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Meta-Residual Policy Learning: Zero-Trial Robot
Skill Adaptation via Knowledge Fusion

Peng Hao , Tao Lu, Shaowei Cui , Junhang Wei , Yinghao Cai, and Shuo Wang , Member, IEEE

Abstract—Adapting the mastered manipulation skill to novel
objects is still challenging for robots. Recent works have attempted
to endow the robot with the ability to adapt to unseen tasks by
leveraging meta-learning. However, these methods are data-hungry
in the training phase, which limits their application in the real
world. In this paper, we propose Meta-Residual Policy Learning
(MRPL) to reduce the cost of policy learning and adaptation.
During meta-training, MRPL accelerates the learning process by
focusing on the residual task-shared knowledge that is hard to
be embedded in the hand-engineered controller. During testing,
MRPL achieves fast adaptation on similar unseen tasks through
fusing task-specific knowledge in the demonstration with task-
shared knowledge in the learned policy. We conduct a series of
simulated and real-world peg-in-hole tasks to evaluate the proposed
method. The experimental results demonstrate that MRPL outper-
forms prior methods in robot skill adaptation. Code for this work
is available at https://github.com/Bartopt/code4MRPL.

Index Terms—Machine learning for robot control, learning
from experience, assembly.

I. INTRODUCTION

ROBOTS struggle to adapt to new tasks quickly in today’s
industrial environment since robot programs are usually

task-specific. Recent studies leverage Reinforcement Learning
(RL) [1], Imitation Learning (IL) [2] to improve robotic au-
tonomy. However, these methods often require a large number

Manuscript received October 25, 2021; accepted January 18, 2022. Date of
publication January 31, 2022; date of current version February 15, 2022. This
work was supported in part by the National Key R&D Program of China under
Grant 2018AAA0103003, in part by the National Natural Science Foundation
of China under Grants 61773378, U1913201, and U1713222, and in part by
the Strategic Priority Research Program of Chinese Academy of Science under
Grant XDB32050100. This letter was recommended for publication by Associate
Editor Jim Torresen and Editor Tetsuya Ogata upon evaluation of the reviewers’
comments. (Corresponding author: Shuo Wang.)

Tao Lu, Shaowei Cui, Junhang Wei, and Yinghao Cai are with the State
Key Laboratory of Management and Control for Complex Systems, Institute
of Automation, Chinese Academy of Sciences, Beijing 100190, China (e-mail:
tao.lu@ia.ac.cn; cuishaowei2017@ia.ac.cn; weijunhang2018@ia.ac.cn; ying-
hao.cai@ia.ac.cn).

Peng Hao is with the State Key Laboratory of Management and Control for
Complex Systems, Institute of Automation, Chinese Academy of Sciences,
Beijing 100190, China, and also with the School of Artificial Intelligence,
University of Chinese Academy of Sciences, Beijing 100049, China (e-mail:
haopeng2017@ia.ac.cn).

Shuo Wang is with the State Key Laboratory of Management and Control
for Complex Systems, Institute of Automation, Chinese Academy of Sciences,
Beijing 100190, China, and with the School of Artificial Intelligence, University
of Chinese Academy of Sciences, Beijing 100049, China, and also with the
Center for Excellence in Brain Science and Intelligence Technology, Chinese
Academy of Sciences, Shanghai 200031, China (e-mail: shuo.wang@ia.ac.cn).

This letter has supplementary downloadable material available at https://doi.
org/10.1109/LRA.2022.3146916, provided by the authors.

Digital Object Identifier 10.1109/LRA.2022.3146916

of expert demonstrations or interactive data, which is not easy
to acquire in the real world. Designing robot policies that can
quickly adapt to new tasks would significantly broaden the space
of manufacturing tasks that can be automated by robots.

Using prior knowledge can speed up the policy learning
process of RL and IL [3], [4], and is classified into task-shared
knowledge and task-specific knowledge [5]. Previous works
leveraged task-specific knowledge to improve the convergence
performance of RL algorithms, where the knowledge is in
the forms of demonstrations [4], or task-specific reward func-
tions [6]. However, these task-oriented methods cannot achieve
skill transfer. Task-shared knowledge endows robots with the
ability to adapt to different tasks quickly. Rakelly et al. [7]
proposed a meta-RL algorithm to transfer the learned policy
to new tasks. Unfortunately, meta-RL is time-consuming during
meta-training and needs dozens of trials for adapting new tasks
since lacking task-specific knowledge. Duan et al. [3] and Zhou
et al. [8] combine meta-learning with IL and achieve one-shot
IL in simulation. However, their methods require thousands
of demonstrations during meta-training, which are not easy to
collect in the real world. Although skill adaptation has achieved
many exciting works, there is still a gap between the deployment
cost of existing methods and the demands of real-world robot
applications.

To tackle these problems, we propose a robot skill adaptation
method based on the fusion of multi-source prior knowledge.
Our key insight is that the agent’s adaptability can benefit from
combining task-shared and task-specific knowledge. Numerous
studies on human learning have shown the critical role of prior
knowledge for encoding and storing new information [9]. Learn-
ers who have a large body of information already stored in
long-term memory have more ideas to which they can relate
their new experiences and so can more easily engage in such
processes as meaningful learning [10]. Additionally, the new
experience is more effective when it activates and builds on the
learner’s prior knowledge. However, even if learners have prior
knowledge that can relate to new experiences, learners are not
always aware of the connections they might make [11].

Inspired by the human learning theories, we propose Meta-
Residual Policy Learning (MRPL) to endow robots with the
ability to adapt the mastered skill to similar unseen tasks quickly.
The overview of MRPL is shown in Fig. 1. MRPL consists
of a Task-Conditioned Residual Policy (TCRP) and a Task
Extraction Network (TEN). During training, the TCRP is trained
to extract and store the residual task-shared knowledge, which
refers to the part of task-shared knowledge that is hard to be
embedded in the hand-designed controller. Simultaneously, the
TEN is learned to infer the task belief from the interaction data,
representing the task-specific knowledge. During adaption, we
first leverage the TEN to infer the belief of the new task from an
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Fig. 1. The overview of the proposed MRPL. In the training phase, the Task-
Conditioned Residual Policy (TCRP) is trained to extract the residual task-shared
knowledge, and the Task Extraction Network (TEN) learned to infer tasks from
experience. In the adaptation phase, TEN infers task-specific knowledge from
human demonstrations, and subsequently, TCRP achieves fast adaptation to
similar unseen tasks through knowledge fusion.

expert demonstration and then embed it in the trained TCRP to
activate the mastered knowledge. By fusing new knowledge with
existing knowledge, MRPL achieves robot skill fast adaptation.

We conduct a series of simulated and real-world peg-in-hole
assembly tasks to evaluate MRPL. The experimental results
show that MRPL has superior training and fast adaptation per-
formance. Furthermore, MRPL achieves zero-trial insertions on
new peg-in-hole assembly tasks with a single demonstration.
The zero-trial means that the learned policy can adapt solely
based on expert trajectories without any on-policy robot tri-
als [12]. The contributions of this paper are summarized as
follows:
� We propose MRPL, which fuses task-shared and task-

specific knowledge to endow robots with the ability to adapt
a learned skill to similar unseen tasks quickly.

� TCRP is designed to accelerate meta-training by only
focusing on the residual task-shared knowledge.

� TEN is developed to infer task belief from demonstrations
that contain task-specific knowledge. By fusing the inferred
task with the TCRP, the robot adapts its skill to similar
unseen tasks quickly.

� The simulated and real-world experiments demonstrate
that our method has superior training and adaptation per-
formance in peg-in-hole assembly.

The rest of the paper is organized as follows. Section II
reviews related works. Section III presents the formulation of
the problem. In Section IV, the details of the proposed method
are provided, followed by the experiments for validation in
Section V. This paper is concluded in Section VI.

II. RELATED WORK

A. Robot Skill Adaptation With Meta-Learning

Kemp et al. [13] summarized the challenges in human envi-
ronments for robot manipulation. One word that kept reappear-
ing was variation, describing the challenges for robots when
models used and assumptions made during algorithm design or
learning differ from reality. Cui et al. [14] provided a detailed
review of the adaptability of robot manipulation skills. They
categorized the variations into known and novel variations based
on whether they could be anticipated. They classified robot skill
adaptation methods into two classes. One class realizes adap-
tation via generalization [15] while they can not handle novel
variations. The other achieves adaptation on novel variations by
gathering data of new tasks [16]. In this work, we focus on the
latter to endow robots with the ability to adapt to novel variations
rapidly.

Meta-learning aims to learn a model from many different
tasks, where the learned model can adapt to a new task from a
small amount of new data [16]. Recent works used meta-learning
to quickly adapt robot skills to new tasks [7], platforms [17],
and environments [18]. Rakelly et al. [7] and Li et al. [19]
have attempted to achieve robot skill adaptation with meta-RL,
where the robot can adapt to unseen tasks via its self-exploration.
However, RL-based methods generally need dozens of rollouts
for adaptation. Leveraging expert experience will significantly
accelerate the convergence speed of algorithms [4]. Previous
studies introduce human demonstration [4], hand-designed con-
trollers [20] into RL to perform long-horizon, contact-rich
robotic tasks. Inspired by this, recent works combine meta-
learning with IL to achieve fast robot skill learning, where
the simulated robot can learn new tasks from a single human
demonstration [3]–[8]–[21]. Unfortunately, meta-IL requires
many human demonstrations during meta-training, which are
laborious to collect in the real world. Although skill adaptation
has achieved many exciting works, existing methods still re-
quire massive amounts of training or testing data, limiting their
deployment on real robots. In this paper, we propose MRPL to
achieve data-efficient robot skill adaptation through knowledge
fusion.

B. Peg-in-Hole Assembly

Robotic peg-in-hole assembly is still challenging as there
are many inevitable contacts and friction in operation. In this
paper, we pay attention to the learning-based control methods
of robotic peg-in-hole, consisting of two categories: RL and
IL [22]. Schoettler et al. [1] designed an image-based reward
for the RL algorithm to train a real robotic insertion assembly
policy. However, the image-based reward is sparse and is hard
to converge. Previous works leveraged demonstration [4]–[23],
feedback controllers [20], and fuzzy reward function [6] to
assistant the RL learning. Unfortunately, RL-based methods still
need several hours to learn a policy, and the learned policy is
sensitive to environmental changes. IL acquires policy by mim-
icking the behavior of experts. Since collecting the real-world
demonstration is time-consuming and laborious, learning the
policy from a small amount of teaching is crucial. Ho et al. [24]
proposed Generative Adversarial Imitation Learning (GAIL),
which is generally quite sample-efficient on expert data. Recent
studies have proposed improved GAIL for learning robotic peg-
in-hole assembly from a dozen demonstrations [2]. However,
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the generator-based methods have the model collapse problem.
Although the peg-in-hole assembly has extensive literature in
the robot community, the current methods have high adaptation
costs when the peg’s type changes, restricting the application
scenarios of robotic assembly. In this work, we concentrate
on the rapid adaptation of robot skills and validate our approach
in robotic assembly tasks with different pegs.

III. PRELIMINARIES

A. Problem Statement and Formulation

We consider the skill adaptation problem where the learned
robotic skills can be executed adaptively when the environment
changes. In particular, we focuses on external environment
variations. For example, the robotic peg-in-hole assembly skills
should adjust adaptively when the peg type varies. Our goal is
to learn a policy that automatically adapts the robot behavior
according to environment variations.

A robot skill can handle multiple specific tasks. For example,
the robotic peg-in-hole assembly skill includes USB assembly
tasks, RJ45 assembly tasks, etc. Since each task can be for-
mulated as a Markov Decision Process (MDP) [25], a robot
skill corresponds to a distribution of MDPs, denoted as p(T ).
Specifically, each taskTi is defined by a tuple (Si, Ai, Ri, Pi, γ),
where Si is the state of the robot and the environment, Ai is
the action space of the robot, Ri is the reward function, Pi is
the transition function, and γ is the discount factor. Given a
training set Ttrain sampled from p(T ), the robot skill adaptation
algorithm aims to learn a policyπskill. For a new taskTn sampled
from p(T ), πskill can adapt to the new task by using few data
of the task.

B. Meta-Reinforcement Learning

We now describe preliminaries on meta-RL akin to Finn
et al. [16], so that we can apply these ideas in the next section to
the robot skill adaptation problem. Let p(T ) represents the
distribution of tasks, where each task T is defined by an MDP.
Specifically, T = {p(s0), r(st, at), p(st+1|st, at)} includes the
initial state distribution p(s0), reward function r(st, at), and
state transition distribution p(st+1|st, at). Given a task set sam-
pled from p(T ), the meta-training algorithms aim to learn a
policy that can use the experience to quickly adapt to a new task
during testing.

IV. METHOD

This section presents MRPL, which uses meta-RL concepts
introduced in Section III to tackle the robot skill adaptation
problem. The overview of MRPL is shown in Fig. 1.

A. Task-Conditioned Residual Policy

Leveraging prior knowledge is a significant part of human
adaptability. For robots, the policy is the carrier of prior knowl-
edge. Hence, the form of policy is essential to robot skill adapta-
tion as it determines whether the robot can effectively extract and
utilize prior knowledge. A well-designed policy should have the
following two abilities. First, it can extract and store task-shared
knowledge from experience. Secondly, the pre-trained policy
can quickly adapt to a new task with task-specific knowledge.

In this part, we describe how the proposed TCRP implements
these two abilities.

Previous meta-RL works [7] [16] have attempted to extract
prior knowledge from exploration data. They generally use the
policy in the form of u = π(s). However, this kind of policy
is learning from scratch and requires a large amount of training
data, which is not easy to collect for robotic manipulations. Con-
sidering robot control have many mature theories and methods,
it is unwise to abandon them altogether. Johannink et al. [20]
proposed residual RL for robot control. They increase the data
efficiency of the real-world RL by decomposing the control
problem into a part solved by conventional controllers and the
residual part solved by RL. Inspired by their work, we introduce
the residual mechanism into meta-RL to solve the data-hungry
dilemma of applying meta-RL in robot control. The proposed
policy is:

u′ = πH(s) + πφ(s) (1)

where πH(s) is a hand-engineered controller representing part
of the task-shared knowledge, and πφ(s) is the residual policy
designed to extract the residual task-shared knowledge. The
workload of extracting task-shared knowledge is effectively
reduced by decomposing task-shared knowledge, thus acceler-
ating the training process.

People often leverage demonstrations (e.g., written descrip-
tions, videos, etc.) when learning. These demonstrations include
task-specific knowledge, which can boost learning efficiency.
Previous works [4] leveraged behavior cloning loss to guide
agents imitating experts. However, these fine-grained imitations
require online training and are vulnerable to sub-optimal demon-
strations. Recent works [7] [26] designed context-based policies
where the action is determined by current state and task. They
realize policy adaption without additional training steps. Consid-
ering the convenience and optimality, we leverage encoding task
from the demonstration to accelerate skill adaptation. Based on
the residual policy, we proposed our task-conditioned residual
policy:

u′ = πH(s) + πφ(u|s, z) (2)

where z is the inferred task so that TCRP can adapt its behavior
according to the task.

B. Task Extraction Network

After designing TCRP, we propose the TEN to infer the salient
task information z from demonstrations. We pursue to train the
TEN without human participation. To achieve this, we need to
figure out what is the salient task information. Rakelly et al. [7]
explain it as given a task defined by an MDP, the task information
should be able to reconstruct the components of the MDP (e.g.,
reward function, transition function), or maximize the task’s
return through embedding in the policy. In this paper, we follow
their approach that learns the TEN by recovering the state-action
value function from the interaction data. Since the demonstration
can be regarded as interaction data, the TEN learned without
expert data can directly apply to encode demonstrations.

To implement this, we design a network qε(z|cT1:N ) to es-
timates the posterior p(z|cT1:N ), where ε is the network pa-
rameter, cT1:N is the experience of T . Specifically, let cTn =
{sn, an, rn, sn+1} be one transition of T , cT1:N consists of N
transitions. For simplicity, we use cT to represent cT1:N . Lever-
aging replay buffers to encode the MDP is permutation-invariant
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with respect to data orders, e.g., the reward and the transition
functions can be reconstructed from disordered transitions in
the form of {si, ai, si+1, ri}. Therefore, we use a permutation-
invariant encoder network architecture to infer task information
z from replay buffers [27]. The network is composed of multiple
encoders with shared parameters, and z is the product of all
encoder outputs, which is as:

qε(z|cT ) ∝ ΠNn=1qε(z|cTn) (3)

where qε(z|cTn) is the Gaussian posterior. Specifically,
qε(z|cTn) = N (fμε (c

T
n), f

σ
ε (c

T
n)), where fε is a neural network

with a parameter ε used to predict the mean μ and variance σ
from cTn .

C. Network Training

In this part, we describe how to train the designed TCRP
and TEN. Sample efficiency is essential to our approach. We
not only care about adaptation efficiency but also pursue better
training efficiency. We build our training algorithm on top of
the soft actor-critic algorithm (SAC) [28]. SAC is an off-policy
actor-critic method in the maximum entropy RL framework,
and it exhibits good sample efficiency and stability on a range of
continuous control benchmarks. To optimize the TEN, we use
the amortized variational inference approach same as [7], which
is as follows:

Jq(ε) = Ez∼qε(z|cT )[JQ(θ) + βDKL(qε(z|cT )||p(z))] (4)

where JQ(θ) is the critic loss in SAC. Specifically, JQ(θ)
= JQ(θ1) + JQ(θ2). The KL term is used to constrain z to
contain only the essential information for policy adaptation and
avoid overfitting on training tasks. The critic parameters can be
trained to minimize the soft Bellman residual:

JQ(θi) = E(st,ut,st+1,rt)∼B
z∼qε(z|cT )

[Qθi(st, ut, z)− Q̂θi(st, ut, z)]2

(5)
where,

Q̂θi(st, ut, z) = rt + V̄ψ(st+1, z) (6)

in equation (5), the second term is the target network and is
trained by the squared residual error JV (ψ), which is:

JV (ψ) = E st∼B
z∼qε(z|cT )

[Vψ(st, z)− V̂ψ(st, z)]2 (7)

where,

V̂ψ(st, z) = Eut∼πφ
[Qθ(st, ut, z)− log πφ(ut|st, z)] (8)

the actions in equation (7) are sampled according to current
policy. By adding additional dependence on z as input, we extend
the actor loss of SAC as:

Jπ(φ)

= Est∼B,ut∼πφ

z∼qε(z|cT )

[
DKL

(
πφ(ut|st, z)‖

exp(Qθ(st, ut, z))

Zθ(st)

)]

(9)

We summarize our training procedure in Algorithm 1. The
replay buffersBrl andBc are designed for meta-training. Specif-
ically,Brl contains all the transitions and is for training the value
and the policy network. AndBc only includes the recent data and
is for training the task inference network.

Algorithm 1: MRPL Training.

Input: Training tasks {Ti}i=1...T sampled from p(T ),
hand-engineered controller πH , initialized network
parameters ε, θ, ψ, φ, initialized replay buffer Birl,Bic for
each task

Output: qε, Qθ, Vψ, πφ
1: for each iteration do
2: for each Ti do
3: Clear Bic, cTi
4: for n = 0, . . ., N do
5: Sample initial state s0 ∼ E
6: Sample z ∼ qε(z|cTi)
7: for t = 0, . . .H − 1 steps do
8: Get policy action ut = πφ(ut|st, z)
9: Get action to execute u′t = ut + πH(st)

10: Get next state st+1 ∼ p(·|st, u′t)
11: Birl ← Birl ∪ {(st, ut, st+1, rt)}
12: Bic ← Bic ∪ {(st, ut, st+1, rt)}
13: end for
14: Sample cTi ∼ Bic
15: end for
16: end for
17: for each training step do
18: for each Ti do
19: Sample cTi ∼ Bic
20: Sample trainsition set {(s, u, s,′ r)} ∼ Birl
21: Sample z ∼ qε(z|cTi)
22: Calculate J iq(ε), J

i
Q(θ), J

i
V (ψ), J

i
π(φ)

23: end for
24: ε← ε− λq∇ε

∑
i J

i
q(ε)

25: θ ← θ − λQ∇θ
∑
i J

i
Q(θ)

26: ψ ← ψ − λV∇ψ
∑
i J

i
V (ψ)

27: φ← φ− λπ∇φ
∑
i J

i
π(φ)

28: end for
29: end for

D. Fast Adapatation With Demonstration

After meta-training, we obtain the TCRP that contains task-
shared knowledge and the TEN for extracting the task-specific
knowledge from the interaction data. In this subsection, we
describe how to combine these two components with human
demonstration to achieve fast policy adaptation.

We aim to adapt the learned πφ on a new task Tn quickly
by using a single human demonstration in form of DT =
{(s0, u0, r0, s1), . . ., (st, ut, rt, st+1)}. First, we pre-process
the actions in demonstrations to avoid distribution shift. Then,
we leverage the TEN to infer the task z from cT and use z as the
input of πφ, which is a significant step as it realizes the fusion
of task-shared and task-specific knowledge by embedding the
demonstration into task-conditioned policy. Finally, the control
policy adapts to the new task with few trials. We summary the
whole procedure in Algorithm 2.

V. EXPERIMENT

We evaluate our method on simulated and real-world robotic
peg-in-hole assembly tasks. The experiments aim to answer the
following questions:
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Algorithm 2: Fast Adapatation with Demonstration.

Input: Testing task Tn sampled from p(T ),
hand-engineered controller πH , network qε, πφ,
demonstration DT

1: for ut in DT do
2: ut ← ut − πH(st)
3: end for
4: Initialize cT = DT
5: for n = 0, . . ., N
6: Sample initial state s0 ∼ E
7: Sample z ∼ qε(z|cT )
8: for t = 0, . . .H − 1 steps
9: Get policy action ut = πφ(ut|st, z)

10: Get action to execute u′t = ut + πH(st)
11: Get next state st+1 ∼ p(·|st, u′t)
12: cT ← cT ∪ {(st, ut, st+1, rt)}
13: end for
14: end for

� Can MRPL generate the policy of the new task from only
a single demonstration?

� Does MRPL have better training and adaptation perfor-
mance than baselines?

� What is the contribution of each component in MRPL to
the adaptation performance?

A. Ablation and Baselines

To answer the above questions, we compare the following
baseline and ablation methods with MRPL on various tasks.
� PEARL [7] A probabilistic context-based meta-RL algo-

rithm, with high adaptation efficiency.
� MAML [16] aims to meta-train a model that can quickly

adapt to new tasks via a few gradient descent steps by
explicitly performing a bi-level optimization.

� Random Search [29] The robot randomly samples in a
square horizontal plane with a side length of 3 mm and
moves down at the sampling position. The robot tries the
next sampling point if it failed to insert. At most 10 random
insertion attempts are executed in each episode.

� MRPL-NoResi-NoDemo is the ablation of our method in
which the robot is only controlled by a task-conditioned
policy ut = πθ(u|s, z). And z is inferred from autonomous
exploration.

� MRPL-NoResi is the ablation of our method in which the
policy is a task-conditioned policy ut = πθ(u|s, z).

� MRPL-NoDemo is an ablation of MRPL where TCRP is
initialized without demonstration during adaptation.

� Hand-engineered refers to the approaches that only use
feedback controllers. HE-NG represents the controller
with noisy goals. HE-DG represents the controller using
the goals extracted from human demonstrations, which are
more accurate than noisy goals.

B. Simulation

We first compare our method with other methods on the
simulated peg-in-hole assembly tasks, which is easy to generate
abundant data for evaluation.

Experimental Setup The environment as shown Fig. 2(a) in is
simulated using PyBullet [30]. We focus on controlling the robot

Fig. 2. The simulated and real-world experimental setup. (a) Simulated robotic
peg-in-hole assembly. (b) Real-world robotic peg-in-hole assembly.

moving an already-grasped peg into the target hole, which is the
most common setting in actual manufacturing [31]. The manipu-
lated object’s pose errors and various peg types are troublesome
variables for designing robotic peg-in-hole assembly controllers.
We apply MRPL to automated peg-in-hole assembly to tackle
these problems. Each task is defined by two parameters.
� Hole position errors, which correspond to the variants of

the reward function in the MDP. We add random horizontal
errors between -2 mm and 2 mm to the hole location to
acquire the assumed goal location.

� Peg types, which correspond to variants of transition func-
tions in the MDP. Specifically, the peg’s shape is randomly
chosen from circles and squares, where the peg’s size is
sampled between 15 mm and 16 mm. The size of the hole
is fixed at 17 mm.

The state is a 3-D vector representing current end-effector
positions relative to the assumed goal location. Since this kind
of state space unifies the representations of pegs with different
shapes, the policy can focus on adapting to dynamic model
changes. To account for the peg position errors in the robot
gripper, we add a fixed horizontal noise between -1 mm and
1 mm to the state after each reset. The action is also a 3-D vector
representing the moving distance of each dimension, and the
value range from -2 mm to 2 mm. The reward is the l2 norm of the
state, which represents the estimated distance between the cur-
rent and the fully inserted position. The horizontal length of each
task is 50 steps. We sample 40 tasks from the task distribution
for training and 20 unseen tasks for testing. We use controllers
with accurate goal positions to collect a demonstration for each
task.

Let FCk represents a fully-connected layer with k outputs.
The network for the TCRP has the following architecture:
FC300 − FC300 − FC300 − FC3. Each FC layer is followed
by Rectified Linear Unit (ReLU), except the final layer FC3

which has tanh activation unit. The input of TCRP is a 13-D
vector including z and s, and its output is a 3-D vector repre-
senting a. The network architecture of the TEN is as follows:
FC200 − FC200 − FC200 − FC10. Each FC layer is followed
by ReLU, except the final layer FC10 which has no activation
unit. The input and output of TEN are two 10-D vectors that
represent a replay buffer and inferred z, respectively. The hand-
designed controller is a P controller πH(s) = kp(sng − scur),
where scur, sng is the current and the assumed goal positions
of the end-effector. We embed the task-shared knowledge of
insert after aligning into the designed controller by dynamically
adjusting kp. Specifically, at the first 3 steps of each episode, we
set kp as [0.2 0.2 0]	 to align the peg by reducing the horizontal
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Fig. 3. Comparison of training and adapting performance of different methods
on simulated tasks.

Fig. 4. Comparison of different ablation’s adaptation performance on simula-
tion tasks.

error. Then we set kp to [0.2 0.2 0.2]	 to insert the peg by
reducing the vertical error. The residual task-shared knowledge
(e.g., how to tackle contacts, friction, and state noise) is learned
by TCRP.

Results The adaptation and training curves of different meth-
ods are shown in Fig. 3. To ensure all methods are compared un-
der identical amounts of data, we translate each adaptation curve
along the x-axis according to the number of used demonstrations.
The training results show that MRPL has better convergence
performance than other baselines, which we attribute to the
TCRP reducing the burden of extracting prior knowledge by
decomposing it into a part embedded in the hand-engineered
controller and the residual part learned from data. MRPL also
achieves better adaptation performance under the same amount
of data by leveraging the task-specific knowledge contained in
the demonstration. Furthermore, MRPL has a high beginning
value during adaptation, which means MRPL endows the robot
with the ability to realize zero-trial adaptation on similar unseen
tasks.

The comparison of all ablations is shown in Fig. 4. The
results show that both TCRP and demonstration can improve
the adaptation performance. Note that the TCRP representing
the task-shared knowledge focuses on improving the conver-
gence value, while the demonstration representing the task-
specific knowledge focuses on improving the beginning value.

Fig. 5. Pegs used in the real-world experiment and their clearances.

By effectively fusing task-shared and task-specific knowledge,
MRPL obtains the superior beginning and convergence value
simultaneously, demonstrating excellent adaptability to similar
unseen tasks. Furthermore, the hand-engineered methods have
poor performance, implying that the TCRP does extract the
residual residual task-shared knowledge, which is essential to
complete the task.

C. Real-World Assembly

In this section, we conduct a series of real-world peg-in-hole
assembly tasks to compare our method with baselines.

Experimental Setup The real-world experiments has the same
setting as the simulation, which is shown in Fig. 2(b). Since there
is no severe reality gap problem in position-based state, and the
TCRP captures the dynamic differences of various pegs during
meta-training, the learned TCRP and TEN in the simulation can
be directly deployed to the real world for evaluation without ad-
ditional training. To obtain state and reward in real scenarios, we
first manually control the robot to successfully insert to acquire
the hole location and add horizontal errors to get the assumed
goal location. The assumed goal location corresponds to the
noisy goal location estimated by a vision-based measurement
system.

We use six different pegs and holes fabricated with a 3-D
printer: square, round, triangular, semicircular, hexagonal, and
gear. Each peg has two nominal clearances of 2 mm and 0.6 mm.
We also use USB and RJ45 connectors for evaluation. There are
14 kinds of pegs in total, as shown in Fig. 5. We perform three
independent evaluations for each peg. Similar to the simulated
experiment setting, we focus on inserting the grasped peg into
the hole. In the implementation, the robot moves to an assembled
board to grasp the peg, and a human resets the board after each
episode. Since the existence of tolerances, such grasp pipelines
will introduce the peg’s pose error in the robot gripper, which
exists widely in vision-based grasp systems. After grasping, the
robot moves to the start position and inserts the peg into the
hole. We collected a single demonstration for each kind of peg
via kinesthetic teaching, which is shown in Fig. 6.

We control the end-effector Cartesian position with a cus-
tomized impedance controller to be smooth and tolerant of con-
tacts. The scheme of the controller is summarized in Algorithm
3. In the implementation, we set fts to 10 N, az to 3 mm, ΔT
to 3 s, and δ to 0.1 mm. The asynchronous manner means that
the algorithm continually runs without waiting for the robot to
finish the command. In contrast, the synchronous manner means
the algorithm waits for the robot to finish the command before
continually running.
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TABLE I
COMPARISON OF DIFFERENT METHODS ON VARIOUS PEG-IN-HOLE ASSEMBLY TASKS

Fig. 6. Snapshots of human demonstration and robot execution on the hexag-
onal peg-in-hole assembly task.

Fig. 7. Comparison of different methods on real-world assembly tasks.

Results The comparison results of different methods are
shown in Fig. 7. The results show that MRPL has better con-
vergence and beginning values than baselines. The high be-
ginning value implies MRPL realizes the rapid adaptation in
real-world peg-in-hole assembly tasks by fusing the task-specific
knowledge in the demonstration and the task-shared knowledge
in the TCRP. A more detailed comparison result is shown in
TABLE I, where S, R, SC, T, H, G are the abbreviations of
the square, round, semicircular, triangular, hexagonal, and gear,
respectively, and 2 and 0.6 refer to the assembly tolerance. The
results in TABLE I are average performance after the adaptation,
where the end of the adaptation refers to the robot inserting the
peg into the hole for the first time. The results demonstrate that
MRPL has a superior success rate and the average insertion steps
in all tasks simultaneously. The insertion steps are essential for
practical applications since throughput is a major consideration
in industrial settings. SC-0.6, T-0.6, and USB have poor success
rates, which we attribute to the small insertable area caused by
the assembly clearance and the special shape together.

Furthermore, we evaluate the zero-trial insertion ability of
different methods, which means that the robot can complete the
insertion without any interaction with the environment at first.
The results show that PEARL achieves zero-trial insertions when
the tolerance is 2 mm, but it fails when tolerance is reduced
to 0.6 mm. Through knowledge fusion, our method achieves
zero-trial insertion on almost all tasks, even on challenging USB

Algorithm 3 Impedance Controller Scheme

Input: action u′, force threshold fts, duration time ΔT ,
control accuracy δ, lifting height az

1: Get the position of the end effector scur
2: Get the force of the end effector ft = (fxt , f

y
t , f

z
t )

3: sgoal ← scur + u′

4: Send sgoal to the motion controller asynchronously
5: while t < t0 +ΔT and (scur − sgoal)2 > δ do
6: Update scur and ft at a frequency of 6 Hz
7: if ‖ft‖∞ > fts then
8: Send stop to motion controller
9: break

10: end if
11: end while
12: if fzt > fts then
13: sgoal ← scur + (0, 0, az)
14: Send sgoal to the motion controller synchronously
15: end if

tasks. Snapshots of the robot assembling a hexagonal peg are
displayed in Fig. 6. Videos of all experiments can be viewed in
supplementary materials.

VI. CONCLUSION

This paper proposes Meta-Residual Policy Learning (MRPL)
to the robot skill adaptation problem. MRPL contains two com-
ponents. One is the Task-Conditioned Residual Policy, which ex-
tracts the residual task-shared knowledge during meta-training.
The other is the Task Extraction Network, which infers task-
specific knowledge from expert demonstrations during adapta-
tion. After acquiring the two components through robot explo-
ration, MRPL endows the robot with the ability to learn similar
unseen tasks quickly via fusing multi-source knowledge. We
conduct a series of simulated and real-world peg-in-hole assem-
bly tasks to evaluate the proposed method, where the real-world
experiments covered 14 unseen peg types. The experimental
results show that through dividing the task-shared knowledge
and only focusing on the residual parts, MRPL achieves bet-
ter sample efficiency than prior methods during meta-training.
Furthermore, by extracting task-specific knowledge from human
demonstration and fusing it with task-shared knowledge, MRPL
can learn unseen robotic peg-in-hole assembly tasks with few
or zero trials. The experimental results indicate that the sample
efficiency of the robot skill learning algorithm will benefit from
the division and fusion of task knowledge. The rapid adaptability
of MRPL makes it hope to improve the deployment efficiency
of industrial robots.

While MRPL significantly extends the capabilities of prior
methods, several limitations remain. One of the limitations is
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that we only evaluate MRPL on the robotic peg-in-hole assembly
tasks. An interesting avenue of future work would be to increase
the diversity of tasks that robots need to adapt. Another limitation
is that the current policy is trained in the low-dimensional state
space. A potential future direction related to this limitation is
to explore robot skill adaptation under multi-modal and high-
dimensional observations. Another thing to note is that the hand-
engineered controller of MRPL is hard to design in the high-
dimensional observation space (e.g., image). A possible way
of addressing this challenge is to use a perception module for
dimensionality reduction.
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