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Abstract—Relative pose estimation for human scans enjoys
a promising prospect. However, most existing methods mainly
focus on indoor or outdoor scenes, requiring considerable overlap
between the inputs. We present a technique for estimating the
relative pose whatever the overlap between the human RGB-
D input scans is. For non-overlapping scans, the insight is
to take advantage of the underlying human geometry prior
as much as possible. We utilize the implicit function model
for human reconstruction, enriching abundant hidden cues for
unseen regions, then we use the completed human geometry to
get a stable pose estimation. Our evaluation shows that our
approach outperforms considerably than standard pipelines in
non-overlapping setting, without compromising performance over
overlapping input scans.

Index Terms—relative pose estimation, implicit function, hu-
man reconstruction, non-overlapping

I. INTRODUCTION

Relative pose estimation between two RGB-D scans is
a crucial problem in 3D vision and graphic. Recently, 3D
reconstruction for human [1] has attracted increasing attention
in both academia and industry, many application systems such
as human motion capture and human performance capture
[2, 3] depend heavily on the accuracy of relative pose between
the input scans. Robust and efficient solution for human
scans relative pose estimation will embrace a wide scope
of applications beyond doubt. Examples include 3D human
reconstruction from sparse views without pose parameters
[4], self-calibration for systems such as human performance
capture, avoiding interrupting the system to manually calibrate
with chessboard, when there are disturbances to camera setups.
In this paper, we are interested in relative pose estimation
for human input scans, especially with non-overlapping input
scans.

However, for human input scans, most existing approaches
to estimate relative pose mainly have the following limitations:
1) Most researches [5, 6] focus on indoor or outdoor scenes,
actually not very suitable for human specific input scene. 2)
Most existing methods [7, 8] can’t handle the extreme pose
whose overlap between the RGB-D input scans is small or
even none. These methods highly rely on accurate correspon-
dence, which often follow a three-step paradigm [6]: feature
extraction, feature matching, and rigid transform fitting with
the most consistent feature correspondences. Obviously, to

guarantee good performance, this paradigm requires massive
overlap between the input scans. 3) Although some learning-
based methods [4, 9] can regress camera parameters directly
using CNNs from input images, they often fail to produce
accurate poses as discussed in [10], and meanwhile, they are
limited by large amounts of data and elaborate framework
design to improve performance and generalization. Recent
works [5, 11] focus on extreme relative pose estimation
between two input RGB-D scans, Reference [5] use scan
completion as an intermediate and then match the completed
scans. Reference [11] propose hybrid representations which
are too sophisticated, and besides, they mainly focus on indoor
scene and can’t be directly applied to human scans.

Taking all the above-mentioned limitations into considera-
tion, our work presents a effective method, handling the RGB-
D human input scans whatever the overlap is. Inspired from
intuition that human can estimate accurately the relative pose
for input pairs, even non-overlapping, leveraging the prior
knowledge of the underlying geometry. We hypothesize that
the key is to take advantage of the human prior knowledge for
typical structure and shapes as much as possible. In this paper,
we utilize the state-of-the-art RGB-D PIFu [2] to reconstruct
the detail-preserving human body, enriching the underlying
geometry prior knowledge. Inspired by scan completion [5],
we can complete the unseen region from the visible partial,
with the help of our human reconstruction, and then matching
the point clouds sampled from the full mesh using the off-the-
shelf optimization methods [7, 8].

To summarize, our main contributions are: 1) our relative
pose estimation method for RGB-D human input scans can
handle settings at arbitrary overlap, even non-overlapping. 2)
our method outperforms than state-of-the-art standard opti-
mization methods considerably, especially in small overlap-
ping settings.

II. APPROACH

Given a pair of human RGB-D scans S1 and S2 as input,
the goal is output the rigid transformation T12 that align the
two input scans. We assume that the intrinsic parameters are
known, but not constraint the overlap of S1 and S2. To explore
the hidden cues in the challenge task, we exploit RGB-D
PIFu to recovery the underlying human geometry prior from a
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Fig. 1. Methods Pipeline. SV-Model means our single-view human reconstruction model. The proposed framework combines human reconstruction and
relative pose estimation optimization. Given the RGB-D input scans, the SV-Model reconstruct the completed human geometry, then the optimization module
estimate the relative pose.

sparse view. As illustrated in Fig. 1, our architecture consists
of two modules, one is single-view human reconstruction
producing a compelling and completed human geometry, the
other is relative pose optimization module, to estimate relative
pose from the sampling mesh.

A. Human reconstruction with implicit function

Recently, learning a continuous implicit function represent-
ing human shape [12] has been a trend, for it’s not limited by
output resolution and fixed topology. In these methods, RGB-
D PIFu proposed by [2] has achieved a state-of-the-art result,
producing a detail-preserving complete surface in real time
with RGB-D scans. The human surface in [2] is defined as a
level set of:

f(F (Π(q)), q.z, T (q)) = s : s ∈ R (1)

T (q) = trunc(q.z −D(Π(q))) (2)

f is a continuous implicit function represented by multi-layer
perceptrons(MLPs). For a query point q, Π(·) is the perspective
projection function, F(·) is the feature extracted by encoder
networks, D(·) is a bi-linear function sampling depth values
on the depth image, the PSDF value of q is introduced by q.z−
D(Π(q)) to fully utilize the depth observation, T (·) is used to
truncated PSDF value to [−σi, σi], eliminating the ambiguities
of using global depth values. The sign of s represents if the
point is inside or outside the surface.

The RGB-D PIFu uses view-centric coordinate systems,
extracts geometry-aware feature maps and exploits multi-view
aggregation strategy for fusion, satisfying the requirements of
good generalization as discussed in [13]. Actually, we experi-
mentally testify the good generalization in real data collected
by Kinect, using the trained model with 300 high-fidelity data
from [2]. The reconstruction of visible parts is general detailed
and lifelike, while the unseen partial completion is a little
oversmooth but reasonable according to prior learning from
the data, which still empowers us with abundant hidden cues.

Considering the efficiency, compelling performance and good
generalization in real data, we determine the RGB-D PIFu
from [2] to dig out the underlying geometry prior.

B. Relative Pose Estimation Module

Our approach essentially falls into the optimization category
although we utilize the deep learning to enrich the underlying
human geometry prior. This module serves as a relative pose
estimation, ensuring a fair good and stable pose estimation
included non-overlapping input setting. We expect this module
as simple and effective as possible. For the overlap between
the input RGB-D scans is larger than 0.80, we can get a
good initial via traditional optimization methods[7, 14, 15].
However, the standard pipeline of first extracting features from
RGB-D scans and then matching the correspondences features
is not suitable for small-overlapping or non-overlapping scans.
For this challenge setting, we can assume the Ti is the
identity matrix, using the single-view RGB-D PIFu as above-
mentioned to complete the unseen part, fully leveraging the hu-
man geometry prior,. It has a large overlap between sampling
point clouds from the completed meshes. Thus, many simple
and effective optimization methods such as global registration
[8] or geometric registration [16, 17] can be choosed, to
estimate the relative pose from these sampling point clouds.
Actually, our relative pose estimation approach is efficient,
because the major time-consuming 3D human reconstruction
via [2] can be finished in time.

III. EXPERIMENTS

In this section, we present an experimental evaluation of
the proposed approach. We firstly describe our evaluation
dataset and evaluation metrics. Then, we compare our method
with several baseline techniques, assessing performance quan-
titively on different overlapping rate RGB-D input pairs.
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TABLE I
THE RELATIVE POSE ESTIMATION EVALUATION ON OUR DATASET.

overlap(0-5%) overlap(10%-30%) overlap(40%-70%) overlap( ≥ 80%)
Ratation Trans. Ratation Trans. Ratation Trans. Ratation Trans.

Super4PCs[14] 126.08 1.715 103.95 1.468 38.99 0.574 4.46 0.084
Greg[15] 124.41 1.679 92.50 1.538 64.47 1.109 18.44 0.325
ICP[7] 165.97 2.252 122.02 1.943 67.86 1.208 27.75 0.540

Greg+ICP 126.72 1.664 103.88 1.461 35.10 0.508 1.27 0.0262
Ours 7.15 0.138 6.54 0.130 5.90 0.106 1.29 0.0259

A. Dataset

We perform experimental evaluation on two types of data.
One is synthesized data, rendering 200 high-quality scans from
60 views with rotation and random shifts. Note that, to keep
consistent with the real data, for the color image, we use the
PRT-based render as in [1], for the depth image, we first render
the ground truth depth maps, and then adding the TOF sensors
noise on top of them following [18]. Finally, we synthesize
RGB-D data with resolution 512× 512. The other is real data
collected by multi-view Kinects, included large poses, various
clothes, different people. We firstly segment the human with
mask provided by Kinect. Then, we align the color image and
depth image with pose parameters of Kinect depth camera,
getting the final real RGB-D data with resolution 640× 576.

For a more comprehensive and detailed analysis, we classify
all the data into four categories according to the overlap rate:
overlap rate 0-5%, overlap rate 10%-30%, overlap rate 40%-
70%, and overlap rate over 80%. Then, we select about 400
characteristic data pairs for each category, besides half each
for the real data and the synthetic data, as our final evaluation
data.

Note that, for the RGB-D PIFu, we train it use 500 high-
quality scans following [2].

B. Evaluation Metrics

We evaluate the rotation matrix R and translation part
t of the relative pose T = (R, t) respectively. We follow
the standard protocol of reporting the rotation angle error

arccos(
tr(R∗RT )− 1

2
) and the translation error ‖t− t∗‖2,

let (R∗, t∗) be the ground truth relative pose and (R, t) be the
predicted pose.

C. Quantitative Evaluation

We consider the four baseline approaches: Super4PCS [14],
Greg [15], ICP [7], and combine Greg with ICP. Super4PCS
is a widely used global scan matching method between two
3D point clouds. Greg is another state-of-the-art global regis-
tration, which combining cutting-edge feature and reweighted
least squares for rigid pose registration. ICP(Iterative Closet
Point) , a local optimization algorithm, has been a mainstay
of geometric registration in both research and industry. In
this paper, we use point-to-plane ICP which has a faster
convergence. We also combine global registration with local
optimization as a baseline, the former provides an initial pose,
the later refines the pose.

TABLE I provides quantitative results of our approach and
baseline methods. We show the mean error for rotation and
translation components for overlapping rate (0 − 5%, 10% −
30%, 40%−70%,≥ 80%) scan pairs, respectively. Overall, we
found that the less overlap rate, the greater advantage of our
method. Our approach outperforms baseline approaches con-
siderably in small-overlapping or almost overlapping settings,
and performs slightly better in large-overlapping setting. In the
four baselines, combining Greg with ICP is much better than
others, especially in significant overlap scene, while in small-
overlapping setting, all the baselines perform badly, making
no difference.

Small overlap(overlapping rate 10%-30%) or almost no
overlap(overlapping rate 0-5%). All the baselines perform very
badly, with over 120 rotation errors and over 1.5m translation
errors. These methods rely on accurate correspondence in
overlap region, thus they can’t handle the small-overlapping
or non-overlapping settings. Even so, our approach per-
forms much better, with mean errors in rotation/translation
7.15/0.138m for almost no overlap and 6.54/0.130m for
small overlap. It fully demonstrates the effectiveness of our
proposed approach for non-overlapping setting, thanks to the
coarse-to-fine optimization strategy.

Middle overlap(overlapping rate 40%-70%). Although the
Greg with ICP is much better than other baselines, with ro-
tation/translation errors 35.10/0.508m, our approach achieves
much better results, with corresponding errors 5.90/0.106m.

Significant overlap(overlapping rate over 80%). There is
no significant difference between all the methods. All the
baselines perform fair good, especially, the Greg with ICP
with small rotation/translation errors 1.27/0.0262m. It further
shows that the standard baselines require the input scans
possessing considerable overlapping regions for good perfor-
mance. However, Our approach is still competitive, with mean
rotation/translation errors 1.29/0.0259m.

From this experiment, all the four baselines rely highly on
large overlap of input scans, not able to handle the extreme
pose setting, while our approach performs stable and good in
all settings.

IV. CONCLUSION

In this paper, we have proposed an approach for estimating
the relative pose between two RGB-D scans. For the input, we
focus on human scene where there are plenty of applications
in reality and don’t limit the input scans to have large overlap.
We leverage implicit function model for human reconstruction
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with the RGB-D input, fully exploring the underlying human
geometry prior for unseen parts. Through evaluation on dif-
ferent overlap data, our method considerably outperforms the
state-of-the-art baselines, especially for non-overlapping scans.
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