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Abstract. In this paper, we propose a shadow-free TILT method to
rectify facade images corrupted by shadows. The proposed method is
deduced from the original TILT, and improve it by introducing a multi-
plicative shadow factor. That is, in our method, the constraint is repre-
sented that the rectified image equals to the low-rank image multiplied
by the shadow image, yet with the additive noise corruption. Moreover,
the objective function is improved by incorporating the smooth shadow
model. Experimental results on both synthetic and real images demon-
strate that our method provides more accurate and stable rectification
results as compared with the original TILT, especially when shadows are
strong in the input images.

1 Introduction

Image-based architecture modeling is a famous application on both computer
vision and computer graphics. Numerous methods have been proposed that can
be mainly classified into two categories, i.e., the multi-image based methods [1–3]
and the single-image based methods [4, 5]. Generally, the multi-image methods
model architectures by using potential information that is obtained from image
matching. Their main limitation is the matching precision. As to the single-image
methods, they utilize only one image as input, and are more convenient than the
multi-image ones. However, the single-image methods often have the viewpoint
problem. Hence, it always needs to rectify the input image before using it. In
this work, we focus on the image rectification problem. The rectified image can
be directly utilized for facades modeling (refer to [6, 7]).

The facades of architectures often have notable geometric structures. Thus,
traditional methods on image rectification rely on the local features, such as
salient points and edges. The famous methods are based on vanishing points [8,
9], which are obtained from a family of parallel lines or the geometric relationship
between other vanishing points and the optical center. For example, in [8, 10,
11], vanishing points are obtained through the Cascaded Hough Transformation.
Unfortunately, the calculation of vanishing points is very sensitive to the noise,
since local features often fail to be detected. Hence, these methods often fail
when the background is in a clutter or the facade is corrupted by occlusions.
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Since the vanishing point based methods suffer from the noise sensitive prob-
lem, the texture based methods have been proposed. These methods combining
the theoretical framework of low-rank and sparse representation [12–14], which
do not detect local geometric features directly, but utilize them holistically. One
popular approach is the transform invariant low-rank textures (TILT) method
proposed in [15]. The TILT assumes that the rectified image is low-rank, since the
facades of man-made architectures have meaningful structures, such as regular
shapes, symmetric structure, and repeated patterns. Compared with vanishing
point based methods, this method does not need to do some pre-processing, e.g.,
feature detection. Moreover, the iterative algorithm in the TILT is inherently ro-
bust to gross errors caused by partial occlusions or corruptions. However, there
are some circumstances that the TILT can not handle well. One is the plane
difficulty, that is, the deformed domain may be in the different planes. Even we
need to connect the conjoint planes in holistic 3D reconstruction. In [16], it has
solved the plane difficulty by identifying the intersection line via the low-rank
method. The other problem in the TILT is the shadow difficulty, that is, the
facade images may be corrupted by shadows, which are caused by neighboring
high buildings or some self-protruding parts.

In this work, we mainly focus on the shadow difficulty of the original TILT.
We first improve it by introducing a multiplicative shadow factor, and then
propose a new shadow-free TILT model. In our shadow-free TILT model, the
rectified image equals to the low-rank image multiplied by the shadow image,
yet with the additive noise corruption. We proposed a new objective function
which further consider the inside proprieties on these images, for example, the
smoothness of shadow image and the sparseness of noise. Finally, our shadow-free
TILT model is optimized based on the ALM iterative algorithm. Experimental
results demonstrate that our method is better than the original TILT on many
real facade images, especially when images are under shadows.

The remainder of this paper is organized as follows: Section 2 gives the mo-
tivation of improving the original TILT. Section 3 is the sketch of the TILT as
well as gives the constraint and objective function of the original TILT accord-
ing the low-rank textures. Section 4 proposes our shadow-free TILT model, and
gives an efficient solution based on the ALM iteration algorithm. In Section 5,
some experiments both on synthetic and real facade images are presented by
comparing with TILT model. In Section 6, we give a conclusion of this work,
and discuss the future work.

2 Motivation

The main problem addressed in this work is to rectify the viewpoint of a facade
image. Generally, the facade has rich geometric structures, which are composed
by all kinds of regular or symmetric texture. To rectify the viewpoint of a facade,
the TILT utilizes regular and symmetric properties of texture by introducing a
low-rank texture representation, that is, the rank of rectified facade image is
lower as compared with the original input image.
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However, in practice, the facade image is often corrupted by shadows, which
may be caused by neighboring high buildings or some self-protruding parts. In
such cases, the rank of rectified facade image may not be lower as compared
with the original input image. Accordingly, the TILT may fail to rectify the
viewpoint of a facade image with shadows. Fortunately, the shadow-free rectified
facade image, in which shadows are removed, is also low-rank. Hence, to solve
the shadow problem, we improve the original TILT by incorporating a shadow
model. More precisely, the rectified facade image is decomposed into two parts,
i.e., a shadow-free rectified facade image and the corresponding shadow image.

3 Overview of TILT

Constraint: Denote the input facade image as a matrix I(x), x ∈ Ω, where
Ω is the image domain belonging to R2. The TILT approach assumes that a
transformed facade image I ◦ τ is composed by two components, i.e., a low-rank
texture Io and a corruption E, namely, Io + E = I ◦ τ . Here, τ : R2 → R2 is a
transformation that belongs to a certain Lie group.

Objective function: Moreover, the original TILT assumes the error matrix E
is sparse, since the corruptions are mainly caused by some weak noise or partial
occlusions. Accordingly, combining with the low-rank constraint of texture Io,
the objective function can be formulated as rank(Io) + γ‖E‖0, where γ is a
positive parameter that trades off the rank versus the sparsity of the error.

To sum up, the original TILT optimizes Eqn. (1) to obtain the low-rank
texture Io, given by

min
Io,E,τ

(rank(Io) + γ‖E‖0) , s.t. Io + E = I ◦ τ . (1)

From Eqn. (1), the original TILT is reasonable to recover low-rank images, since
real facade images exist regular and near-regular patterns. Moreover, as reported
in [15], it provides excellent experimental results on facade images, especially
when images are taken under consistent illumination conditions. Unfortunately, if
illumination condition varies in facade image domain, e.g., the image is corrupted
by shadows, the original TILT often fails. In Section 4, we mainly focus on the
problem brought by shadows, and propose a shadow-free TILT model.

4 The Shadow-free TILT Model

In this section, the shadow-free TILT model is presented to recover the low-rank
texture as well as the shadow from a corrupted facade image. In the follow-
ing, we first reformulate the constraint and objective function by introducing
shadow model, and summarize the shadow-free TILT model. Then, we present
the solution and corresponding algorithm flowchart.
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4.1 Constraint of Shadow-free TILT

As described in Section 2, the rectified facade image I ◦ τ is decomposed into a
shadow-free low-rank image Io and a corresponding shadow image S. Generally,
the shadow S can be regarded as the multiplying bias on the original low-rank
image Io, namely, S � Io ≈ I ◦ τ . The operation � is the Hadamard prod-
uct (element-by-element product). Hence, by incorporating the additive sparse
corruptions E, the constraint can be formulated as follows:

S � Io + E = I ◦ τ . (2)

The constraint presented in Eqn. (2) is non-linear because of the transfor-
mation τ [15]. A common approach to overcome this difficulty is to linearize
the constraint by the first order Taylor expansion around the current estimated
transformation τ . Hence, the linearized version of Eqn. (2) becomes

S � Io + E = I ◦ (τ +∆τ) ≈ I ◦ τ +∇I∆τ, (3)

where∇I is the Jacobian: derivatives of the input image w.r.t the transformation
parameters. And also ∇I is a h × w × p tensor, where h, w are the height and
width of the input image I, and p is the number of the parameters of τ .

All values in shadow matrix S should be positive. Thereby, Eqn. (3) can be
rewritten as follows (the constraint),

S � Io + E = I ◦ τ +∇I∆τ

Io +
1

S
� E =

1

S
� (I ◦ τ +∇I∆τ)

Io + Ê = Ŝ � (I ◦ τ +∇I∆τ), (4)

where Ê =
1

S
� E and Ŝ =

1

S
. Without confusion, Ŝ is also named as shadows

in the following.

4.2 Objective Function of Shadow-free TILT

The main goal of this work is to recover the transformation τ from the constraint
of Eqn. (4). Based on the observations on three images, i.e., the low-rank image
Io, the noise image E, and the shadow image S, the three corresponding objects
are listed as follows:

1. The rank of Io should be low : Similar with the original TILT [15], if without
any corruptions and shadows, the rank of rectified image should be low. That
is, the assumption on Io is formulated as rank(Io).

2. The transformed noise image Ê should be sparse: The corruption image E is
assumed to be sparse. As described in above subsection, the shadow S can
be regarded as a scaling factor. Thus, Ê = 1

S � E is also a sparse matrix.

Thereby, the corruption E is formulated as ‖Ê‖0.
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3. The shadow image Ŝ should be smooth: Practically, the shadow is piece-wise
smooth, which makes the shadow image S is smooth in entire image domain.
Moreover, the values in shadow image should be larger than zero. Thus, it
is reasonable to assume that the shadow image Ŝ is also smooth. Here, we
use the Frobenius norm of the gradient of shadow image Ŝ to define its
smoothness, namely, ‖∇Ŝ‖2F .

Combining the above objects, we obtain the following objective function:

f(Io, Ê, Ŝ) = rank(Io) + γ‖Ê‖0 + β‖∇Ŝ‖2F , (5)

where γ and β are weighting parameters.
Theoretically, the rank of Io equals its number of positive singular values,

that is,

rank(Io) = ‖Λ‖0, (6)

where Λ is the singular value matrix of Io. However, 0-norm used in Eqns. (5)
and (6) is difficult to optimize for its non-convexity. Fortunately, breakthroughs
have been made in sparse representation [14]. We use 1-norm to relax 0-norm:

‖Λ‖0 → ‖Λ‖1, ‖Ê‖0 → ‖Ê‖1 (7)

where ‖ · ‖1 represents the sum of the absolute values. Mathematically, ‖Λ‖1 =
‖Io‖∗, where ‖ · ‖∗ is the nuclear norm. To sum up, the objective function Eqn.
(5) can be relaxed as follows:

f(Io, Ê, Ŝ) = ‖Io‖∗ + γ‖Ê‖1 + β‖∇Ŝ‖2F . (8)

The Shadow-free TILT Model: As presented in above two subsections, Eqns.
(4) and (8) are proposed to describe the constraint and objective function, re-
spectively.The shadow-free TILT model is summarized as follows:

min
Io,Ê,Ŝ,∆τ

(
‖Io‖∗ + γ‖Ê‖1 + β‖∇Ŝ‖2F

)
s.t. Io + Ê = Ŝ � (I ◦ τ +∇I∆τ).(9)

We obtain our model by incorporating a shadow model into the original TILT.
Meanwhile, we convert our model to a convex optimization with a linear con-
straint. In the following, we give the optimization algorithm of our method.

4.3 Algorithm Based on Augmented Lagrangian Multiplier Method

To optimize our shadow-free TILT model, firstly given Io, Ê, Ŝ, τ , we solve
the optimization problem to get ∆τ . Then, we update the transformation by
τ = τ + ∆τ , and re-substitute τ into the problem. After several times of it-
eration, this optimization problem converges to a local minima of the original
non-linear problem. This process is listed in Algorithm 1 (please refer to the
OUTER LOOP).
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The core part of above process is the updating of ∆τ . Motivated by the
previous works [17, 18, 15] about sparse and low-rank problems, we adopt the
Augmented Lagrangian Multiplier (ALM) iteration method to solve it. The ALM
method converts a constrained optimization problem into an unconstrained prob-
lem by introducing the Lagrangian Multiplier and a penalty term. Thus, the
optimization problem of Eqn. (9) can be reformulated as follows:

Lµ(Io, Ê, Ŝ,∆τ, Y ) =

min
Io,Ê,Ŝ,∆τ

(
‖Io‖∗ + γ‖Ê‖1 + β‖∇Ŝ‖2F + 〈Y,R〉+

µ

2
‖R‖2F

)
, (10)

where Y is a Lagrange multiplier matrix of appropriate dimensions, parame-
ter µ > 0 is a penalty coefficient to weight the influence caused by infeasible
solutions, and matrix R = R(I0, Ê, Ŝ,∆τ) satisfies

R(I0, Ê, Ŝ,∆τ) = Ŝ � (I ◦ τ +∇I∆τ)− Io − Ê.

Combining the basic idea of ALM iteration, the problem presented in Eqn. (10)
can be solved as following two steps:(
Iok+1, Êk+1, Ŝk+1, ∆τk+1

)
= arg minLµk

(
Iok , Êk, Ŝk, ∆τk, Yk

)
, (11)

Yk+1 = Yk + µk

(
Ŝk � (I ◦ τ +∇I∆τk)− Iok − Êk

)
. (12)

Here, the parameter µ is updated as µk+1 = ρµk, where ρ > 1, µ0 > 0. However,

it is difficult to minimize Iok+1, Êk+1, Ŝk+1, and ∆τk+1 simultaneously. Thus, we
adopt an alternating direction method to obtain the objectives. For convenience,
we first introduce the soft-thresholding (shrinkage) operator Hε[·]:

Hε[x] = sign(x) · (|x| − ε), (13)

where ε is the soft-threshold. According to the well-known shrinkage analysis
proposed in [19, 20], the optimal solutions of Iok+1, Êk+1, Ŝk+1, and ∆τk+1 can
be expressed as follows 1:

Iok+1 ← UkHµ−1
k

[Σk]V Tk

Êk+1 ← Hλµ−1
k

[
Ŝk �Mk − Iok+1 +

Yk
µk

]

Ŝk+1 ←
Ŝk − ξ

(
2β∇2Ŝk + Yk �Mk − µkMk �

(
Êk+1 + Iok+1

))
I + ξµkMk �Mk

∆τk+1 ← ∇I†
(
−I ◦ τ +

1

Ŝk
�
(
Êk+1 + Iok+1 −

Yk
µk

))
(14)

where Mk = I ◦ τ +∇I∆τk, UkΣkV
T
k is the SVD of

(
Ŝk �Mk − Êk + Yk

µk

)
, and

I is an all-ones matrix with the same size of input image, ∇2 is the Laplacian
operator, and the ∇I† is the Moore-Penrose pseudo-inverse of ∇I.

1 The update of Ŝk+1 is described in the supplementary.
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As shown in the third row of Eqn. (14), the semi-implicit method is utilized

to update the shadow Ŝ, and the parameter ξ is the iteration stepsize. Compared
with the gradient descent method, the semi-implicit is less sensitive to the itera-
tion stepsize. In practical, the shadow image obtained by Eqn. (14) exists noise.
To overcome this limitation, we apply a bilateral-like filtering method, i.e., guide-
filter filter [21], to decrease the noise while preserving edges. The shadow-free
TILT model is summarized in Algorithm 1.

Algorithm 1: Shadow-free TILT Algorithm

Input: The initial rectangle, transformation τ , and shadow image S (S is a
matrix with all values are one). Parameters: k = 0, Y0 = 0, E0 = 0,
∆τ0 = 0, µ0 = 1.25, ρ = 1.25, ξ = 102, and β = 5 ∗ 10−3.

Output: The optimized Io, Ê, Ŝ, and ∆τ .
1 OUTER LOOP:
2 while not converge do
3 Calculating the normalization of current image, that is, I ◦ τ = I◦τ

‖I◦τ‖F
;

4 Calculating the normalization of Jacobian ∇I w.r.t parameters of

deformation τ , namely ∇I = ∂
∂ζ

(
vec(I◦ζ)
‖vec(I◦ζ)‖F

)
|ζ=τ ;

5 INNER LOOP:
6 while not converge do

7 (Uk, Σk, V
T
k ) = SVD

(
Ŝk � (I ◦ τ +∇I∆τk)− Êk + Yk

µk

)
;

8 Iok+1 = UkHµ−1
k

[Σk]V Tk ;

9 Êk+1 = H
λµ−1

k

[
Ŝk � (I ◦ τ +∇I∆τk)− Iok+1 + Yk

µk

]
;

10 Ŝk+1 =
Ŝk−ξ(2β∇2Ŝk+Yk�(I◦τ+∇I∆τk)−µk(I◦τ+∇I∆τk)�(Êk+1+I

o
k+1))

I+ξµk(I◦τ+∇I∆τk)�(I◦τ+∇I∆τk)
;

11 ∆τk+1 = ∇I†
(
−I ◦ τ + 1

Ŝk
�
(
Êk+1 + Iok+1 − Yk

µk

))
;

12 Yk+1 = Yk + µk
(
Ŝk � (I ◦ τ +∇I∆τk)− Iok − Êk

)
;

13 µk+1 = ρµk;

14 end
15 Updating transformation: τ = τ +∆τk+1 ;

16 end

5 Experimental Results

In this section, we present the experiments of our method by comparing with
the original TILT. First, we give both visual and numeric results on a synthetic
data in Subsection 5.1. In Subsection 5.2, we evaluate our method on real facade
images from three aspects. The parameters related to shadow are set as follows:
the shadow update stepsize ξ = 102 and the shadow weight β = 5 ∗ 10−3. Other
parameters are the same with the original TILT (see Algorithm 1).
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5.1 Synthetic Data

In this experiment, we use a synthetic checkerboard image with different shadow
strength to evaluate the tolerance for the shadow of our method, compared with
the original TILT. The test image is synthesized by the following equation:

Im(x) =

Jm(x)
1

1 +m
x ∈ shadow region

Jm(x) otherwise
, (15)

where Jm(x) is the image without shadows (see Fig. 1(a)); Im(x) is the image
with shadow (see Fig. 1(b)); and m ≥ 0 is the shadow strength value. Then, the
image is deformed by projective transformation and added by Gaussian noise
(see Fig. 1(c)). Thus, the Fig. 1(c) is regarded as the original input image.

Table 1. Comparison of our method with the original TILT on different shadow
strengths (number of success).

Shadow Strength 0.0 0.1 0.3 0.6 1.0 2.0

TILT 10 9 9 7 6 0

Shadow-free TILT 10 10 10 10 10 3

We evaluate different strength of shadows by varying m from 0.0 to 2, and the
comparison results are listed in Table 1. For a fixed shadow strength, we perform
10 experiments with different interactive regions, and the success numbers are
shown in Table 1. For fair comparison, the interactive regions in the original TILT
and our Shadow-free TILT model are the same. In this table, the success number
of original TILT decreases gradually when the shadow strength is increasing.
Surprisingly, our method is stable when shadow strength is not larger than 1.0.
When the shadow strength m = 2.0, the success number of our method become
lower. Fortunately, our method has 3 success times, while the results of original
TILT model are all failed. Fig. 1 gives a visual comparison when m = 1.0. This
experiment indicates that adding a multiplicative factor to weaken the influence
of the shadow is meaningful, especially when shadow strength is large.

Fig. 1. The sub-figure (a) is a synthetic image, (b) is the image with shadows, (c) is
the deformed image by projective transformation. The sub-figures (d) and (e) are the
respective results of original TILT and ours. The red window denotes the input and
the green denotes the output. In the following figures, we all use this discretion.



Shadow-free TILT for Facade Rectification 9

5.2 Experiments On Real Facade Images

A Detailed Comparison: This experiment presents a detailed comparison on a
image with strong shadows, and the result is illustrated in Fig. 2. As shown in
this figure, our result is almost correct, while the original TILT fails along the
horizontal direction. The main reason is that the strong shadow not only intro-
duces undesired information, but also causes the texture on the wall partitioned
into two regions, i.e., one is under the sunshine and the other is in the shadow.
However, by introducing shadow factor, our model can weaken the disturbance
of shadow (please refer to the shadow-free image Fig. 2(e)).

Moreover, as shown in Fig. 2(e), the shadow region becomes shallow, however,
it is not removed wholly. Hence, the rank of shadow-free image (Fig. 2(e)) may
be not lower than the original image with shadow (Fig. 2(d)). Surprisingly, our
method can still work. The main reason is that we use nuclear norm to relax
the rank . When shadows are partially removed, the singular values will become
smaller, even though the number of positive singular values may not become
lower. Hence, the sum of singular values will become lower, correspondingly.

(a) (b) (c) (e)(d) (f)

Fig. 2. A detailed experiment about our model. The sub-figure (a) is the input image,
(b) is the output of the original TILT, (c) is the output of ours, (d) is gray image after
rectification, (e) is the rectified image with shadow removed, and (f) is the correspond-
ing shadow image.

More Comparisons of Our Method with The Original TILT: In this experi-
ment, we present a number of comparisons, and the results are shown in Figs. 3
and 4. The tested images are all corrupted by shadows, and some of them also
have other problems, e.g., the occlusion.

(a) 
TILT of first initialization 

(b) 
Ours of first initialization 

(c) 
TILT of second initialization 

(b) 
Ours of second initialization 

Fig. 3. Compared to the original TILT with two similar initializations. Sub-figures
(a,c) are the original TILT results, and (b,d) are ours.
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Fig. 3 gives a comparison result with two different initializations. As shown in
this figure, when shifting the initial region, our model (see Fig. 3 (b,d)) can get
stable and correct results. However, the results obtained from the original TILT
(see Fig. 3 (a,c)) have errors along the horizontal direction. This experiment
shows that our method is less sensitive to the initialization to some extent.

In Fig. 4, we present more comparisons with other difficulties. For example,
in Fig. 4(a,b), the input images are corrupted by large occlusions. As shown in
this figure, our model still can handle those conditions. The main reason is that
the sparseness assumption on the noise (or the occlusion) is also well introduced
by our shadow-free TILT model. In Fig. 4(c,d), the sunshine is strong. The
comparison results show that our model can handle this difficulty well.

Fig. 4. Comparisons of the original TILT and our method in different difficulties, such
as sunshine and occlusions. For each pair of images, the left one is the TILT result,
and the right one is our result.

Experiments on ZübuD Database: We use the ZübuD database [22] to evalu-
ate our approach. ZübuD contains 1005 images of 201 buildings, which are taken
from different illumination conditions and viewpoints. Fig. 5 presents the seven
results with following challenges: different illumination conditions, viewpoints,
occlusions, and building types. The experiment results illustrate that our method
can also tackle these difficulties.

6 Conclusion and Future Work

In this paper, we propose a new shadow-free TILT model to rectify the deformed
images with shadows. The main contribution is that we introduce a multiplicative
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Fig. 5. Rectification results in different circumstances of our method. The first and
third rows give the input region (in red) and the output region (in green), and the
second and fourth rows are the corresponding rectified images.

and smooth shadow factor to improve the original TILT model on real facade
image rectification problem. Algorithmically, we convert the shadow image into
its reciprocal, which makes the optimization algorithm more convenient and
reasonable. Experiment results show that comparing with the original TILT,
our shadow-free TILT model can handle facade images with notable shadows
better.

The proposed shadow-free TILT model is still rudimentary in handling shadow
problem, especially when shadow is very strong. For example, in the synthetic
experiment, when shadow factor reaches 2, our method may still fail. In the fu-
ture, we will add shadow estimation module to improve our shadow-free TILT
model. The estimated shadow not only can be used as initialization, but also
can be regarded as a constraint in the iteration. Moreover, we can also add the
geometric information, such as lines and points, to enhance our model.
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