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Abstract—As deep neural networks (DNNs) are hard to be
trained due to gradient vanishing, intermediate supervision is
typically used to help earlier layers to be better optimized.
Such deeply supervised methods have proved to be beneficial
to various tasks such as classification and pose estimation, but it
is rarely used for image super-resolution (SR). This is because
intermediate supervision needs a set of intermediate labels, but
in SR, these labels are hard to be defined. Experiments show
that identity labels across the whole network, which are used for
classification, will cause inconsistence and harm the final perfor-
mance. We argue that ‘mediately accurate’ labels, i.e.relatively
soft labels, are more suitable for intermediate supervision on SR
networks. But labels in SR networks are of either completely high
resolution or completely low resolution. To address this problem,
we propose what we call pushing and bounding loss, which forces
the network to learn better features as it goes deeper. In this way,
we do not need to explicitly give any ‘mediately accurate’ labels
but all internal layers can also be directly supervised. Extensive
experiments show that deep SR networks trained in this scheme
will receive a stable gain without adding any extra modules.

I. INTRODUCTION

Super-resolution (SR) task aims to restore high-resolution
(HR) images from their corresponding low-resolution (LR)
versions. In this paper, we are interested in single image super-
resolution (SISR), in which case, only one LR image is given.
Since there are infinite HR solutions for a given LR image,
this problem is ill-posed and challenging. But due to its wide
applications in security surveillance, medicine imaging, video
enhancement and so on, SR is always an active research filed.

With the development of convolutional neural networks
(CNNs), methods based on CNN, especially deep CNN, have
also achieved remarkable results on SR. Since CNN is firstly
applied to SR in [1], SR networks have become much larger
and deeper. However, it is usually hard to train deep neural
networks (DNNs) because of gradient vanishing or explosion.
To address this problem, deep supervision is usually used in
many tasks, such as classification [2], [3], pose estimation [4],
[5] and edge detection [6].

However, although benefits of deep supervision have been
proved in various models [3], [7], [8], it is rarely used in SR
networks. This is because labels for intermediate supervision
in SR networks are hard to be defined. In classification
networks, intermediate labels are the same as the final ground
truth, but in SR networks, we experimentally find that this kind

of supervision does not work. We infer that in classification
networks, the optimizing targets of early and deep features
are the same, but features in SR networks have more diverse
representations and thus cannot be supervised by the same HR
ground truth. The same problem is also encountered in pose
estimation and edge detection. Thus, a set of ‘progressively
accurate’ labels are required for coarse-to-fine intermediate
supervision. In pose estimation networks, ‘mediately accurate’
labels are generated by adjusting the size of gaussian kernel
of heatmaps [8], [9], and in edge detection networks [6],
relatively coarse labels are generated by adjusting the threshold
of Canny algorithm [10]. But in SR networks, labels are of
either completely HR or complete LR. Those mediately high
resolution labels are hard to be defined.

To address this problem, we try to supervise internal layers
in SR networks without explicitly giving intermediate labels.
Firstly, we reconstruct the internal features to HR images,
which are called intermediate results. Intuitively speaking,
we hope these intermediate results become better and better
as the network goes deeper and deeper. Thus, we calculate
respectively the distances between these intermediate results
and ground truth, and we force these distances to become
smaller and smaller via what we call pushing and bounding
loss. In other words, as the network goes deeper, we force
these intermediate results to get closer to the ground truth, and
the final result will be the best one. This training scheme has
two benefits. Firstly, internal layers can be directly supervised,
and even early layers can be fully optimized. Secondly, we do
not force the network to give a best result at once. Instead,
we lead it to give better and better result via our pushing and
bounding loss. This supervision is relatively soft, and makes it
easy for the network to converge. As a result, without adding
any extra modules, deep residual networks trained via our
pushing and bounding loss can receive stable gain. Although
the training process becomes more complex, the inference cost
keeps the same and the model will have better performance.

Our contributions can be summarized as two points:

1. We propose a method to better optimize deep super-
resolution networks, and deep SR networks trained via
our method can receive stable gain without adding any
extra modules.

2. We propose pushing and bounding loss which can super-



vise internal layers without explicitly giving any interme-
diate labels. And this supervision is soft but direct, and
can help deep SR networks converge to a better point.

II. RELATED WORK
A. Deep Learning for Single Image Super Resolution

Since the proposal of SRCNN in [1], convolutional neural
networks (CNNS) for super resolution (SR) have become
much deeper and larger. Although deep CNNs are hard to be
trained, many techniques are proposed to solve this problem.
In [11], a global residual connection is added from the
beginning to the end, and thus gradient can flow directly to
early layers. In [12], residual learning is formally introduced to
image recognition and [13] immediately applies this structure
to SR networks. Multiple residual connections encourage
smoother gradient flow and these connections make it possible
to train CNN over 100 layers without obvious optimizing
problem. As a result, later SR networks, such as EDSR [14],
RDN [15], DBPN [16], RCAN [17] et al., all have more than
100 layers. RCAN, with the help of residual in residual (RIR)
structure, can even have more 500 layers. It is true that various
residual connections can guarantee a good result, however, we
experimentally show that better results can be achieved if very
deep SR networks can be further optimized.

B. Deeply Supervised Convolutional Neural Networks

Deep supervision is firstly introduced in [2] to help train
a very deep neural network. In this paper, not only the final
output features are supervised, but also the internal features at
different depths are supervised by individual classifiers. Later
in [3], the benefit of deep supervision is formally illustrated.
It proves that intermediate supervisions not only solve the
problem of gradient vanishing or explosion, but also act as a
kind of regularization and help the network converge to a better
point. Given the remarkable achievement of deep supervision
in image classification, it has also been applied to various
other tasks. In [4], intermediate supervision is used to train
a multi-stage networks for pose estimation. And later in [5],
intermediate supervision is furtherly developed to a default
setting for pose estimation. In the field of edge detection,
[6] adopts intermediate supervision to help the network learn
to reduce the false positive edges in final edge detection
maps. Although deep supervision has excellent performance in
various task, it is rarely used in deep super resolution networks
because the intermediate labels for SR networks are hard to
defined. Thus, we propose the pushing and bounding loss,
which share the benefit of deep supervision but do not need
explicit intermediate labels. And this loss can help train deep
SR networks to a better state.

III. PROPOSED METHOD

A. Formulation

To make a clear illustration, we firstly formulate general
SR networks. As shown in Figure 1 (a), a plain SR network
consists of three parts, i.e.head, body and tail. The head,
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Fig. 1. Dfferent SR network structures

denoted as H(-), extract low-resolution (LR) features from
the original LR image. This stage can be expressed as

fir = H(x) (D

where frr denotes LR features and = denotes the LR image.
Then the body, which usually consists of S mapping units,
maps LR features to high-resolution (HR) features. This stage
can be expressed as

fi = M;(fi—1)

where M;(-) denotes the i*" mapping unit and f; denotes the
its output. And the input of the first mapping unit is also the
extracted LR features. The output of the last mapping unit is
also the HR features. So we have fo = frr and fs = fur.

At last, the tail, denoted as T'(+), reconstructs HR features
to the HR image y. This process can be expressed as

y=T(fur) 3)

The reconstructed result is then supervised by the ground truth
GT.

1<i<8$ 2)

J =|GT —y| “4)

where J denotes the final reconstruction loss and | - | denotes
L1 norm.

B. Different Kinds of Deep Supervision

1) Deeply Supervised by the Ground Truth: As we have
mentioned above, deep supervision has proved to be beneficial
to training deep convolutional neural networks (CNNs). How-
ever, this technique is rarely used in SR models. If we want to



take the advantages of deep supervision in SR networks, the
most direct way is supervising internal features with ground
truth, just like the way adopted in classification networks.
Firstly, we need to reconstruct internal features f; to "HR
images’, which are called intermediate results. Then we have

yi = T(f3) &)

where y; denotes the intermediate result of the i internal

feature, and T;(-) denotes the tail we used to reconstruct the
it" internal feature. If all of these intermediate results are
supervised by the ground truth, then the intermediate loss [
can be written as

S
I=Y lyi—GT| (©)
1

For convenience, this is called IGT loss.

2) Deeply Supervised by Blurred Ground Truth: The first
kind of deep supervision seems to be fair reasonable, since it
works for image classification and pose estimation. However,
we experimentally find if all hierarchical features are super-
vised by the same label, it will cause inconsistence across
the whole network and harm the final performance. Thus,
it may be more reasonable to supervise these intermediate
results with different labels. Intuitively, as the network goes
deeper, the corresponding intermediate results should become
better, and so are the labels. Motivated by this assumption, we
blur GT with Gaussian kernels of different sizes to generate
intermediate labels with different accuracies. In formula,

L; = B(GT,K;), st 1<i<§8 7)

where L; denotes the i*h intermediate label and B(-) denotes
the Gaussian blur function. K; denotes the kernel size that
used to generate L;. Since we want the labels to get better
as ¢ increases, we need to add a constraint K;; < K;, with
1 <4 < S. Then we supervise y; with L; and the intermediate
loss I can be written as

S
I=7"lyi— Lil ®)
1

For convenience, this is called IBGT loss.

3) Deeply Supervised by Pushing and Bounding Loss:
Although we can generate different labels by blurring the
ground truth with different kernel sizes, there are two concerns
about it. Firstly, the kernel sizes are manually set, and different
setting may lead to very different result. Since we do not know
the best setting in advance, it may take a lot of time to adjust
these hyper-parameters. Secondly, these blurred labels actually
force the network to learn to deblur, instead of magnifying the
resolution, and these two processes are essentially different.
Experimental results also suggest that this kind of supervision
does not work.

To solve these problems, we need to come back to the
original motivation, without introducing any other unnecessary
assumptions. The only hypothesis is that the intermediate
results should become better as the network goes deeper,

and we only need to add this constraint to the SR network.
As the quality of a reconstructed HR image is defined via
its distance between the ground truth, we simply force the
distances between these intermediate results and the ground
truth to become smaller and smaller. In formula,

di = |yi — GT| )

And to implement the constraint d; 1 < d;, where 1 <14 < S,
we propose the pushing loss, which can be written as

S—1

P= Z maz(0,d;11 — d; +m;) (10)
1

where m; is the maximum margin between the i*" and i**!
intermediate results. In practical, we simply choose m; = m,
and m is a constant number. We experimentally find that as
long as m is not too small, we can always get a robust result.
Of course, this constraint is not strong enough, since it only
restricts the order of {d;}, but do not restrict their ranges.
Thus, we need to add one upper bound for d;. The bounding
loss B can be written as

B =max(0,dy — U) (11)

where U is the upper bound of d;. In practical, we set U =
(S — 1)m. As a result, the optimizing target for dg becomes
0, which is exactly the desired case. The total loss is
loss =a(P + B) + J
S—1

:a(z max(0,di+1 — d; +m) (12)
1

+ max(0,d1 — (S — 1)m)) + Bds

where o« and 3 are the weight of intermediate loss and
reconstructing loss respectively. In practical, we set v as 1
and (8 as 10.

The pushing loss forces the network to learn better and
better features, and the bounding loss restricts the worst case.
These two losses together force the final result to get closer
to ground truth, and their optimizing target is the same as
the reconstructing loss, which forces the network to converge
to a better point. In this way, we do not explicitly give any
intermediate labels but we do force the network to learn better
and better intermediate results, without introducing any other
assumptions. Although there are also some hyper-parameters,
their influences are limited. We also experimentally prove that
as long as the margin m is not too small, the final result is
not sensitive to these hyper-parameters.

C. Model Setting

Above discussion does not involve any details about the SR
network. In fact, the losses mentioned above can be applied
to general deep SR networks. Without loss of generality, we
conduct all of our experiments on the state-of-the-art model,
RCAN, which is proposed in [17]. We choose RCAN because
it has simple and flexible structure, which is easy to be
modified. Additionally, improvement on state-of-the-art result
is more meaningful.



As show in Figure 1 (b), RCAN uses a global skip connec-
tion to help the gradient flow to the early layers. The mapping
unit of RCAN is called residual group (RG), which consists
of a sequential of residual channel attention blocks (RCABs).
This structure is called residual in residual structure.The head
of RCAN is simply one convolutional layer with 3 x 3 kernel
size. It tail is composed by PixelShuffle [18] layers. In our
experiments, since we have introduced intermediate loss to
help train the network, we omit the global skip connection,
which serves similar roles. We keep the structure of resid-
ual group and residual channel attention block. Although in
original RCAN, multiple skip connections greatly benefit the
training process, experiments show that its result can be further
improved. We denote different RCAN structure as RCAN-
g x b-wc, which means that it has g residual groups and each
group has b RCABs. And the number of channels is c. If the
RCAN is trained by pushing and bounding loss, it is called
PB-RCAN.

IV. EXPERIMENTS

Results on Set5
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Fig. 2. Results of different RCANs trained by pushing and bounding loss.

A. Data and Training

Following the setting of [17], [15], 800 training images from
DIV2K dataset [19] are used as training set, and Set5 [20],
Set14 [21], BSDS100 [22] and Urban100 [23] are used as
validation sets. LR images are generated by bicubic down-
scaling and data augmentation is done by randomly rotating
input images by 90° or 180°, and vertically or horizontally
flip. We train our models with RGB images and our results
are evaluated on Y channel of transformed YCbCr space.

The size of our input is 48 x 48 and the batch size is 32. We
train each model for 1000 epochs. We choose Adam [24] as

our optimizer, with 8; = 0.9, 82 = 0.99, and ¢ = 10~%. Our
initial learning rate is 2e — 4 and we decay it by half every
200 epochs.

TABLE I
RESULTS RCAN TRAINED BY DIFFERENT LOSSES. SCALE FACTOR IS X4.
BEST AVERAGE PSNR/SSIM IS CHOSEN IN 8 X 10% ITERATIONS. BEST
RESULT IS HIGHLIGHTED.

Datasets Set5 Setl4
RCAN baseline 32.22/0.8960 28.63/0.7821
IGT loss 32.19/0.8947 28.58/0.7817
IBGT loss 32.16/0.8944 28.61/0.7822
Pushing and bounding loss | 32.25/0.8960 | 28.67/0.7833

B. Comparison with Different Losses

To investigate the superiority of the proposed pushing and
bounding loss, we train the same network with different kinds
of losses, i.e.IGT loss, IBGT loss and pushing and bounding
loss. We choose RCAN as the baseline and the scale factor is
4. it is important to note that the RCAN here has 5 residual
groups and each group contains 10 residual channel attention
blocks (RCABs). Besides, the number of feature channels is
set to 32. We train the baseline with only final reconstructing
loss. For IBGT loss, the Gaussian kernel sizes K; is set as

o _Jooi=5
l2x(-it+1)—1

For pushing and bounding loss, the maximum margin m is
set as 1 x 1072, As shown in Table I, except for pushing and
bounding loss, RCAN trained by the other two losses will have
worse performance. This also proves our previous arguments
that IGT loss will confuse the network and IBGT loss actually
damages the original optimizing target. IGT loss may be useful
to image recognition and pose estimation, because these two
tasks are essentially classification tasks. The results of both
tasks are not sensitive to the value of features, so even if all
internal features are supervised by the same ground truth, it
will not confuse the network. But SR is actually a regression
task, and the value of each pixel in feature maps will influence
the final performance. As a result, it is more reasonable to
supervise the network by a set of ’progressively accurate’
labels. Although IBGT loss satisfies this condition, it actually
leads the network to learn to deblur, instead of enhancing the
resolution. Pushing and bounding loss does not explicitly give
any intermediate labels, but it still forces the network to learn
better features as the network goes deeper. Thus, it works for
deeply supervised SR networks.

13
1<i<5 (13)

C. Study on Different Model Depths

To investigate the effectiveness of pushing and bounding
loss on different model depths, we conduct experiments on
PB-RCANSs with different number of residual groups. Original
RCANSs with only final reconstructing loss are chosen as the
baseline. We change the number of residual groups from 4
to 8, and each residual group consists of 10 residual channel



attention blocks (RCABs) . The number of channels is set as
32 and the scale factor is 4. Results on Set5 and Setl4 are
shown in Figure 2. Interestingly, the results do not always
get better as the number of residual groups increases. This
may be caused by fluctuation of training process. Considering
this fluctuation, extensive experiments are done on PB-RCANs
with different depths. As shown in the figure, PB-RCANSs can
always achieve better results than original ones on different
datasets.
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| |
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Fig. 3. Visual results of Zebra from Set14.

D. Study of Maximum Margin

To investigate the influence of maximum margin m between
different intermediate results, experiments are conducted with
different m. We choose six typical values, i.e.1 X 1073, 3 x
1073,5x1073,8x 1073, 1 x 1072 and 2 x 10~ 2. Experiments
are done on PB-RCAN. The scale factor is 4. As shown in
Figure 4, as the m increases to 5x 1073, the final results almost
keep the same. It can be inferred that as long the maximum
is great enough, the final results is not so sensitive to this
hyper-parameter.

E. Comparison with State-of-the-art Models

To further prove the effectiveness of our pushing and
bounding loss, we train a PB-RCAN with complete RCAN
structure in [17]. We compare the results with seven other
models, i.e. FSRCNN [25], LapSRN [26], CARN [27], D-
DBPN [16], EDSR [14], RDN [15], RCAN [17] and SAN [28].
As shown in Table II, RCAN trained by the proposed pushing
and bounding loss outperform the original RCAN on all four
public validation datasets. It indicates that original RCAN is
not fully optimized and its results can be further improved.
Also, it outperforms all previous methods. The visual result is
shown in Figure 3

V. ANALYSIS

Deep supervision has its benefits in twofold. Firstly, early
layers in deeply supervised networks are directly connected
to the loss layer, and thus gradients can easily flow to all
layers. However, in networks with only final reconstructing
loss, gradients received by early layers are not so strong
enough to optimize them. Although multiple skip connections
can largely resolve this problem, it can be further improved [7],
[29]. Secondly, as pointed out in [3], deep supervision can be
viewed as a kind of regularization, which reduces the potential
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Fig. 4. Results of RCAN trained by pushing and bounding loss with different
maximum margins.

optimizing directions of the whole network and make it easier
for the model to find a global optimal solution. Compared
with other networks, deeply supervised networks are forced
to progressively learn better and better results. This is a
kind a greedy strategy, and it largely simplifies this problem.
Thus, deeply supervised networks can more easily find better
solution. There is one concern that a greedy strategy will
disable the model to find global optimal solution. Although
the solution may be not global optimum, experiments show
that deeply supervised networks perform better that original
ones.

Despite its solid benefits, deep supervision is rarely applied
to SR networks. But in fact, deep supervision is very suitable
for SR networks. Firstly, The overall structures of SR networks
are usually plain. They have on no pooling layers or extra
branches like segmentation networks or detection networks.
Thus, it is easy to modify them to deeply supervised versions.
Secondly, depth plays important role in SR networks, and
deeper SR networks usually have better performances. Thus,
optimizing problem is more significant in SR networks.

But in reality, intermediate labels in SR networks are hard
to be defined and inappropriate intermediate labels will even
harm the performance. The proposed pushing and bounding
loss circumvent this problem and only forces the network to
learn better features as the network goes deeper. We implement
deep supervision to SR networks without explicitly giving
any intermediate labels and achieve stable improvements on
original models.



TABLE II
RESULTS OF DIFFERENT X4 MODELS ON FOUR PUBLIC DATASETS. BEST RESULTS ARE HIGHLIGHTED.

Model Set5 Set14 B100 Urban100
PSNR [ SSIM PSNR [ SSIM PSNR [ SSIM PSNR [ SSIM
Bicubic 28.42 0.8104 26.00 0.7027 25.96 0.6675 23.14 0.6577
FSRCNN [25] | 30.71 0.8657 27.59 0.7535 26.98 0.7150 24.62 0.7280
LapSRN [26] 31.54 0.8850 28.19 0.7720 27.32 0.7280 25.21 0.7560
CARN [27] 32.13 0.8937 28.60 0.7806 27.58 0.7349 26.07 0.7837
EDSR [14] 32.46 0.8968 28.80 0.7876 27.71 0.7420 26.64 0.8033
D-DBPN [16] 32.47 0.8980 28.82 0.7860 27.72 0.7400 26.38 0.7946
RDN [15] 32.47 0.8990 28.81 0.7871 27.72 0.7419 26.61 0.8028
RCAN [17] 32.63 0.9002 28.87 0.7889 27.77 0.7436 26.82 0.8087
SAN [28] 32.64 0.9003 28.92 0.7888 27.78 0.7436 26.79 0.8068
PB-RCAN 32.65 | 0.9005 | 28.92 | 0.7890 | 27.82 | 0.7440 | 26.83 | 0.8093

VI. CONCLUSION

In this paper, we are interested in solving the optimizing
problem in deep super resolution (SR) convolutional neural
networks (CNNs). Although deep supervision can greatly help
train deep models, it is rarely applied in SR networks, because
the required intermediate labels are hard to be defined for the
SR problem. To tackle this matter, we propose the pushing
and bounding loss, which can directly supervise all internal
layers without explicitly giving any intermediate labels. We
only guide the network to learn better features as the network
goes deeper. It also severs as the role of regularization, leading
the network to search for the optimal solution and largely
accelerate the process of finding better results. As a result,
Extensive experiments show that our method achieves stable
improvement on original models.
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