
A Policy-based Reinforcement Learning Approach for High-speed
Railway Timetable Rescheduling

Yin Wang, Yisheng Lv†, Jianying Zhou†, Zhiming Yuan, Qi Zhang, Min Zhou

Abstract— In the daily management of high-speed railway
systems, the train timetable rescheduling problem with unpre-
dictable disturbances is a challenging task. The large number
of stations and trains leads to a long-time consumption to solve
the rescheduling problem, making it difficult to meet the real-
time requirements in real-world railway networks. This paper
proposes a policy-based reinforcement learning approach to
address the high-speed railway timetable rescheduling problem,
in which the agent minimizes the total delay by adjusting the
departure sequence of all trains along the railway line. A two-
stage Markov Decision Process model is established to model
the environment where states, actions, and reward functions are
designed. The proposed method contains an offline learning
process and an online application process, which can give
the optimal rescheduling schedule based on the current state
immediately. Numerical experiments are performed over two
different delay scenarios on the Beijing-Shanghai high-speed
railway line. The simulation results show that our approach
can find a high-quality rescheduling strategy within one second,
which is superior to the First-Come-First-Served (FCFS) and
First-Scheduled-First-Served (FSFS) methods.

I. INTRODUCTION

HIGH-SPEED railways play an important role in the Chi-
nese comprehensive transportation systems. As of June

2019, the total length of high-speed railways has reached
31, 000 kilometers, accounting for more than 2/3 of the total
mileage in the world and covering major cities in China.

During the daily railway operation, the train usually runs
according to the prescribed timetable that schedules the
train's arrival and departure time along the railway line [1].
However, due to unexpected disturbances such as infras-
tructure failures and natural disasters, severe railway traffic
delays can happen, and the train timetable rescheduling

This work was supported partially by the National Natural Science
Foundation of China under Grants 61790573 and 61790575; the Center
of National Railway Intelligent Transportation System Engineering and
Technology (Contract No.RITS2019KF03), China Academy of Railway
Sciences Corporation Limited; China Railway Project N2019G020.

Yin Wang and Yisheng Lv are with the State Key Laboratory for
Management and Control of Complex Systems, Institute of Automation,
Chinese Academy of Sciences, Beijing, 100190, China. They are also
with the School of Artificial Intelligence, University of Chinese Academy
of Sciences, Beijing, 100049, China. Yin Wang is also with the Center
of National Railway Intelligent Transportation System Engineering and
Technology, China Academy of Railway Sciences Corporation Limited
100081, China.

Jianying Zhou is with the School of Information Management, Shanghai
Lixin University of Accounting and Finance, Shanghai 201620, China.

Zhiming Yuan and Qi Zhang are with the Center of National Rail-
way Intelligent Transportation System Engineering and Technology, China
Academy of Railway Sciences Corporation Limited 100081, China.

Min Zhou is with the State Key Laboratory of Rail Traffic Control and
Safety, Beijing Jiaotong University, Beijing, 100044, China.

†Corresponding Author. E-mail: yisheng.lv@ia.ac.cn,
jianyingzhou@126.com

(TTR) is needed. When rescheduling is required, the train
dispatcher needs to make a decision quickly based on the
specific situation. Instead of checking all feasible solutions,
they can only adjust schedules depending on experience [2].
Four strategies are often used to address TTR problems in a
short period: rerouting, retiming, reordering, and canceling
trains.

As an NP-hard problem, the TTR problem has been
extensively studied in recent years [3], [4]. Corman et al. [5]
incorporated rescheduling algorithms and rerouting strategies
in a tabu search scheme to calculate train schedules, which
improved the computation speed and solution accuracy. In
[6], Dündar and Şahin introduced genetic algorithms for
conflict resolutions, which could find the optimal solutions
for small-sized problems. D’Ariano et al. [7] modeled the
TTR problem with a graph formulation and designed a
branch and bound algorithm to find an optimal or near-
optimal timetable within a short time. Ning [8] presented
the parallel rail transportation systems, which led to a new
paradigm of intelligent management, operation, and services
of rail transportation systems.

Inspired by the successful applications in Atari games
[9], deep reinforcement learning was introduced to the TTR
problem. Šemrov et al. [10] adopted the Q-learning algo-
rithm to train rescheduling on a single-track line. In [11],
an approach for scheduling bidirectional railway lines was
proposed based on Q-learning to minimize the total priority-
weighted delay. Based on it, Zhu et al. [12] showed that the
rescheduling solution was affected by the state representation
of the railway environment. Obara et al. [13] simulated the
rescheduling problem with graph theory and used the DQN
method to handle small-scale networks. In [14], the DQN
approach that changed the departure sequence of all trains
was applied to the TTR problem, which modeled the state
as the arrival and departure time matrix.

In this paper, a novel policy-based reinforcement learning
approach is proposed to solve the TTR problem under un-
expected disturbances. The main contributions of this paper
are the following:

• We propose a two-stage Markov Decision Process
(MDP) model for the TTR problem, based on which we
establish the environment and elements of reinforcement
learning.

• Considering the various constraints and conflicts in the
TTR problem, we design a policy-based reinforcement
learning algorithm, and develop an offline learning
process and an online application process to solve the
problem. Numerical experiments show that the proposed

2021 IEEE Intelligent Transportation Systems Conference (ITSC)
Indianapolis, USA. September 19-21, 2021

978-1-7281-9142-3/21/$31.00 ©2021 IEEE 2362

20
21

 IE
EE

 In
te

rn
at

io
na

l I
nt

el
lig

en
t T

ra
ns

po
rt

at
io

n
Sy

st
em

s C
on

fe
re

nc
e

(IT
SC

) |
 9

78
-1

-7
28

1-
91

42
-3

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
 D

O
I:

10
.1

10
9/

IT
SC

48
97

8.
20

21
.9

56
49

80

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on March 11,2022 at 00:35:14 UTC from IEEE Xplore. Restrictions apply.

approach can quickly find a high-quality solution com-
pared to the First-Come-First-Served (FCFS) and First-
Scheduled-First-Served (FSFS) methods.

The remainder of this paper is organized as follows.
Section II introduces the high-speed railway model, time con-
straints, and conflicts. In Section III, the two-stage Markov
Decision Process (MDP) model is presented. In Section
IV, an algorithm for the TTR problem is introduced, and
numerical experiments based on that are analyzed in Section
V. Section VI summarizes this paper and discusses the future
work.

II. PRELIMINARY OF A HIGH-SPEED RAILWAY MODEL

Given one direction of a high-speed railway line, which
consists of M stations, M − 1 sections, and N trains, as
displayed in Fig. 1, the original schedule provides the arrival
and departure time of trains at each station. There are two
main forms of delays: the departure delay at the current
station and the arrival delay at the next station. The conflict
caused by the delay may occur in any station or section.

Station 𝑗 − 1 Station 𝑗 Station 𝑗 + 1

Section 𝑗Section 𝑗 − 1

𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚

Fig. 1: Description of the high-speed railway line.

After giving an initial delay, the TTR problem is to adjust
the arrival and departure timetables of all subsequent trains
and generate an alternative schedule. In order to ensure
operation safety and service quality, it is necessary to subject
to some time constraints during operation. In this paper, our
goal is to reduce the total delay of all trains along the railway
line and return to the scheduled timetable.

A. Time Constraints in TTR

• When modifying the timetable, the arrival and departure
time of the train at the station cannot be earlier than the
scheduled time.{

Aij ≥ Ap
ij , 1 ≤ i ≤ N, 1 ≤ j ≤M

Dij ≥ Dp
ij , 1 ≤ i ≤ N, 1 ≤ j ≤M

(1)

• Considering the operation safety, adjacent trains need to
meet the minimum arrival and departure interval time
at the same station.{

Aij −Ai−1j ≥ Ia, 2 ≤ i ≤ N, 1 ≤ j ≤M

Dij −Di−1j ≥ Id, 2 ≤ i ≤ N, 1 ≤ j ≤M
(2)

• The dwell time of the train must satisfy the minimum
waiting time to ensure the necessary service at the
station.

Dij −Aij ≥ Is, 1 ≤ i ≤ N, 1 ≤ j ≤M (3)

TABLE I: Definition of symbols
Notation Description

N Number of trains
M Number of stations
Aij The actual arrival time of the train i at the station j

Ap
ij The planned arrival time of the train i at the station j

Dij The actual departure time of the train i at the station j

Dp
ij The planned departure time of the train i at the station j

Ia The minimum arrival time interval at the same station
Id The minimum departure time interval at the same station
Is The minimum dwelling time for train service at the station
It The minimum tracking interval time for train at the section
Iq The reserved buffer time for delay
Cj Number of platform tracks at the station j

• Taking into account the safety at the section, successive
trains are not allowed to cross and must keep the
minimum tracking time interval.

if Dij −Di−1j ≥ It then Aij+1 −Ai−1j+1 ≥ It

2 ≤ i ≤ N, 1 ≤ j ≤M − 1
(4)

• The number of tracks at the station is different, which
means that the current station receiving and starting
trains cannot exceed the station capacity Cj .

For a better understanding of the paper, the parameters are
introduced in Table I.

B. Conflict Detection and Solution

Fig. 2 shows the detection and solution process of conflicts
caused by delays, where the blue and red lines express
adjacent trains in operation. The red dashed line represents
the original train plan, the circle represents the time con-
straints conflicts, and the red solid line means the resolution
strategy of conflicts. In this sense, the conflict at sections and
stations should be detected and solved firstly before adjusting
a feasible schedule.

Station 𝑗

Station 𝑗 + 1
𝐼𝑎

S
ectio

n

𝐼𝑑

S
ectio

n

(a) (b)

Station 𝑗

Station 𝑗 + 1

S
ectio

n

(c)

𝐼𝑡

S
ectio

n

(d)

Fig. 2: Solution to the conflicts. (a) and (b) do not meet the
arrival and departure time constraints. (c) is the overtaking
conflict at the section. (d) does not meet the minimum
tracking time interval.

2363

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on March 11,2022 at 00:35:14 UTC from IEEE Xplore. Restrictions apply.

III. TWO-STAGE MARKOV DECISION PROCESS MODEL
FOR TRAIN TIMETABLE RESCHEDULING

This section introduces the two-stage Markov Decision
Process (MDP) model for the TTR problem and defines the
elements of reinforcement learning.

A. Two-stage Markov Decision Process Model

Reinforcement learning is based on the Markov Decision
Process (MDP), which can be abstracted as a four-element
tuple ⟨S,A, P,R⟩, where S is state set, A is action set, P is
transition probability, and R is reward function. The process
of timetable rescheduling can be regarded as an MDP. For a
railway operating plan, the MDP can be intuitively defined:
At the current station j, the agent generates the departure
sequence for all trains according to the current state sj which
is defined as the arrival time of all trains passing by the
current station, and the environment transfers to the next
station j+1 after executing the action aj , then acquiring the
next state sj+1.

The action aj ∈ Rn is an N -dimension (N -D) variable
whose dimension depends on the number of trains at the
station j. Inspired by the continuous action discretization
of reinforcement learning [15], we propose a two-stage
Markov Decision Process model to solve high-dimensional
constrained action space.

𝑠𝑗
Top

MDP

𝑎𝑗+1 ∈ ℝ
𝑛𝑎𝑗 ∈ ℝ

𝑛

𝑟𝑗 𝑟𝑗+1

𝑠0
𝑗

𝑠1
𝑗

𝑠𝑡
𝑗

𝑠0
𝑗+1Bottom

MDP

𝑎𝑡
𝑗
∈ ℝ1𝑎1

𝑗
∈ ℝ1𝑎0

𝑗
∈ ℝ1

𝑟0
𝑗

𝑟𝑡−1
𝑗

𝑟𝑛−1
𝑗

𝑠1
𝑗+1

𝑠𝑡
𝑗+1

𝑠0
𝑗+2

𝑎𝑡
𝑗+1

∈ ℝ1𝑎1
𝑗+1

∈ ℝ1𝑎0
𝑗+1

∈ ℝ1

𝑟𝑡−1
𝑗+1

𝑟𝑛−1
𝑗+1

𝑟0
𝑗+1

𝑟𝑗−1

𝑟0
𝑗−1

𝑠𝑗+1 𝑠𝑗+1

Fig. 3: Two-stage Markov Decision Process (MDP) model.

As shown in the Fig. 3, we construct a two-stage MDP
model. The agent takes the N -D action aj ∈ Rn under the
state sj in the top MDP. We introduce a new sequential
decision model usually used in the recommendation system
[16] in the bottom MDP, which shares the same environment
with the top MDP. We decompose the original MDP model
with N -D action into a series of 1-D actions. Among them,
sjt represents the environment state in the t-th step at the
current station j, ajt is the 1-D action made by the agent,
and rjt is the immediate reward. The bottom MDP model is
described in detail as follows.

B. States in the Bottom MDP

State is a representation of the observation which describes
the environment. Taking the current station j as an example,
each train xj

i that needs to be adjusted is abstracted into
a tuple consisting of original planned arrival time, original
planned departure time, and actual arrival time, expressed as
xj
i =

[
Ap

ij , D
p
ij , Aij

]
. The state sjt in the t-th step can be

defined as:
sjt =

{
xj
0, x

j
1, · · · , x

j
i , · · ·

}
(5)

where sjt is a set of the remaining trains for adjustment
in the t-th step at the current station j. It is intuitive
that for t = {0, 1, · · · , n− 1}, when t = 0, sj0 ={
xj
0, x

j
1, · · · , x

j
i , · · · , x

j
n−1

}
means the sets of all trains

passing through the station j and when t = n, sjn = ϕ
means that all trains have been adjusted at the station j.

C. Actions in the Bottom MDP

In each step of the bottom MDP model, the agent selects
an action from all possible actions to interact with the
environment. When at the current station j, action ajt means
that the agent chooses a train that departs at the t-th position
according to the current strategy π. Limited by the number of
platform tracks, the discrete set of possible actions denoted
as Aj , where Aj =

[
0, Cj − 1

]
. We define the strategy π

as a Softmax strategy, and the probability of selecting the
action ajt is calculated as:

πθ

(
ajt |s

j
t

)
=

exp
{
µθ

(
xj

aj
t

)}
∑

aj∈Aj exp
{
µθ

(
xj
aj

)} , ajt ∈ Aj , xj

aj
t

∈ sjt

(6)
where µθ (·) represents the strategy network and xj

aj
t

de-
scribes the tuple of train previously defined corresponding
to action ajt .

D. Transition in the Bottom MDP

The transition function T : S × A → S means that the
agent transfers from the current state sjt to the next state sjt+1

after selecting an action ajt . In the bottom MDP model, the
action ajt indicates that the agent decides the train which
departs at the t-th position, so the transition function is
defined as removing the train xj

aj
t

from the current state sjt .

sjt+1 = T
(
sjt , a

j
t

)
=

{
xj
0, x

j
1, · · · , x

j
i , · · ·

}
\xj

aj
t

(7)

E. Reward Function in the Bottom MDP

The reward function plays a critical role in reinforcement
learning. It determines the update direction of the agent. In
this article, we design two immediate reward functions as
follows:

rjt = R
(
sjt , a

j
t

)
= −

(
Aij+1 −AP

ij+1

) (8)

rjt = R
(
sjt , a

j
t

)
= −

[(
Aij −Ap

ij

)
+

(
Dij −Dp

ij

)] (9)

There are two options for the objective function: the
negative arrival delay time at the next station in (8) or the
negative arrival and departure delay time at the current station
in (9). Obviously, the larger the delay of trains indicates
smaller reward. Note that in our two-stage MDP model, the
sum of rewards in the bottom MDP is equal to the reward in
the top MDP, which ensures the consistency of the model.

2364

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on March 11,2022 at 00:35:14 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 Train rescheduling in the bottom MDP model

Input: The strategy network with parameter θ, original state
sj0 =

{
xj
0, x

j
1, · · · , x

j
i , · · · , x

j
n−1

}
, replay buffer B.

output: The scheduling trajectory B.
1: T ←

∣∣∣sj0∣∣∣
2: for t = 0 to T − 1 do
3: for all feasible aj ∈ Aj do
4: Calculate πθ

(
aj |sjt

)
in (6).

5: end for
6: Sample an action ajt according to πθ

(
aj |sjt

)
.

7: Conflict detection and resolution.
8: rjt ← R

(
sjt , a

j
t

)
in (8) or (9).

9: Store tuple
(
sjt , a

j
t , r

j
t

)
in B.

10: sjt+1 ← P
(
sjt , a

j
t

)
in (7).

11: end for
12: return The scheduling trajectory B

IV. ALGORITHMS FOR TTR PROBLEM

This section presents the algorithm for the TTR problem
and the training method based on reinforcement learning.

A. Parameters Learning with Policy Gradient

We take the Monte-Carlo sampling method to get the
complete episode. Algorithm 1 shows the sequential decision
process in the bottom MDP model at an arbitrary station.

By repeating the train rescheduling process until the ter-
minal station, we obtain a scheduling trajectory based on the
two-stage MDP model. We use the policy gradient algorithm
in reinforcement learning to update the strategy network
parameters. Among them, the high-speed train dispatching
trajectory τ can be expressed as:

τ =
(
s00, a

0
0, r

0
0, · · · , s

j
t , a

j
t , r

j
t , · · ·

)
(10)

For the sake of illustration, the trajectory τ is represented
as follows:

τ = (s0, a0, r0, · · · , si, ai, ri, · · · , sM−1, aM−1, rM−1)
(11)

where M is the length of the trajectory.
At each discrete step t = {0, 1, · · · ,M − 1} in the

trajectory τ , the long-term discount return Gt starting from
step t is defined as:

Gt =
∑M−1

k=t
γk−trk (12)

where γ is called discount factor, which is generally (0, 1].
According to the Monte-Carlo gradient ascent algorithm,

our goal is to maximize the expected long-term return in the
trajectory. Under the discrete control strategy, the expected
long-term return is approximated by the average cumulative
return of the N scheduling strategy trajectories.

J (θ) ≈ 1

N

∑N

n=1
R (τn)P (τn|θ) (13)

Algorithm 2 The training method for the TTR problem

Input: The strategy network with parameter θ, original
train operation schedule with N trains and G stations,
discount factor γ, learning rate α, total training episode
E, update interval I .

output: The trained model with parameter θ.
1: for episode e = 0 to E − 1 do
2: Randomly initialize type of delay information for

train n at station g.
3: for station j = g to G do
4: for train i = n to N do
5: Check for conflicts and get delayed trains and

associated delayed trains.
6: end for
7: Receive state sj0 =

{
xj
0, x

j
1, · · · , x

j
i , · · · , x

j
n−1

}
.

8: Replay buffer B ← Train rescheduling in the
bottom MDP model

(
θ, sj0, B

)
{Algorithm 1}.

9: end for
10: if epoch e mod update_interval I = 0 then
11: T ← |B|
12: for t = 0 to T − 1 do
13: Calculate long-term return Gt in (11).
14: end for
15: Update parameters: θ ← θ+α∇θJ (θ) in (13).
16: Empty replay buffer B.
17: end if
18: end for
19: return The trained model with parameter θ

where R (τn) means the total cumulative return in the
trajectory and P (τn|θ) denotes the probability of trajectory.

We use the long-term discount return Gt at the discrete
step t instead of the total cumulative return R (τn) in the
trajectory. The gradient∇θJ (θ) can be calculated as follows.

∇θJ (θ) =
1

N

∑N

n=1

∑M−1

t=0
Gt∇ log πθ (at|st) (14)

Obviously, the network parameters are updated in a direc-
tion conducive to selecting actions with high rewards.

B. Offline Learning and Online Application

In the offline learning phase, we conduct training on a
complete train operation schedule, and the training method
for the TTR problem is shown in the Algorithm 2. During
each iteration, the initial delay information is randomly
set, which mainly consists of the following four random
variables: the delayed train number, the delayed station
number, the specific delay type, and the delay time. Our
method mainly solves the adjustable disturbances, so the
delay time is randomly initialized to an integer from 10 to
50 minutes in each episode, which allows the agent to learn
experience in a continually changing environment.

In the online application phase, considering the real-time
and rapidity of train schedules, the algorithm can choose
the action with maximal probability at each discrete step
according to the trained model.

2365

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on March 11,2022 at 00:35:14 UTC from IEEE Xplore. Restrictions apply.

0 5000 10000 15000 20000 25000 30000 35000 40000
Training episodes

0.0

0.2

0.4

0.6

0.8

1.0
R

ew
ar

d

reward in Eq 8
reward in Eq 9

Fig. 4: Reward functions in the training.

V. EXPERIMENTS

A. Experimental Settings

To evaluate the performance of the proposed method, two
numerical experiments are carried out based on the original
timetable from Beijing-Shanghai high-speed railway line.
Since this railway corridor provides a high-density train
service, general delays will affect the operating efficiency
of the entire railway line. Without loss of generality, the
algorithm is evaluated with the complex scenarios consisting
of 13 trains and 10 stations from Beijing to Zaozhuang,
and the results of which demonstrates the superiority of our
method.

In the training process, taking into account the actual
carrying service of the high-speed railway line, the minimum
interval time is set to 3 minutes to ensure train safety at
stations and sections. The reserved delay buffer time of the
operation diagram is set to 2 minutes. The parameters in
reinforcement learning are as follows. The discount factor γ,
learning rate α, total training episode E and update interval
I are set as 1, 0.2, 40000 and 4, respectively. All experiments
are performed by Python 3.6 on a PC with a 2.9 GHz Intel
Core i7-10700 CPU and 16 GB RAM.

The reward function during training is shown in Fig. 4.
The ordinate represents the normalized negative total delay
under different disturbances. Obviously, the reward in (8)
converges faster and more stably during the training process.

B. Experiments and Results Analysis

We simulate two common disturbances in railway op-
erations. Firstly, there is a departure delay at the current
station in scenario 1, as is shown in Fig. 5. Train 6 leaves
BJN station 30 minutes later than the original plan, where
dotted and solid lines mean the scheduled and rescheduled
timetable. In our approach, train 6 overtakes the preceding
train at LF, TJN, DZD, TA, QFD station to reduce delays
and close to the original timetable. The involved trains
ensure a safe distance by delaying the departure time at
the current station and recover at the next section through
the reserved buffer time. Fig. 6 shows the variation of total
delay of all trains with different initial delay times in this
scenario compared with the First-Come-First-Served (FCFS)

Fig. 5: Timetable rescheduling in scenario 1.

10 15 20 25 30 35 40 45 50
Delay Time(min)

1000

2000

3000

4000

To
ta

l D
el

ay
(m

in
)

FSFS
FCFS
Ours(reward in Eq 9)
Ours(reward in Eq 8)

Fig. 6: Total delay with different initial delay times in
scenario 1.

and First-Scheduled-First-Served (FSFS) methods [17]. The
FCFS method dynamically determines the order of services
according to the arrival time, and the train which arrives first
departs first. The FSFS method decides the order based on
the original schedule and often pushes the original timetable
backward. It can be seen that the FCFS method is superior to
the FSFS method in this delay scenario. As the delay time
increases, our two models with different reward functions
have slight differences, but they are still better than the FCFS
method. The total delay time is averagely reduced by 52.4%
and 62.3% compared with the FCFS method and the FSFS
method in nine experiments.

Secondly, Fig.7 shows the arrival delay at the next station.
Due to the single track in the high-speed railway line, these
disturbances often cause considerably large-scale delays.
Train 4 arrives 25 minutes late at TJN station, which affects
the regular operation plan of the following five trains. As
shown in Fig. 7, the associated delayed train 7 overtakes
train 4 at TJN station and overtakes train 5 at JNX station
in our rescheduling approach. The agent uses the dwelling
time of train 4 to give way to the faster train at TJN station.
Fig. 8 shows the variation of the total delay of all trains with
different initial delay times in delay scenario 2. Contrary to

2366

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on March 11,2022 at 00:35:14 UTC from IEEE Xplore. Restrictions apply.

Fig. 7: Timetable rescheduling in scenario 2.

10 15 20 25 30 35 40 45 50
Delay Time(min)

1000

2000

3000

4000

5000

6000

7000

To
ta

l D
el

ay
(m

in
)

FSFS
FCFS
Ours(reward in Eq 9)
Ours(reward in Eq 8)

Fig. 8: Total delay with different initial delay times in
scenario 2.

scenario 1, the FSFS method is a better choice than the FCFS
methods in case of large-scale delays. With the increase in
arrival delays, our approach shows better performance than
the FSFS method. The total delay time is averagely reduced
by 64.4% and 15.4% compared with the FCFS method and
the FSFS method in nine experiments.

Through the experiments under two different delay cases,
we find that our method has a more significant improvement
than two benchmarks in departure delay scenarios. Even in
considerable delay scenarios caused by arrival delays, our
approach can use the rescheduling strategy at the station
to reduce delays, and the results show the superiority over
two benchmarks. More significantly, our approach can find
a high-quality scheduling strategy in less than one second
when facing different kinds of disturbances, which shows
excellent potential and advantages in terms of time.

VI. CONCLUSION

In this paper, we propose a policy-based reinforce-
ment learning approach for high-speed railway timetable
rescheduling, where multiple safety constraints and service
requirements in train operation are considered. In addition,
we formulate the rescheduling problem as a sequential deci-
sion process and establish a two-stage MDP model. Based on

the Monte-Carlo sampling, we design the update method and
operation of the rescheduling algorithm. Finally, numerical
experiments are carried out on the Beijing-Shanghai high-
speed railway line and demonstrate that the proposed method
can quickly find high-quality scheduling strategies under
different disturbances.

In the future, we will concentrate on addressing the
rescheduling problem from a microscopic perspective, such
as the railway infrastructure in the environment, and set
different priorities of trains and stations to make it closer
to the real-world situation.

REFERENCES

[1] I. A. Hansen, Railway timetable & traffic: analysis, modelling, simu-
lation. Eurailpress, 2008.

[2] A. D’Ariano, F. Corman, D. Pacciarelli, and M. Pranzo, “Reordering
and local rerouting strategies to manage train traffic in real time,”
Transportation science, vol. 42, no. 4, pp. 405–419, 2008.

[3] B. Ning, H. Dong, W. Zheng, J. Xun, S. Gao, H. Wang, L. Meng,
and Y. Li, “Integration of train control and online rescheduling for
high-speed railways: challenges and future,” Acta Automatica Sinica,
vol. 45, no. 12, pp. 2208–2217, 2019.

[4] F.-Y. Wang and S.-m. Tang, “Concepts and frameworks of artificial
transportation systems,” Complex Systems and Complexity Science,
vol. 1, no. 2, pp. 52–59, 2004.

[5] F. Corman, A. D’Ariano, D. Pacciarelli, and M. Pranzo, “A tabu search
algorithm for rerouting trains during rail operations,” Transportation
Research Part B: Methodological, vol. 44, no. 1, pp. 175–192, 2010.

[6] S. Dündar and İ. Şahin, “Train re-scheduling with genetic algorithms
and artificial neural networks for single-track railways,” Transportation
Research Part C: Emerging Technologies, vol. 27, pp. 1–15, 2013.

[7] A. D’ariano, D. Pacciarelli, and M. Pranzo, “A branch and bound
algorithm for scheduling trains in a railway network,” European
journal of operational research, vol. 183, no. 2, pp. 643–657, 2007.

[8] B. Ning, “Parallel rail transportation system,” Chinese Journal of
Intelligent Science and Technology, vol. 1, no. 3, p. 215, 2019.

[9] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
nature, vol. 518, no. 7540, pp. 529–533, 2015.

[10] D. Šemrov, R. Marsetič, M. Žura, L. Todorovski, and A. Srdic, “Re-
inforcement learning approach for train rescheduling on a single-track
railway,” Transportation Research Part B: Methodological, vol. 86,
pp. 250–267, 2016.

[11] H. Khadilkar, “A scalable reinforcement learning algorithm for
scheduling railway lines,” IEEE Transactions on Intelligent Trans-
portation Systems, vol. 20, no. 2, pp. 727–736, 2018.

[12] Y. Zhu, H. Wang, and R. M. Goverde, “Reinforcement learning in
railway timetable rescheduling,” in 2020 IEEE 23rd International
Conference on Intelligent Transportation Systems (ITSC), 2020, pp.
1–6.

[13] M. Obara, T. Kashiyama, and Y. Sekimoto, “Deep reinforcement
learning approach for train rescheduling utilizing graph theory,” in
2018 IEEE International Conference on Big Data (Big Data), 2018,
pp. 4525–4533.

[14] L. Ning, Y. Li, M. Zhou, H. Song, and H. Dong, “A deep reinforcement
learning approach to high-speed train timetable rescheduling under
disturbances,” in 2019 IEEE Intelligent Transportation Systems Con-
ference (ITSC), 2019, pp. 3469–3474.

[15] L. Metz, J. Ibarz, N. Jaitly, and J. Davidson, “Discrete sequen-
tial prediction of continuous actions for deep rl,” arXiv preprint
arXiv:1705.05035, 2017.

[16] L. Xia, J. Xu, Y. Lan, J. Guo, W. Zeng, and X. Cheng, “Adapting
markov decision process for search result diversification,” in Proceed-
ings of the 40th International ACM SIGIR Conference on Research
and Development in Information Retrieval, 2017, pp. 535–544.

[17] P. Xu, F. Corman, Q. Peng, and X. Luan, “A train rescheduling model
integrating speed management during disruptions of high-speed traffic
under a quasi-moving block system,” Transportation Research Part B:
Methodological, vol. 104, pp. 638–666, 2017.

2367

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on March 11,2022 at 00:35:14 UTC from IEEE Xplore. Restrictions apply.

		2021-10-19T14:30:39-0400
	Certified PDF 2 Signature

