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Traffic Signal Timing via Deep

Reinforcement Learning
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Abstract—In this paper, we propose a set of algorithms to
design signal timing plans via deep reinforcement learning. The
core idea of this approach is to set up a deep neural network
(DNN) to learn the Q-function of reinforcement learning from
the sampled traffic state/control inputs and the corresponding
traffic system performance output. Based on the obtained DNN,
we can find the appropriate signal timing policies by implicitly
modeling the control actions and the change of system states.
We explain the possible benefits and implementation tricks of
this new approach. The relationships between this new approach
and some existing approaches are also carefully discussed.

Index Terms—Traffic control, reinforcement learning, deep
learning, deep reinforcement learning.

I. INTRODUCTION

TRAFFIC control remains a hard problem for researchers
and engineers, due to a number of difficulties. The major

two are the modeling difficulty and the optimization difficulty.
First, transportation systems are usually distributed, hybrid

and complex[1−5]. How to accurately and also conveniently
describe the dynamics of transportation systems still leaves
not fully solved. As pointed out in [5] and [6], most recent
control systems aim to predict future states of transportation
systems and make appropriate signal plans in advance. This
requirement highlights the importance and hardness of trans-
portation systems’ modeling.

There are mainly two kinds of approaches to solve this
difficulty[5]. One kind is the flow model based approaches,
which formulate analytical models to describe the dynamics of
macroscopic traffic flow measured at different locations. For
example, cell transmission models (CTM) and its variations
were frequently considered in reports due to its simplicity and
effectiveness[7]. However, when traffic scenarios are complex,
the modeling costs and errors need to be carefully considered.
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The other kind is the simulation based approaches, which
estimate/predict future traffic flow states using either artificial
intelligence learning or simulations[8−10]. Artificial intelli-
gence models learn and reproduce macroscopic traffic flow
dynamics based on recorded traffic flow measurements. In
contrast, simulations describe and reproduce the actions of
individual microscopic traffic participators, which as a result
provides flexible power to better describe macroscopic traffic
flow dynamics. However, both artificial intelligence learning
and simulation are time-consuming. The tuning of the control
performance also becomes hard, since no theoretical analysis
tool can be straightforwardly applied for these approaches.

Second, when traffic flow descriptions are established, how
to determine the best signal plans becomes another problem.
For flow model based approaches, we can use mathematical
programming methods to solve the given objective functions
(usually in terms of delay or queue length) with the explicitly
formulated constraints derived from analytical models[7,11−13].

Differently, for artificial intelligence learning and simulation
based approaches, we will reverse the cause-effect based on the
learned relationships between control actions and their effect
on traffic flows. The try-and-test methods are then used to seek
a (sub)optimal signal plan, based on the predicted or simulated
effects of the assumed control actions. In literatures, heuristic
optimization algorithms, such as genetic algorithms (GA)[14]

were often applied to accelerate the seeking process. However,
the converging speeds of such algorithms are still questionable
in many cases.

In this paper, we focus on reinforcement learning approach
for traffic signal timing problems[15−18]. Reinforcement learn-
ing approach implicitly models the dynamics of complex sys-
tems by learning the control actions and the resulted changes
of traffic flow. Meanwhile, it seeks the (sub)optimal signal
plan from the learned input-output pairs.

The major difficulty of reinforcement learning for traffic
signal timing lies in the exponentially expanding complexity
of signal timing design with the number of the considered
traffic flow states and control actions.

Recently, a new method is proposed to simultaneously
solve the modeling and optimization problems of complex
systems by using the so called deep Q network[19]. The deep
Q networks indeed combine two hot tools: reinforcement
learning[20] and deep learning[21−23]. Herein, deep learning
uses multiple layers of artificial neural networks to learn the
implicit maximum discounted future reward when we perform
a special action given a special state.

In this paper, we examine the feasibility and effectiveness
of this deep reinforcement learning method in building traffic
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signal timing plan. Although a few approaches have been
proposed to approximate the maximum discounted future re-
ward[16], our numerical tests show that deep networks provides
a more convenient and powerful tool to reach this goal.

To give a more detailed explanation of our new designs, we
will first present the new signal timing approach using deep
learning in Section II; then in Section III, we provide some
simulation results to show the effectiveness of the proposed
new approach; finally, we conclude the paper in Section IV.

II. PROBLEM PRESENTATION AND THE NEW APPROACH

A. The Reinforcement Learning Traffic Controller
Let us define st as the system states at time t, at as the

action at time t. p denotes a policy, the rule how an action is
chosen in each state. It characterizes a mapping from the state
set S to the action set A.

At each time step, the controller observes state st and
chooses an action at to perform. The state of the system will be
altered from st to st+1 in the next time t +1, and a real-valued
reward rt will be received. All the records (st ,at ,rt ,st+1) will
be stored into a replay memory to find the best policy that
gives the highest reward.

We define the discounted future reward Rt from time t as

Rt =
∞

∑
i=t

γ i−tri = rt + γRt+1, (1)

where γ ∈ [0,1] are the discount factor.
Suppose we always choose an action that maximizes the

(discounted) future reward. Particularly, we define the so called
Q-function Q(st ,at) that represents the maximum discounted
future reward when we perform action at in state st , and
continue optimally from time t onward. That is,

p(s) = argmax
a

Q(s,a). (2)

Equation (2) has the property of the Bellman equation. So
we can iteratively approximate the Q-function using

Q(s,a) = r + γ max
a′

Q(s′,a′). (3)

This form can be explained as the maximum future reward
for the current state and action is the current reward plus the
maximum future reward for the next state.

If Q(st ,at) is known, we can directly solve (3) to find
the optimal policy. However, Q(st ,at) is usually unknown.
So, we need to estimate Q(st ,at) in the learning process. In
early stages of learning, Q(st ,at) may be completely wrong.
However, the estimation gets more and more accurate with
every iteration of updating.

Fig. 1. The deep SAE neural network for approximating Q function.
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For traffic signal timing problems for intersections, traffic
sensors measure the states (speed, queueing length, etc.) of
traffic flows. We consider all these measures as system states.
The actions here are giving rights of way for each specified
traffic stream. So, after one action at is performed, traffic states
will be changed from st to st+1. We also calculate a reward
rt (the performance like traffic delay and queue length) after
each action.

B. The Deep Reinforcement-Learning Traffic Controller
In conventional approaches, the Q-function is implemented

using a table or a function approximator[17−18]. However, the
state spaces of traffic signal timing problems is so huge that
we can hardly solve the formulated reinforcement learning
problem within a finite time with a table based Q learning
method; and the traditional function approximator based Q
learning method can hardly capture dynamics of traffic flow.

In contrast, we use the deep stacked autoencoders (SAE)
neural network[23−24] to estimate the Q-function here. This
neural network takes the state as input and outputs the Q-
value for each possible action. Fig. 1 gives an illustration of
its structure. As its name indicates, the SAE neural network
contains multiple hidden layers of autoencoders where the
outputs of each layer is wired to the inputs of the successive
layer.

Autoencoders are building blocks of creating the deep SAE
neural network. An autoencoder is a neural network that sets
the target output to be equal to the input. Fig. 2 gives an
illustration of an autoencoder, which has three layers: one
input layer, one hidden layer, and one output layer.

Fig. 2. An autoencoder.

Given an input x, an autoencoder first encodes the input
x to a hidden representation y(x) based on (4), and then
decodes the representation y(x) back into a reconstruction z(x)
computed as in (5). The objective of an autoencoder is to learn
a mapping that produces z(x)≈ x.

y(x) = h(W1x+b), (4)

z(x) = h′(W2y(x)+ c), (5)

where W1 and W2 are weight matrices, b and c are bias vectors.
The model parameters θae of an auctoencoder can be

obtained by minimizing the reconstruction error L(X ,Z):

θae = argmin
θae

L(X ,Z)

= argmin
θae

1
2 ∑‖x− z(x)‖2 +β

HD
∑
j=1

KL(ρ||ρ̂ j) ,

(6)
where β is the weight of the sparsity penalty term, HD is
the number of hidden units, ρ is a sparsity parameter, and
ρ̂ j = 1

N ∑N
i=1 y j

(
x(i)

)
is the average activation of the hidden

unit j over the training set.
The Kullback-Leibler (KL) divergence KL(ρ ||ρ̂ j) is defined

as

KL(ρ ||ρ̂ j) = ρ log
ρ
ρ̂ j

+(1−ρ) log
1−ρ
1− ρ̂ j

.

We take greedy layerwise approach to train each layer
in turn, so that autoencoders can be “stacked” in a greedy
layerwise fashion for pretraining (initializing) the weights of
a deep network. The obtained approximation of Q function
is written as Q(st ,at ,θ), with θ characterizes the values of
weights and other parameters of SAE network.

During Q-learning, this deep SAE is trained by minimizing
the following simple loss function over samples of experience
till time t:

L(θ) =


r + γ max

a′
Q(s′,a′,θ ′)

︸ ︷︷ ︸
target

−Q(s′,a′,θ)︸ ︷︷ ︸
prediction




2

, (7)

where a record
(
s′t ,a′t ,r′t ,s′t+1

)
is drawn randomly from the

replay memory.
Once we had set up a policy after we observe a certain

number of records, we will face the explore-exploit dilemma:
Should we exploit the current working policy or explore other
(possibly better) policies. To solve this problem, we apply
the ε-greedy strategy. That is, with probability ε we select a
random action and with probability 1−ε to follow the current
policy.

In summary, the detailed learning algorithm is shown in
Algorithm 1.

Algorithm 1. The deep reinforcement learning algorithm for traffic signal control
——————————————————————————————————————————————————-
If pretrain-flag is true then

1. Obtain a set of sample records and pretrain stacked autoencoders (SAE) with weights θpre.
2. Initialize estimation of Q-function with weights θ = [θpre,θran], where θpre for the SAE part and random weights

θran for the last layer.
Else

3. Initialize weights of Q-function at random.
For episode = 1, M do

Initialize an episode
For t = 1, T do
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4. ε-greedy strategy to choose an action at
5. Execute action at with current state st and observe reward rt and state st+1; store (st ,at ,rt ,st+1)

6. Sample random minibatch of transitions
(
s′i,a

′
i,r

′
i,s

′
i+1

)
from records, and set

y j =

{
r′i, if episode terminates at step i+1
r′i + γ max

a′
Q(s′i,a

′
i,θ ′), otherwise

7. perform a gradient descent optimization on (yi−Q(si,ai;θ))2 with respect to θ
End for

End for
——————————————————————————————————————————————————–

In pretraining procedure, we take greedy layerwise ap-
proach to train each layer in turn, so that autoencoders can
be “stacked” in a greedy layerwise fashion for pretraining
(initializing) the weights of a deep network. The obtained
approximation of Q function is written as Q(st , at , θ), with
θ characterizes the values of weights and other parameters of
SAE network.

During Q-learning, this deep SAE is trained by minimizing
the following simple loss function over samples of experience
till time t.

III. SIMULATION RESULTS

To compare the proposed deep reinforcement learning traffic
controller and the conventional traffic controller, we design the
following cases.

The geometry of the studied crossing is shown in Fig. 3.
Each branch of the intersection has four lanes (two lanes for
coming vehicles and two for leaving ones). In other words,
there are 8 incoming lanes connected to this intersection. No
left-turn, right-turn or U-turn is allowed.

Fig. 3. The geometry of the simulated intersection.

Suppose there are two phases here: one phase allows
vehicles running either north-to-south or south-to-north to
enter the intersection, the other phase allows vehicles running
either east-to-west or west-to-east to enter the intersection. We
assume that there is no red-clearance time here, so one phase
appears immediately after another phase. The minimum green
time is 15 s for both two phases.

We measure the queueing lengths of the 8 incoming lanes
per 5 s, and the values are denoted qe−w,1

t , qe−w,2
t , qw−e,1

t ,
qw−e,2

t , qn−s,1
t , qn−s,2

t , qs−n,1
t , qs−n,2

t at sampling time t. We
take the measured queueing lengths during the last four
samples as the state of the system at time t. There are only two
actions: remain the current phase, change to the other phase (it
must be pointed out that the second action might be forbidden
sometimes if the current phase has not yet lasted for 15 s).

We use PARAMICS to simulate the traffic flow dynamics
with given traffic states and actions. The reward is defined as
the absolute value of the difference between north-south/south-
north direction and east-west/west-east direction, i. e.

rt =
∣∣∣∣max
i=1,2

{
qe−w,i

t , qw−e,i
t

}
−max

i=1,2

{
qs−n, i

t , qs−n, i
t

}∣∣∣∣ . (8)

For both conventional reinforcement learning and the new
deep reinforcement learning traffic controller, we pretrain the
controller with randomly generated traffic demands shown in
Table I. The minimum traffic demand for each approach is
100 veh/h and the maximum is 2000 veh/h.

TABLE I
THE TRAFFIC DEMANDS USED FOR PRETRAINING

Demand Minimum Maximum

Flow
North-South 100 2000

input
South-North 100 2000

(veh/h)
West-East 100 2000

East-West 100 2000

In both pretraining and testing cases, we set γ = 0.1 and let
ε vary as

ε = max
{

0.001, 1− t
500

}
. (9)

It should be pointed out that we had tested other settings
of γ and ε . Results indicate that the performance difference
between conventional and new deep reinforcement learning
methods remained unchanged.

For the new deep reinforcement learning traffic controller,
we choose a four-layer SAE neural network which has two
hidden layers. There are 32 neurons in the input layer, since
we input the 8 queueing length values during the last four
sampling intervals. There are just 2 neurons in the output layer,
since we only have two actions. There are 16 and 4 neurons
in the hidden two layers, respectively. The activation function
for hidden layers is the sigmoid function.

Fig. 4 gives the traffic demands used for testing. Fig. 5 and
Fig. 6 give the comparison between the delay and the number
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Fig. 4. The traffic demands used for testing.

Fig. 5. The delay observed when deep reinforcement learning method and conventional reinforcement learning method are used.

Fig. 6. The number of stops observed when deep reinforcement learning method and conventional reinforcement learning method are used.
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of stops queueing lengths observed when deep reinforcement
learning method and conventional ordinary reinforcement
learning method are used, respectively.

Considering the uncertainty of simulation with randomness,
we further compare the mean values of the obtained delay and
the number of fully stopped vehicles of two reinforcement
learning traffic controller during 20 times of simulations.

We find that the average delay can be reduced about 14 %
if the deep reinforcement learning method is used instead
of conventional ordinary reinforcement learning method. In
morning peak hours, a vehicle may spend about 13 s less to
pass the studied intersection.

Moreover, the number of fully stopped vehicles is re-
duced by 1020 vehicles when the deep reinforcement learning
method is applied. Particularly, the number of fully stopped
vehicles is reduced by 410 vehicles in morning peak hours.

Let Qns denotes the queue length in the N-S direction, Qwe
denote the queue length in the W-E direction Fig. 7 shows

the box plot of queue lengths in the N-S and W-E directions
generated by the conventional reinforcement learning method
and the deep reinforcement learning method proposed in
this paper. Clearly,the queue length generated by the deep
reinforcement learning method is less than that generated by
the conventional reinforcement learning method.

Fig. 8 shows the scatter plots of queue states in the test sce-
nario. We assess the queue balance using the linear regression
R2 of the queue states. As indicated in [25] and [26], a larger
R2 value indicates more balanced queues. We can observe
that the conventional reinforcement learning method and the
deep reinforcement learning method proposed in this paper
can have similar effects on producing balanced queues in the
N-S and W-E directions. However, as indicated in Fig. 5, the
deep reinforcement learning control can maintain less queue
length than the conventional reinforcement learning method.
Nevertheless,the conventional reinforcement learning method
sometimes generates extremely long queue lengths.

Fig. 7. Box plots of queue lengths of the deep reinforcement learning method and the conventional reinforcement learning method in the
test scenario.

Fig. 8. Scatter plots of queue states of the deep reinforcement learning method and the conventional reinforcement learning method in the
test scenario.
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IV. CONCLUSIONS

Reinforcement learning had gained increasing interests in
traffic control field. Different from traffic flow model based
control strategy, it simultaneously learn the dynamics of traffic
systems and the optimal control plan by implicitly modeling
the control actions and the change of system states.

In this paper, we apply the deep reinforcement learning
method[19] developed recently and show that it notably outper-
forms conventional approaches in finding a better signal timing
plan. We believe the combination of such deep knowledge rep-
resentation, deep reinforcement learning method and parallel
intelligent transportation systems[8−10,27−32] may have great
potential to change the development course of next-generation
ITS.
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