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ABSTRACT

Previous methods of few-shot Learning mostly solve differ-
ent few-shot recognition tasks in an identical feature space.
But identical features are hard to fit various tasks. Some
works show that learning a unique subspace for each few-shot
recognition task can improve the signal-noise ratio (SNR) of
the features and boost the performance. However, there are
still two problems remaining. First, in constructing the sub-
space for few-shot task, often some information (embeddings
of queries or labels of shots) are discarded. Second, the eigen-
decomposition of covariance matrix is usually needed, which
degrades the efficiency of the whole model. In this paper, we
propose Graph-based Subspace learning with Shots initializa-
tion (GSS) for few-shot recognition to learn a better subspace
efficiently. In GSS, the bases of the subspace are directly ini-
tialized with labels based on shots (given labeled samples)
and iteratively updated for better discrimination based on a
graph that connects bases and all samples. Extensive experi-
ments on four few-shot benchmark datasets show that GSS re-
ports better performance and higher efficient compared with
previous subspace based methods and achieves state-of-the-
art performance.

Index Terms— Few-shot learning, subspace learning

1. INTRODUCTION

The success of deep neural networks have promoted the re-
search of many computer vision tasks tremendously [1, 2, 3].
However, it is notorious that the performance of DNN usually
relies on a large amount of labeled data [4]. The generaliza-
tion ability of learning from a few samples is still far behind
real intelligence level of humans. This gap has triggered wide
interests in research community as the problem of few-shot
learning (FSL) [5, 6, 7].

To mimic the ability of efficient learning in human brain,
FSL takes rich labeled data of base classes to learn the “prior
knowledge”, based on which the classification ability on novel

classes can be obtained with only a few (e.g. 1 or 5 samples
for each novel class) labeled samples. In FSL, the training
set contains samples of base classes, and the testing set con-
tains samples of novel classes that are unseen during training.
To evaluate the trained model, the testing set is sampled into
many few-shot tasks, each of which consists of k labeled sam-
ples for each of the n sampled novel classes (called n-way
k-shot) and some queries to be classified. The performance
is reported as the mean accuracy and the 95% confidence in-
terval. Usually, the training set is also sampled into many
training few-shot tasks to optimize the model [5, 8, 9].

Recently, subspace learning based methods for few-shot
learning [6, 7] draws increasing attention. Because, with
subspace learning, features with higher SNR (signal-noise
ratio) can be extracted for each specific few-shot task [6].
However, there are still two problems remaining in previous
subspace based methods that limit the performance and effi-
ciency. First, they do not fully exploit available information of
a few-shot task to construct subspaces. For example, TAFSSL
[6] discards the labels of shots, and Adaptive Subspace [7]
abandons the queries. Second, they involve the eigendecom-
position of covariance matrix, which decreases the execution
efficiency of the whole model.

Thus, we propose Graph-based Subspace learning with
Shots initialization (GSS) to learn better subspaces fast for
few-shot recognition tasks. In GSS, the bases of subspace are
initialized with labels based on shots. Then, the representa-
tions are updated iteratively based on a graph that relates data
points and bases. The relations (similarities) are computed
in the low-dimensional subspace and used to update the rep-
resentations in the high-dimensional space, because the sub-
space has higher SNR (signal-noise ratio) [6] and the original
space has richer representation. Based on the updated repre-
sentations, a new generation of subspace can be learned. Af-
ter a few cycles of updates, the queries are finally classified in
the last subspace. GSS fully exploits the information of few-
shot tasks and avoids finding eigenvectors of matrices, thus
boosts the performance with less computational overhead. In
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extensive experiments, GSS reports better performance and
higher efficiency compared with previous methods based on
subspace. Our contribution can be summarized as follows:

• We propose Graph-based Subspace learning with Shots
initialization (GSS) to learn a unique subspace for each
few-shot task using all available information to boost
the performance.

• GSS iteratively learns the subspace with shots initial-
ization and avoids the eigendecomposition of covari-
ance matrix, thus boosts the efficiency of the whole
model.

• Extensive experiments on four popular benchmark
datasets demonstrate that GSS achieves high perfor-
mance and efficiency.

2. RELATED WORK

Previous works mainly attack FSL from the view of meta-
learning and metric learning. Recently, graph based meth-
ods also draw some attention. Meta-learning based methods
[8, 10] focus on adapting the trained model to different few-
shot tasks efficiently based on the support set. Metric learning
based methods [11, 5, 12, 13] finds better similarity metrics
for image embeddings. Graph based methods [14, 9] con-
struct a complete graph that connects all samples of a few-
shot task to perform information propagation and the queries
are classified based on their relations to shots. Besides, there
are also image retrieval based works [15] and reinforcement
learning based ones [16].

However, most of them tackle different few-shot tasks in
an identical feature space. The cross-used feature represen-
tation in different few-shot tasks introduces problems in both
training and testing. Some features provide discriminant for a
few-shot task but serve as noise in other tasks. Thus, the vari-
ances of these features are optimized to be larger for classifi-
cation in some tasks but also smaller in other tasks to reduce
in-class divergence, which brings unnecessary conflict. Fur-
ther, in the testing scenario, the learned features are directly
applied to novel classes with much noise.

Therefore, subspace learning draws more and more atten-
tion in the few-shot learning scenario [6, 7]. TAFSSL [6]
shows that the signal-noise ratio (SNR) of the features can
be increased when they are mapped into a subspace. Adap-
tive Subspace[7] construct a subspace for each class and the
queries are classified based on the distances to their projec-
tions on each class subspace. However, they both fail to fully
exploit the available information. TAFSSL [6] only uses sam-
ples, discarding labels of shots, and Adaptive Subspace [7]
only uses shots with their labels, discarding the queries. Fur-
ther, they both require finding eigenvectors of the covariance
matrix to construct subspaces, which severely slows down the

model. In contrast, we propose Graph-based Subspace learn-
ing with Shots initialization (GSS) that uses all samples and
the labels of shots to learn the subspace in an iterative manner
that avoids computing the covariance matrix.

3. METHOD

In this section, we first present some preliminaries for few-
shot learning. Then, the proposed Graph-based Subspace
learning with Shots initialization (GSS) is introduced.

3.1. Problem Definition

Given a few-shot task T :

T =
{
S = {(xs, ys)}N×Ks=1

}
∪
{
Q = {(xq)}N×Qq=1

}
,

ys ∈ {1, · · · , N} ,S ∩ Q = ∅.
(1)

where x is the raw instance and y is the given label. The
support set S contains K (e.g. 1 or 5) labeled samples (shots)
for each ofN targeted classes. The query setQ contains many
queries from the N classes to be classified. If the support set
contains K labeled samples for each of N novel classes, the
few-shot task is named N -way K-shot.

In FSL, the testing set Dtest is sampled into many few-
shot tasks Ttest to evaluate the method. To ensure that the test-
ing tasks are agnostic during training, the training set Dtrain

and the testing set Dtest contain different classes:

Dtrain = {(xi, yi)} , Dtest = {(xj , yj)} .
yi ∈ {1, · · · , Ctrain} ,
yj ∈ {Ctrain + 1, · · · , Ctrain + Ctest} .

(2)

The Ctrain classes in the training set are called base classes,
and theCtest classes in the testing set are called novel classes.
Usually, the training set Dtrain is also sampled into many
few-shot tasks to train the model [5, 8, 9].

3.2. Graph-based Subspace Learning with Shots Initial-
ization

The framework of the proposed GSS is shown in Fig. 1. Dif-
ferent from previous works, GSS exploits all available infor-
mation of a few-shot task and the subspace is iteratively up-
dated with bases initialized by shots, without computing co-
variance matrix.

Technically, all raw images are first embedded by an en-
coder f to obtain the representation in the high-dimensional
space that provides general features. Then, the embeddings
of shots are used to initialize bases with labels as shown in
Fig. 2, with which all samples can be mapped into the sub-
spaces according to their similarity to the bases. Relations
are computed in the low-dimensional subspace with higher
SNR (signal-noise ratio) [6] and used to update the represen-
tations in the high-dimensional space based on a graph shown
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encoder

support set query set

(a) few-shot task (b) Graph-based Sub-space Learning with Shots Initialization (c) prediction

shots queries

2-way 2-query2-way 2-query2-way 1-shot2-way 1-shot

High-dimensional Spaces

Low-dimensional Spaces

Fig. 1: The framework of the Graph-based Subspace learning with Shots initialization (GSS). The encoder f embeds raw
images into the high-dimensional spaces. With bases initialized with labels by shots, all samples are mapped into the low-
dimensional space. With the relations computed in the low-dimensional space, embeddings in the high-dimensional space are
updated. After a few steps of iterative updates, the queries are classified. Better viewed in color.

in Fig. 3. With new representations in the high-dimensional
space, the “mapping-update” process can be continued alter-
natively. Finally, the classes of queries are inferred in the low-
dimensional spaces according to their relations with shots. In
the following, we map the samples into the low-dimensional
subspace and update the high-dimensional space.
Mapping to the Low-dimensional subspace. To map sam-
ples from high-dimensional space into a low-dimensional
subspace, we need to find a group of bases. In traditional sub-
space learning methods such as PCA, the bases are found by
eigendecomposition of the covariance matrix, which requires
a large amount of computation. Differently, in the proposed
GSS, the bases are directly initialized based on the embed-
dings of shots grouped by their classes:

B1 =
{
(b11, y1), · · · , (b1m, ym)

}
= g (S; f) . (3)

where B1 notes the bases of the 1-generation of learned sub-
space. blm is the m-th basis of the l-generation of subspace. f
is the encoder and g is the function that generates bases. As
shown in Fig. 2, we generate bases with labels based on shots.
In this paper, we simply duplicate shots as the initialization of
bases. With the bases B, the all embeddings can be mapped
into the low-dimensional subspace:

zl =
[
h(xl, bl1), · · · , h(xl, blm)

]
∈ Rm,

blm ∈ Bl, xl ∈ Sl ∪Ql ∪ Bl.
(4)

where zl notes the embedding in the l-th low-dimensional
subspace and xl notes the embedding in the l-th generation
of high-dimensional space. blm is the m-th basis for the l-th
generation of subspace. h is the function to calculate the sim-
ilarity between two embeddings, which is implemented as a

three-layer MLP (Multilayer Perceptron) in this paper. m is
the dimensionality of the low-dimensional space. Sl, Ql, and
Bl are the sets of shots embeddings, query embeddings, and
bases in the l-th generation high-dimensional space.
Updating the High-dimensional Space with Relations
Computed in Low-dimensional Space. The embeddings in
the high-dimensional space are updated according to the re-
lations computed in the low-dimensional subspace. The rela-
tions are computed as:

elij = h′(zli, z
l
j) ·

el−1ij∑
k ||elik||

, l > 1.

zli ∈ Slz ∪Ql
z, zlj ∈ Blz.

(5)

where elij is the edge information between two embeddings.
h′ is the function to measure the similarity between two em-
beddings in the low-dimensional space, which is implemented
as a three-layer MLP in this paper. e0ij is initialized with 1 if
yi = yj and 1/(N · m) otherwise. Slz , Ql

z , and Blz are the
sets of shots embeddings, query embeddings, and bases in the
l-th generation low-dimensional subspace. With the edges eij
computed in the low-dimensional subspace, the embeddings
in the high-dimensional space are updated as follows:

xl+1
i = u(

∑
j=1

(
elij∑

k=1 ||elik||
· xlj), xli).

xli ∈ Sl ∪Ql ∪ Bl.

(6)

where u is the function that updates the embedding based on
gathered information from the graph, which is implemented
as an MLP in this paper. The graph has edges only between
bases and samples as shown in Fig. 3, which means that
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g

shots bases

Fig. 2: Initialization of bases.

bases

data
shots queries

Fig. 3: The graph to update
bases and embeddings.

the bases gather information from samples and the samples
gather information from bases. With updated embeddings, a
new generation of subspace can be learned based on Equation
4, and the mapping-update process can be performed alterna-
tively.
Query Classification and Training Objective. For the clas-
sification of queries, we adopt the widely used similarity
based method [5, 12, 13]. Technically, the posterior proba-
bility is derived according to the distances between the query
and shots of each class:

p(ŷi|xi) = softmax(
N×K∑
j=1

dlij · one hot(yj)),

xi ∈ Ql
z, xj ∈ Slz.

(7)

where p(ŷi|xi) is the estimated probability distribution of
query xi over given classes. dlij means the distance between
zli and zlj . one hot is the function to convert label y into one-
hot encoding.

The whole model is trained from scratch according to two
losses. The fist is the query classification loss defined as fol-
lows:

Lc = CE(p(ŷi|xi), yi), xi ∈ Ql
z. (8)

where CE notes the widely used cross-entropy loss function.
The other loss measures the inferred relations between em-
beddings, which is defined as follows:

Ls = BCE(eij , δ(yi − yj)).

δ(t) =

{
1, t = 0,
0, others.

(9)

where eij is the edge between xi and xj (if the edge exists)
and yi and yj are the corresponding labels. δ is the sampling
function. And BCE notes the binary cross entropy loss.

4. EXPERIMENTS

In this section, the implementation details and datasets are
first presented. Then, GSS is compared with previous meth-
ods on popular benchmark datasets. Further, the ablation
study is discussed. All experiments are implemented with Py-
torch [17] on TITAN RTX GPUs.

4.1. Implementation Details and Dataset

For fair comparisons with the existing methods, we use the
convolutional part of ResNet-12 as the feature encoder, which
is widely used in previous works [12, 13, 9]. The functions
(h, h′, u) used in GSS are all implemented as MLPs. We
adopt 6 generations of updates to find the final subspace in
the experiments if not specified. Our model is tested with 5-
way 5-shot tasks and 5-way 1-shot tasks on four datasets. The
model is trained with few-shot tasks with the same setting as
testing tasks. The stochastic gradient descent (SGD) with an
initial learning rate 0.1 is used to optimize the parameters. For
more details, open source code 1 is available.

We conduct experiments of few-shot learning on four
popular benchmark datasets: mini-ImageNet [11], tiered-
ImageNet [18], CIFAR-FS [19], and FC100 [12].

Mini-ImageNet is the most popular benchmark dataset for
FSL. It consists of a training set of 64 classes, a test set of
another 20 classes, and a validation set of 16 classes. Each
class contains 600 color images from ImageNet [20].

Tiered-ImageNet is similar to mini-ImageNet but with
much more data and two-level class labels. It consists of a
training set of 351 classes from 20 high-level classes, a testing
set of 160 classes from 8 high-level classes, and a validation
set of 97 classes from 6 high-level classes. The dataset con-
tains more than 700K color images in total but not balanced
between classes.

CIFAR-FS is a few-shot dataset based on CIFAR-100 [21].
It consists of 100 classes with 600 images for each and covers
3 spits: 64 classes for training, 20 classes for testing, and 16
classes for validation.

FC100 contains 60 classes of 12 high-level classes for
training, 20 classes of 4 high-level classes for testing, and
20 classes of 4 high-level classes for validation. Each class
contains 100 color images from CIFAR-100.

4.2. Main Results

We report the experimental results on mini-ImageNet and
tiered-ImageNet in Table 1. Results on CIFAR-FS and FC100
are reported in Table 2. These results demonstrate that the
proposed GSS achieves competitive performance compared
with the previous state-of-the-art methods. Further, on the
CIFAR-FS dataset, our method achieves the new state-of-the-
art with a noticeable margin. In these results, GSS leads more
in 5-shot tasks. We think this is a result of transductive learn-
ing, which also appears in the results of DPGN [9]. All other
compared methods are inductive methods.

4.3. Ablation Studies

Comparison with other subspace learning based methods.
In the ablation studies, we compare the proposed GSS with

1https://github.com/RuiqiWang95/GSS
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Table 1: Results on ImageNet derivatives. Performances are reported with 95% confidence interval.

Method Publication Backbone mini-ImageNet tiered-ImageNet
5-shot 1-shot 5-shot 1-shot

PN [5] NeurIPS 17’ ResNet-12 76.25±0.34 59.29±0.53 79.04±0.39 61.74±0.56
TADAM [22] NeurIPS 18’ ResNet-12 76.70±0.30 58.50±0.30 - -

MetaOptNet [12] CVPR 19’ ResNet-12 78.63±0.46 62.46±0.61 81.56±0.53 65.99±0.72
Adaptive Subspace [7] CVPR 20’ ResNet-12 81.65±0.69 67.09±0.68 83.32±0.66 68.44±0.77

DeepEMD [13] CVPR 20’ ResNet-12 82.41±0.56 65.91±0.82 86.03±0.58 71.16±0.87
DPGN [9] CVPR 20’ ResNet-12 84.60±0.43 67.77±0.32 87.24±0.39 72.45±0.51

Negative Margin [23] ECCV 20’ ResNet-12 81.57±0.56 63.58±0.81 - -
Distill [24] ECCV 20’ ResNet-12 82.14±0.43 64.82±0.60 86.03±0.49 71.52±0.69

GSS Ours ResNet-12 83.99±0.43 67.83±0.32 86.59±0.38 72.54±0.49

Table 2: Results on CIFAR derivatives. Performances are reported with 95% confidence interval.

Method Publication Backbone CIFAR-FS FC100
5-shot 1-shot 5-shot 1-shot

PN [5] NeurIPS 17’ ResNet-12 83.52±0.35 72.21±0.61 52.50±0.40 37.56±0.61
TADAM [22] NeurIPS 18’ ResNet-12 - - 56.1±0.4 40.1±0.4

MetaOptNet [12] CVPR 19’ ResNet-12 84.2±0.5 72.0±0.7 55.5±0.6 41.1±0.6
Adaptive Subspace [7] CVPR 20’ ResNet-12 87.3±0.6 78.0±0.9 - -

DeepEMD [13] CVPR 20’ ResNet-12 88.16±0.50 74.97±0.82 63.22±0.71 46.47±0.78
DPGN [9] CVPR 20’ ResNet-12 89.2±0.4 77.9±0.5 - -
Distill [24] ECCV 20’ ResNet-12 86.9±0.5 73.9±0.8 60.9±0.6 44.6±0.7

GSS Ours ResNet-12 91.55±0.33 77.83±0.48 64.13±0.56 47.32±0.63

Table 3: Comparison with PCA and Adaptive Subspace
[7]. Performances are reported with 95% confidence interval
based on CIFAR-FS dataset 5-way 5-shot tasks.

Method Performance training time testing time
PCA 86.73±0.40 3.9× 2.9×

Ada-Sub [7] 87.3±0.6 2.1× 1.3×
GSS (ours) 91.37±0.37 1× 1×

0 1 2 3 4 5 6 7
55

60

65

70

75

80

generation

A
cc

.(%
) mini-IN

CIFAR-FS

Fig. 4: Comparison of different generations. Performances
are reported based on mini-ImageNet (mini-IN) and CIFAR-
FS 5-way 1-shot tasks.

Adaptive subspace [7] and PCA as the traditional subspace
learning methods on performance and time. The experiment
settings remain the same for different methods. We adopt Py-
torch [17] implementation of PCA and open-source code 2 of

2https://github.com/chrysts/dsn fewshot

Adaptive subspace [7]. Results in Table 3 demonstrates that
the proposed GSS achieves better performance with a mar-
gin of 4% compared with PCA and Adaptive subspace [7].
Further, GSS shows approximately 4 and 3 times higher ef-
ficiency during training and testing compared with PCA. It
also shows 2 and 1.3 times higher efficiency compared with
Adaptive subspace [7].
Update generations. Further, we analyze the performances
with different generations to study the effect of the subspace
update. 0 generation notes the performance of the original
space. Results are visualized as a line chart in Fig. 4. The ex-
perimental results show that more generations does improve
the performance and the first 3 generations provide the most
significant performance gain, which validates the effect of the
alternative update. The best performance is achieved at the
6-th generation.

5. CONCLUSION

In this paper, we propose a novel Graph-based Subspace
learning with Shots initialization (GSS) for few-shot recog-
nition to solve each few-shot task in a unique feature space.
Different from past subspace based methods, GSS fully ex-
ploits information of a few-shot task and avoids computing
eigenvector to find the subspace in an iterative manner, which
boosts both the performance and the efficiency. Technically,
the bases for the subspace is initialized based on the few la-
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beled samples. Then, based on the relations described in
the low-dimensional subspace, the presentations in the high-
dimensional space is updated. Thus, new subspace can be
constructed based on updated representations, which makes
the mapping-update process can be performed alternatively.
Experimental results show that GSS achieves better perfor-
mance with high efficiency compared with other methods. In
the future, we will study more advanced subspace learning
method for few-shot recognition.
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