are usually used.
A position-controlled robot may be able to jump by

mounting elastic elements, subsequently reducing energy
loss during touchdown impact. Among different methods,
serial elastic actuation [16–18] has been widely used. A
serial elastic actuator contains an elastic element in series
and a mechanical energy source. Thus, torque control can
be achieved through end-effector feedback, and then
algorithms based on torque control can be transplanted.
Unlike in typical serial elastic actuation, a passive spring-
loaded leg mechanism with multiple segments was
proposed by Spröwitz et al. [19] to increase the robustness
of a quadruped robot during trotting and stepping down
events. Nevertheless, regardless of whether active-control
springs or passive-control springs are used, the value of the
spring stiffness and the manner of mounting elastic
components can affect system dynamics. A suitable control
algorithm cannot be determined until compliant elements
are adequately chosen and mounted.
In this study, we attempt to solve the above problems by

proposing a control framework that can achieve stable
quadrupedal hopping, bounding, and translational/rota-
tional motion control on a trampoline (Fig. 1). The
proposed framework, which is based on position control,
does not rely on the explicit dynamic model. We choose
trampoline tests because, from the perspective of energy
utilization, a robot cannot possibly realize off-ground
jumping if it fails to jump on a trampoline. Jumping on a
trampoline requires a simplified model similar to that of
regular jumping, and this similarity allows us to ignore the
problem of choosing and mounting springs. Here, the
control algorithms can be designed initially for the
trampoline tests and then used to select and mount the
suitable elastic components. To the best of our knowledge,

although some researchers have addressed the problem of
balance control for robots standing on compliant surfaces
[20], while other researchers have addressed the problem
of stabilizing the periodic orbits of 1-degree of freedom
(1-DOF) hopping robots over compliant surfaces [21], the
problem of quadrupedal jumping control on a trampoline
has not been addressed.
This paper is presented as follows. In Section 2, an

analysis of the simplified model of jumping on a trampo-
line is discussed. A comparison between regular springy
leg experiments and trampoline experiments is presented.
In Section 3, the controller for stable hopping and
bounding is introduced in detail. In Section 4, the
experimental results are presented and then used to
validate the proposed controller. In Section 5, drawbacks
and future work are discussed.

2 Model analysis

2.1 Simplified sagittal plane model

Hopping or bounding on a trampoline can be represented
as a two-legged sagittal plane model, as shown in Fig. 2(a).
The robot modeled in this study is a homogeneous link
with two massless legs. The origin of the coordinate is set
on the surface of the trampoline, in which the x and y axes
represent the horizontal and the vertical directions. ðxc,ycÞ,
ðxh,yhÞ and ðxf ,yf Þ are the positions of the center of mass
(CoM), the hind leg foot-end and the foreleg foot-end,
respectively. � is the pitch angle of the robot. Lb is half the
length of the body. Lf and Lh represent the lengths of the
foreleg and the hind leg, respectively. βf and βh represent
the hip joint angles of the foreleg and the hind leg,
respectively. For simplicity, we assume βf ¼ βh ¼ π=2 and
Lf ¼ Lh ¼ L.
Ground reaction forces are used to describe the

dynamics of the model.

m€xc ¼ f xf þ f xh , (1)

m€yc ¼ –mg þ ðf yf þ f yh Þ, (2)

I€� ¼ f yf ðxf – xcÞ þ f yh ðxh – xcÞ þ f xf ðyc – yf Þ
þ f xh ðyc – yhÞ, (3)

where f xh and f yh represent the ground reaction forces along
the x and y axes of the hind legs, f xf and f yf represent the
ground reaction forces of the forelegs, I is the inertia of the
body, m is the mass of the body, and g is gravity
acceleration.
Assume that the dynamics of the trampoline can be

modeled as separate springs. Then, f yf ,h can be calculated as

f yf ¼ – ksyf , (4)Fig. 1 Overview of the trampoline and the quadruped robot.
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f yh ¼ – ksyh, (5)

where ks is the spring stiffness, which is a positive
constant. However, for f xf ,h, which correspond to the static
friction at the toes (no slips are assumed here), they are
governed by friction laws and the kinematic state of the
body.
If a robot with springy legs jumps on a hard surface, as

shown in Fig. 2(b), then Eqs. (1)–(3) remain to be correct,
but the values of f yf ,h and f xf ,h should be

f yf ¼ – ksy#f , (6)

f yh ¼ – ksy#h, (7)

f xf ¼ ksðxf – x#f Þ, (8)

f xh ¼ ksðxh – x#hÞ, (9)

where ðx#f ,y#f Þ and ðx#h,y#hÞ represent the rest points of the
forelegs and the hind legs.
A comparison of Eqs. (6)–(9) with Eqs. (4) and (5)

indicates that when a robot has a perfect vertical hopping
(€xc ¼ 0 and x#f ,h ¼ xf ,h), choosing between a trampoline or
springy legs will lead to the same results. Nonetheless,
using a trampoline has the advantage of storing all the
kinetic energy of a falling robot. As for springy legs, elastic
elements must be kept strictly vertical to avoid energy loss
during touchdown impact, but this scenario is difficult to
achieve for legs with rotational joints. When a robot
bounds on a trampoline, the difference between Eqs. (6)–
(9) and Eqs. (4) and (5) indicates that the robot may not
easily achieve a stable bounding pattern. A robot with
springy legs bounding on a hard surface can be modeled
with f xf ,h and f yf ,h to decrease the amplitude of the pitch
oscillation and control the bounding period [1,2]. Stable
bounding can also be automatically achieved by using
passive springy legs [22–24]. However, in the trampoline
tests, we found that a stable bounding gait could not be
easily achieved because the robot would start to tip over
after a few seconds.

2.2 Algorithms for balance control

As observed in our experiments, algorithms for balance
control are necessary regardless whether the robot hops or
bounds on a trampoline; that is, regardless of hopping or
bounding, the body pitch angle � could not be maintained
naturally to an acceptable range. Any unsynchronized
touchdown event of the forelegs and hind legs would
induce pitch oscillation due to the springiness of the
surface. Without balance control, the robot would either tip
over or move chaotically.
In terms of hopping, f yf ,h is effective in suppressing the

oscillation of � during the stance phase. The corresponding
control law is

Δyf Δyh½ �T ¼ – 1 1½ �Tkpy�, (10)

where Δyf and Δyh are the output positional increments for
the forelegs and the hind legs, and kpy is a positive
constant. According to Eqs. (4) and (5), positional
increments will affect f yf ,h. Thus, a torque can be applied
to maintain the value of �.
Equation (10) differs from the common negative-

feedback control law and can offset �. By taking
Fig. 2(a) as an example (where � > 0), the common �

offset law becomes Δyf Δyh½ �T ¼ 1 – 1½ �Tkpy�. This
control law attempts to reduce the pitch angle � by
decreasing the length of hind legs and increasing the length
of forelegs, which is simply based on kinematic relations.
According to Eqs. (3)–(5), assuming sin� � �, the resultant
dynamics of � is

I€� ¼ – 2ksðycLþ L2b – L
2Þ� – 2kpyksL�þ D, (11)

where D ¼ f xf ðyc – yf Þ þ f xh ðyc – yhÞ. However, Eq. (10)
entails a strategy opposite to the common � offset law. The
resultant dynamics can be expressed as

I€� ¼ – 2ksðycLþ L2b – L
2Þ�þ 2kpyksL�þ D: (12)

Usually, Lb > L and f xf ,h have sufficiently small
values and can be ignored in hopping. Thus,

Fig. 2 (a) Simplified sagittal plane model of trampoline tests; (b) simplified model with springy legs.
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– 2ksðycLþ L2b – L
2Þ < 0 and D � 0. Moreover, without

the balance control (kpy ¼ 0 in Eq. (11)), the trampoline
will turn any disturbance of � into an oscillation. A
comparison of Eq. (11) with Eq. (12) indicates that the
common negative-feedback control law can increase the
amplitude of the oscillation, a scenario that hinders the
stabilization of the robot. Equation (10) can then be used to
reduce the amplitude of the oscillation by neutralizing the
item – 2ksðycLþ L2b – L

2Þ�; in this manner, the amplitude of
the oscillation can be contained.
In terms of bounding, a control law similar to Eq. (10) is

used to stabilize the robot during the stance phase.

Δ_xf ,Δ _yf½ � ¼ ½ – kbx,kby�$j _�j, yf < 0, _� < 0,

Δ_xf ,Δ _yf½ � ¼ ½kbx,kby�$j _�j, yh < 0, _� > 0,

(
(13)

where kpx and kpy are positive constants. Output positional
increments can only be applied to the supporting legs.
Equation (13), unlike Eq. (10), is designed to more
radically reduce f yf ,h and f

x
f ,h caused by the trampoline. First,

the equation uses _� instead of � to generate the output.
Thus, the robot can react much more quickly. Second, the
use of _�, Δ_xf , and Δ_yf enables the affected leg to hold its
length even when the pitch angle returns to zero or stops
increasing. Given that Δ _xf will reduce the relative
movement trends between the foot-end and the trampoline,
f xf ,h can be reduced by Eq. (13). The experiments show that
Eq. (13) is more effective than Eq. (10) in stabilizing the
bounding robot.

2.3 Effects of leg stretch delay on hopping height

The robot will lose its mechanical energy at each jumping
period due to the touchdown impact and the damping
characteristics of a real trampoline. Thus, the supporting
legs will stretch at a specific time instant during the stance
phase to sustain a stable jumping pattern. This time instant
is expressed as the time delay from the touchdown event,
and it is called leg stretch delay in this study.

Given a certain leg stretch delay, the hopping height will
naturally converge to a steady-state value that can be
illustrated by a simplified model. As shown in Fig. 3(a), the
hopping robot in the model can be simplified as a mass
block with a single stretchable leg, and energy loss can be
described by the velocity scaling factor kv during touch-
down events. The origin of the coordinate is set on the
surface of the trampoline. The dynamics of this model is

m€yc ¼ –mg þ f y,

f y ¼ max
�
– ksðyc þ lcÞ,0

�
,

_ycðtþ* Þ ¼ kv _ycðt*Þ,

8>><
>>: (14)

where lc is the leg length, t* is the time instant when the
robot touches the compliant surface, kv is a positive
number with an absolute value not larger than 1, and f y is
the foot contact force.
Figure 3(b) illustrates a single hopping cycle of the

simplified model, as described in Eq. (14), in which the leg
stretch event is not considered (lc is kept to zero). In this
study, hopping cycle is defined as the period between the
time instant of _yc ¼ 0, yc > 0 to the next instant. The
dashed line in Fig. 3(b) is taken as an example. Hopping
cycle starts from _yc ¼ 0, yc > 0 to _yc ¼ 0, yc < 0 and then
back to _yc ¼ 0, yc > 0. When kv ¼ 1, as shown by the
dashed line, no energy is lost at touchdown impact. The
trajectory is a closed curve, which means that the robot can
reach its initial vertical position after hopping on a
compliant surface. However, when kv ¼ 0:8, _yc will be
reduced to 0:8_yc at the touchdown impact (yc ¼ 0). As
shown by the solid line, the robot will not be able to reach
its initial position due to energy loss.
By using yc to represent the initial point of a hopping

cycle (also the highest point reached by the robot in the
hopping cycle), the robot vertical position ycðtÞ during the
stance phase can be solved by Eq. (14):

yc tð Þ ¼ – kv

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2mgyc
ks

s
sin

ffiffiffiffiffi
ks
m

r
t þ mg

ks
cos

ffiffiffiffiffi
ks
m

r
t –

mg

ks
, (15)

Fig. 3 (a) Simplified model of a hopping robot; (b) one hopping cycle.
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where t starts from the moment when the robot touches
the compliant surface. Leg stretch is not considered in
Eq. (15).
Then, by using td to represent the preset time delay, the

spring compression (which is a non-negative length
variable) at td is

ŷs ¼ – ycðtdÞ, (16)

where ŷs is the spring compression at td.
For simplicity, we assume that the leg stretch is

completed immediately at td, where lc is changed from
zero to –Δl (Δl > 0). Then, the energy injected by the leg
stretch is

ΔE" ¼ 1

2
ks ŷs þ Δl½ �2 – 1

2
ksŷ

2
s ¼

1

2
ksðΔlÞ2 þ ksΔlŷs: (17)

Energy loss during touchdown impact is

ΔE# ¼ 1

2
m _y2cðt*Þ –

1

2
m _y2cðtþ* Þ ¼ mgycð1 – k2vÞ: (18)

Thus, in the next hopping cycle, the highest point that
can be reached by the robot is

yc½Nþ1� ¼ yc½N � þ ΔE" –ΔE#

mg
, (19)

where yc½N � represents the highest jumping point of the
Nth hopping cycle, and yc½Nþ1� represents the one of the
next hopping cycle.
As indicated by Eq. (19), yc will converge to a stable

value ycð1Þ when ΔE" ¼ ΔE#. The solution of ΔE" ¼
ΔE# is

yc 1ð Þ ¼ –Bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 – 4AC

p

2A

 !2

, (20)

where

A ¼ mgð1 – k2vÞ,
B ¼ – kskvΔl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mg=ks

p
sinðωntdÞ,

C ¼ ksðΔlÞ2=2 – ½1 – cosðωntdÞ�mgΔl,
ωn ¼

ffiffiffiffiffiffiffiffiffiffi
ks=m

p
:

The definitions imply that B2 – 4AC > B2 > 0 because
A > 0 and C < 0. Thus, a reasonable solution will always
exist for ΔE" ¼ ΔE#.
Figure 4(a) is plotted to explain comprehensively the

convergence process of yc. According to Eqs. (17) and
(18), ΔE" is a line function while ΔE# is a quadratic
function with respect to

ffiffiffiffiffi
yc

p
. Both equations have an

intersection point at
ffiffiffiffiffi
yc

p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
ycð1Þp

, as indicated by Eq.

(20). In Fig. 4(a), if
ffiffiffiffiffi
yc

p
<

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ycð1Þp

, then ΔE" > ΔE#;
therefore,

ffiffiffiffi
yc

p
increases according to Eq. (19). If

ffiffiffiffiffi
yc

p
>ffiffiffiffiffiffiffiffiffiffiffiffiffi

ycð1Þp
, then ΔE" < ΔE#; therefore,

ffiffiffiffiffi
yc

p
decreases.

Moreover,
ffiffiffiffiffi
yc

p
will converge toward

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ycð1Þp

. Figure
4(b) illustrates the evaluation of _yc and yc with the leg
stretch enabled and with kv set to a value smaller than 1.
The values of parameters are as follows: m ¼ 5,
ks ¼ 5000, kv ¼ 0:8, Δl ¼ 0:02, yc½1� ¼ 1, and td ¼
0:1

ffiffiffiffiffiffiffiffiffiffi
ks=m

p � 0:020. As illustrated by Fig. 4(b), the
trajectory becomes much denser when the hopping cycle
increases. Thus, the trajectory tends to form a closed curve,
in which yc is unchanged.
In conclusion, yc will always converge to a single

ycð1Þ. Thus, stabilizing the hopping height yc by
adjusting leg stretch length or by using other parameters
is unnecessary, and yc will reach ycð1Þ naturally after
sometime.
Nevertheless, the stable value of yc can be adjusted with

Δl and td. According to Eq. (20), Δl is positively correlated
with ycð1Þ. However, the relation between td and the
stable value of ycð1Þ is somewhat complex. Figure 5(a)
illustrates how Δl and td affect ycð1Þ. The values of the
other parameters are as follows: m ¼ 5, ks ¼ 5000, and
kv ¼ 0:7. ycð1Þ increases as Δl increases when a specific
value of td is selected. However, when Δl is fixed, td can be
used to ensure the largest value of ycð1Þ. Figure 5(b)
presents the relation between ycð1Þ and td with different
values of ks. The values of the other parameters are as

Fig. 4 (a) yc convergence in ΔE –
ffiffiffiffiffi
yc

p
plot; (b) trajectory convergence in _yc – yc plot.
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follows: m ¼ 5, Δl ¼ 0:03, and kv ¼ 0:7. In the figure, the
td values for the corresponding largest ycð1Þ values are in
the range of 20% to 40% of 2π=ωn, and they move close to
25% of 2π=ωn when ks increases. This phenomenon can be
explained by the stance phase, which consists of the
following three parts: 1) The robot decelerates to the
balance point where the spring force equals the robot
weight; 2) the robot reaches the lowest point and then
reverts to the balance point; and 3) the robot decelerates
until it leaves the compliant surface. The time of
completing the second part is constant, which is 50% of
2π=ωn. However, the time needed for the first and third
parts depends on contact velocity and the values of ks and
m. If the time consumed by the first and third parts is
relatively short, then td ¼ 0:25$2π=ωn leads ŷs to move
close to its maximum value. Therefore, according to Eq.
(17), this scheme enables ΔE" to reach its maximum value,
thus leading to the largest ycð1Þ. Increasing the values of
ks shortens the time consumed by the first and third parts;
thus, td associated with the largest ycð1Þ is at approxi-
mately 25% of 2π=ωn.
The plot in Fig. 5(b) also indicates that a larger ks would

result in a larger ycð1Þ. The figure is plotted with the same
amplitude of Δl. Thus, according to Eq. (17), the energy
injected into the system grows as ks increases. Therefore,
the largest value of ycð1Þ also increases. For researchers
who can set the value of ks in real experiments, ks can be
used to adjust the largest value of ycð1Þ. However, a large
ks will reduce the value of the leg stretch delay to reach the
largest ycð1Þ. That means more responsive actuators are
required.

3 Controller structure

The proposed controller consists of the following three
parts: Balance-keeping motion generator, translational and
rotational motion generator, and basic-jumping pattern
generator. These three types of motions are added to derive

the final foot-end positions. We choose this parallel motion
generation structure because it is easy to deploy for online
multitask switching while keeping the robot balanced
[25,26].
Figure 6 illustrates the general structure of the proposed

controller. � is the pitch angle of the robot. TDi represents
a touchdown event. LOi represents a liftoff event. Matrix P
is the controller output, which contains four 3D foot-end
position vectors pi with respect to the body coordinate
(Fig. 1). The index i represents the leg number, including
LF (left foreleg), RF (right foreleg), LH (left hind leg), and
RH (right hind leg).

The basic-jumping pattern generator initiates primitive
leg motions to achieve hopping and bounding, and
disturbances are not induced. In this condition, legs can
simply stretch when they are on the ground, and they
contract when they are off the ground. The motions
generated by this module are defined as

_f ¼ T=ð2πÞ, f 2 ½0, 2π�, (21)

yd ¼

lA
2
sin ω1f –

π
2

� �
þ lA

2
0 < f£fco;

lA fco < f£π;

lA
2
sin ω2ðf – πÞ þ π

2

� �
þ lA

2
π < f£fst;

0 fst < f£2π:

8>>>>>>><
>>>>>>>:

(22)

Fig. 5 (a) Different values of td and Δl affect ycð1Þ; (b) different values of ks affect the td value when deciding for the largest ycð1Þ.

Fig. 6 Proposed controller structure.
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ω1 ¼ π=fco, ω2 ¼ π=ðfst – πÞ,
where yd is the output 1D trajectory along the vertical
direction, lA is the amplitude of the trajectory and is used to
define the leg stretch amplitude, which corresponds to Δl in
Section 2, T is the trajectory period, fco is the endpoint of
the leg-contracting process, and fst is the endpoint of the
leg-stretching process. Equations (21) and (22) form a
simple phase oscillator that generates periodic signals. (See
Refs. [27,28] for additional information on oscillators with
arbitrarily defined limit cycles.)
As shown in Fig. 7, within one period, the leg first

contracts with amplitude lA and then holds the position
until f ¼ π. When π < f < fst, the leg stretches and
keeps its maximum stretch length to the end. Each of the
four legs is assigned such a predefined trajectory.

In hopping, touchdown and liftoff events are induced to
reset f and enable the predefined period to adapt to the real
jumping period.

fi ¼
π –foff TDall ¼ true;

0 LOall ¼ true:

(
(23)

where foff , which equals 2πtd=T , is set to delay the leg
stretch after the TD event; this variable has a predefined
constant value. TDall and LOall are used to synchronize the
stretches and contractions of the four legs. TDall or LOall
represents the event in which all four legs have touched or
left the ground. As illustrated in Fig. 5, the value of foff or
td will affect ycð1Þ. However, controlling the hopping
height is not one of the objectives of this study. Thus, the
value of foff is chosen through trial and error to attain the
most stable hopping state. Nonetheless, we also present the
results of the different hopping heights with varying foff in
the experiment section.
In bounding, the forelegs and hind legs alternatively

support the robot. The phase reset law is

ff ,h ¼
π TDf,h ¼ true,   _� 2 _�l, _�u

	 

,

0 LOf,h ¼ true,

(
(24)

where _�l and _�u are the lower and upper limits of the
triggered _�, respectively. These variables have small values
(near zero). As the pitch angle oscillates at a specific period
in the bounding gait, Eq. (24) can be used to control or
stretch the supporting forelegs or hind legs without
explicitly affecting the amplitude of the pitch oscillation.
The subscript “f,h” indicates that forelegs and hind legs are
controlled in pairs. foff is no longer considered because _�
already represents the triggered moment.
Translational and rotational motions are generated

through simple kinematic laws:

_pt ¼ ½ – vdx, 0, – vdz�T, (25)

_pr ¼ –Ωd � pi, (26)

where pt and pr are the output foot-end positional
increments of the translational and rotational motions,
respectively, vdx is the desired body velocity along the
heading direction, vdz is the desired velocity along the
lateral direction, and Ωd is the desired body angular
velocity.
Furthermore, for the fixed set point control for the yaw

angle, the following equation is used:

_pr ¼ kyawðψm –ψdÞ$½0, 1, 0�T � pi, (27)

where ψm and ψd are the measured and desired body yaw
angles, respectively, and kyaw is a tunable positive
parameter.
Balance-keeping motions are generated according to

Eqs. (10) and (13). For hopping,

pb ¼
½0, – 1,  0�Tkpy� for forelegs,

½0, 1, 0�Tkpy� for hindlegs:

(
(28)

For bounding,

_pb ¼
½ – kbx, kby, 0�Tj _�j for forelegs,

½kbx, kby, 0�Tj _�j for hindlegs,

(
(29)

where _� is coerced into ½ –1, 0� for the forelegs and
½0,þ1� for the hind legs.
Equations (25)–(29) are only applied to supporting legs,

their values will be cleared when the corresponding leg
enters the swing phase.

4 Experiments

Experiments are performed on a untethered servo-actuated
quadruped robot and a commercial adult-used trampoline
(Fig. 1). The quadruped robot (Fig. 8) weighs approxi-
mately 4.5 kg and has a length of 450 mm, width of 180
mm, and height of 270 mm. Each of its legs has three
servos that can drive the foot-end to move in the sagittal

Fig. 7 Predefined basic-pattern pattern.
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plane and rotate in the horizontal axis. The three servo axes
are depicted by arrows in Fig. 8. 3D foot-end position
control can be achieved within the workspace. Four tactile
switches are mounted on the foot-ends to detect touchdown
and liftoff events. An onboard inertial measurement unit
(IMU) is used to detect the attitude angle of the robot. As
for the trampoline, the diameter of the jumping cloth is
approximately 92 cm. Elastic ropes are used to tie the
jumping cloth to the outer metal frame. An overview of the
successful hopping and bounding is shown in Fig. 9. The
experimental video of the performed tests can be found
from the Electronic Supplementary Material.

4.1 Hopping

The parameters used in the hopping tests are listed in
Table 1. Notably, T is not the period of real hopping.
According to Eq. (23), the predefined period T will be
adjusted automatically when T is greater than the actual
period. The robot can automatically start the hopping
without being dropped from a specific height. Because the
predefined trajectory (Fig. 7) will make the leg contract
first, and this scheme is faster than free-fall dropping. Thus,
the initial height equals lA, and it will converge to a stable
value, as illustrated in Fig. 4(a). Moreover, lA is set to be as
large as possible to increase the maximum jumping height.
However, given that the vertical workspace of the robot is
limited to 55 mm, the value of 30 mm can be chosen to
leave enough margin for balance-keeping motions.

Figure 10(a) presents the recorded pitch angle data of
successful (solid line) and failed (dashed line) hopping. In
the failed hopping test, in which the balance-keeping
motion generator was turned off, the pitch angle rapidly
accumulated. After two or three jumps, the pitch angle
became excessively large that the robot dropped onto the
trampoline only with two forelegs or hind legs, while the
other side fell due to gravity. Thus, as shown by the dashed
line in the figure, stable periodic hopping cannot be
achieved without balance-keeping motions.
As a mean to fully understand successful hopping,

Fig. 10(b) is presented to show the stable pattern achieved
in this study. The dashed square wave in Fig. 10(b)
represents the periods when at least three foot-ends have
touched the trampoline. The periodic appearance of the
higher value of the square wave indicates that the hopping
motion has reached a stable state. In our experiments, the
time in which the robot stayed on the ground was
approximately 0.10 s, and the time in which the robot
stayed on air was approximately 0.25 s.
Rotational and translational motions induced distur-

bances to the pitch angle. Within the proposed control
framework, the translational or rotational velocity was
limited to a small value to guarantee stability. For lateral
motion, the desired velocity vdz was set to 0.6 m/s. For
forward or backward motion, the desired velocity vdx was
set to 0.15 m/s. As an example, the recorded attitude angle
data with rotation motions are obtained, as shown in
Fig. 11. Equation (27) was used, but the integration period
(100 ms) was set to 20 times of the control period (5 ms) to
ensure that the over-frequent yaw angle adjustments could
be avoided. From 38 to 42 s, as shown by the dashed line,
rotational motions were added, and a 45° turn was
successfully achieved. Disturbances were observed in
both pitch and roll angles, but they diminished after the
rotational motions were conducted. Thus, the proposed
controller could stabilize the robot after limited inter-
ference.

Fig. 8 Servo-actuated quadruped robot.

Fig. 9 Overview of successful hopping (above) and bounding (bottom).

Table 1 Control parameters in the hopping tests

T/s fco fst foff lA/mm kpy/(mm∙(° )–1) kyaw

2 0:08π 0:035π 0:025π 30 5 0.08
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Unlike the pitch angle, the roll angle could be naturally
stabilized into a small range near zero. The difference
could be attributed to the ratio of the body length and the
body width. As indicated in Eq. (12), when the roll angle is
considered, 2Lb should correspond to the width rather than
the length of the robot. Normally, the body width is much
smaller than the length. Thus, the dynamics could be
changed. However, a comprehensive exploration of this
problem is beyond the scope of this study.
The recorded flight and stance phase durations with

different td is plotted to verify the relation between td and
ycð1Þ, as shown in Fig. 12. The values of the other
parameters are as follows: T ¼ 2  s, fco ¼ 0:08π, fst ¼
0:02π, and A ¼ 30 mm. At a specific value of td, the flight
or stance phase duration fluctuated, even after dozens of
hopping cycles; hence, we calculated the mean value
within a time period, particularly when the fluctuation was
relatively small. ycð1Þ was derived by considering the
flight phase duration and by assuming a robot with perfect
free-fall movements. As shown in Fig. 12, a maximum
ycð1Þ of 7.5 cm could be achieved at approximately
td ¼ 0:03  s. Other values of td would lead to a much
smaller ycð1Þ. When td > 0:04   s, ycð1Þ was drastically
reduced. Unlike the unit in Fig. 5, the horizontal axis unit

of Fig. 12 falls second, but the value is not presented as the
percentage of 2π=ωn because ωn cannot be precisely
estimated in our experiments. However, given that the
stance phase duration is mainly composed of π=ωn, the
short stance phase duration of 0.106 s may be used as a
rough estimation for π=ωn. Thus, on the basis of Fig. 5, the
largest ycð1Þ can be achieved at approximately 25% of
2π=ωn, but this finding conflicts with the result presented
in Fig. 12. In particular, in Fig. 12, the largest ycð1Þ was
achieved at approximately 0.03 s, which was only 14% of
the rough estimation of 2π=ωn. This deviation may be
explained by the robot needing some time to stretch its leg,
whereas in mathematical analysis, the leg stretch can be
completed immediately. In our test, fst was set to 0:02π in
that the predefined leg stretch should be finished within
0.02 s. If this time is considered, then the “real” td should
be approximately 0.05 s, which is approximately 25% of
the rough estimation of 2π=ωn. Thus, the experiment
results match the theoretical prediction.

4.2 Bounding

The parameters of the bounding tests are listed in Table 2.
We also set a range limit to the final pb output in Eq. (29);

Fig. 10 (a) Recorded pitch angle date of successful and failed hopping tests; (b) recorded pitch angle data and on-ground indicators.

Fig. 11 Recorded attitude data with rotational motions during
hopping.

Fig. 12 Recorded flight and stance phase durations with different
td.
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in this manner, the leg stretch will not be completely
ignored. For the above parameters, the range limit is
½ –15,   15� mm.
Figure 13 presents the recorded pitch angle data in

successful (solid line) and failed (dashed line) bounding.
For the proposed controller, the bounding must start with a
side lift. As observed in our experiments, a passively stable
bounding on the trampoline was not easy to achieve. The
robot either stopped swinging quickly (with a small value
of lA) or tipped over after a few seconds (with a big value
of lA). The dashed line in Fig. 13 provides an example of
the tip-over situation when no balance-keeping motions are
induced.

With the help of balance-keeping motions, the pitch
angle can be stabilized into periodic oscillation, as shown
by the solid line in Fig. 13. However, unlike in stable
hopping, the moments in which all four legs are on air have
not been observed in stable bounding. The two square
waves in Fig. 14 represent the periods when the forelegs or

hind legs have supported the robot. The squares spread
over the timeline without any gaps; thus, a flight phase did
not occur in stable bounding. The overlaid parts of the two
square waves indicate that moments have occurred when
all four legs supported the robot. In our experiments, these
moments lasted approximately 0.04 s, and the bounding
period was approximately 0.60 s.
According to the literature [20–22], stable bounding at

moments in which four legs are on air can be naturally
achieved. However, in our experiments, extra methods
(Eq. (13)) were initially needed to stabilize the bounding
gait; additionally, stable bounding at moments in which
four legs are on air was impossible to achieve. As depicted
by our sagittal plane models, the problem can be explained
by the different horizontal contact force generating
mechanisms between the two types of jumping. For
jumping with springy legs, these legs could provide elastic
forces along both vertical and horizontal directions. The
horizontal elastic forces generated by the legs could reduce
the maximum horizontal contact forces. However, for
jumping with stiff legs on a trampoline, the trampoline
could only generate vertical elastic forces. Thus, the
horizontal contact forces were governed by friction laws
and the relative motion trend between the robot and the
contact surface. The resultant horizontal contact forces
could be much larger and result in a much easier tipping
over of the robot. In other words, dynamic bounding gait at
moments in which four legs are on air is hard to achieve
when jumping on a trampoline.
Figure 15 illustrates the recorded altitude angle of the

lateral and rotational motion tests. In these tests, Eq. (27)
was used to control the yaw angle. Similar to the hopping
tests, we set the integration period (100 ms) of Eq. (27) to
be 20 times of the control period (5 ms). In this manner,
over-frequent yaw adjustments could be avoided. In the
present lateral test result (Fig. 15(a)), we set the desired
lateral velocity vdz to be 0.4 m/s from 75 to 78 s after the
robot entered a stable bounding state. The amplitude of the
pitch oscillation slightly decreased, the frequency of the
roll oscillation increased, but the amplitude stayed nearly
the same. Thus, the stability of the robot was proven during
lateral motion. The yaw angle drifted from –7° to –3°. This
drift was in line with expectations, considering that the
value of kyaw was tuned to allow a small range of yaw angle
deviation (precise control of the yaw angle was not
needed). As for forward or backward movement, the
maximum value of vdx could be set to 0.2 m/s. Similar to
the lateral motion tests, the changes in the amplitude or
frequency of the pitch or roll angle oscillation were not
apparent.

Table 2 Control parameters in the bounding tests

T/s fco fst lA/mm kby/(m∙s–1∙(° )–1∙s) kbx/(m∙s–1∙(° )–1∙s) _� l/((° )∙s
–1) _�u/((° )∙s

–1) kyaw

2 0:08π 0:035π 30 0.04 0.04 – 30 – 10 0.08

Fig. 13 Recorded pitch angle data during bounding.

Fig. 14 Alternative change of supporting legs in stable bounding.
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In the present rotational motion test result (Fig. 15(b)),
we set the desired yaw angle from 0° to 45° between 34
and 44.5 s and then reverted to 0° after 44.5 s. The yaw
angle could converge to the newly desired value within 5 s.
During the converging process, the amplitude and
frequency of the pitch and roll angle oscillation did not
show obvious differences compared with those in the no-
rotation motion state. This result differed from the findings
generated by the hopping tests in which large disturbances
appeared in the pitch and roll angle during rotational
motions (Fig. 11). By contrast, in the bounding tests,
disturbances were generated when the robot started to
rotate. As shown in Fig. 15(b), perturbations of the pitch
and roll angle were observed at 34 and 44.5 s, particularly
when the robot started rotational motion. According to Eq.
(27), the perturbations can be attributed to the maximum
difference between the measured and desired yaw angles
when a new desired yaw angle was eventually set. At that
moment, the resultant angular velocity is also at its
maximum.

5 Conclusions

In this study, we proposed a control framework to achieve
stable quadrupedal hopping and bounding on a trampoline.
An intuitive approach based on contact-force balance was
used to stabilize both the hopping and the bounding.
Together with other parallel modules, the robot could
perform translation and rotation motions. The control
framework did not require any calculation of complex
dynamics, indicating its suitability for small servo-driven
quadruped robots. However, ignoring the dynamics may
limit the performance of the robot and reduce its final
translation and rotational speed. In the future, we plan to
mount suitable elastic parts to a robot to further test the
proposed control framework on hard surfaces with springy
legs. For bounding in particular, detailed model analysis
and comparative experiments shall be conducted.
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