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ABSTRACT
Change detection in SAR images is an important but chal-

lenge task. Due to the difficulty of SAR interpretation, re-
liable training samples are lacking, limiting the application
of deep learning technology in SAR image change detection.
To overcome this problem, this article proposes an unsuper-
vised SAR image change detection method based on slow fea-
ture analysis theory with convolutional neural network (SAR-
SFAnet). It adopts SDAEs to automatically extract features
from SAR data, and employs slow feature analysis theory to
project the extracted multi-dimensional features into a new
space. In addition, an alternative optimization strategy is in-
troduced, making the features learned by bi-temporal stacked
denoising auto-encoder (SDAEs) have more consistent repre-
sentations, as well as making the change detection map more
accurate. Finally, comparative experiments are carried out on
two real SAR data sets, demonstrating the effectiveness of the
proposed method.

Index Terms— Change detection, SAR images, Slow
feature analysis, Iterative feature learning

1. INTRODUCTION

Synthetic aperture radar (SAR), an active sensor, can acquire
data independently of sunlight and weather conditions, and
thus it is appropriate for the change detection tasks.

However, change detection in SAR images is a challeng-
ing task because of the presence of intrinsic speckle noise. In
the past several years, many algorithms have been developed
according to the characteristics of SAR data. The ratio-based
operators are the primary research fucus because they can
effectively suppress the speckle noise. Representative ratio-
based operators include log-ratio, neighborhood-based ratio,
Gauss-ratio and region likelihood-based ratio operators [1].
In addition, statistical theory is usually employed to SAR im-
age change detection due to the distinct statistical properties
of SAR data. These methods take advantage of higher-order
statistics to overcome the limitations that standard ratio oper-
ators can only detect step changes [2]. The commonly used

statistical models include Rayleigh distributions, multivariate
generalized Gaussian model and bivariate gamma distribu-
tions [3]. Moreover, many advanced methods are adopted
to SAR image change detection, including transform-based
methods, hidden Markov chains and canonical correlation
analysis [4].

As the deep learning technology has greatly boosted the
performance of several vision tasks, recently, many deep
learning models are used for change detection tasks, in-
cluding stacked autoencoder (SAE), deep belief networks
(DBNs), recurrent neural networks (RNN) and generative
adversarial networks (GANs). However, due to the difficulty
of SAR interpretation, as far as I know, there is no large
public SAR change detection data set. The lack of reliable
training samples makes the deep learning technology have
limitations in SAR image change detection. At present, some
unsupervised deep learning based methods are used to solve
the above disadvantages. In [5], a channel weighting-based
deep cascade network is employed to detect changes in SAR
image. Gao et. al [6] propose a convolutional-wavelet neural
networks to monitor the sea ice changes in SAR image. In
[7], a multiscale capsule module is utilized to exploit the
spatial relationship of SAR image features.

In this paper, we propose a slow feature analysis method
based on convolutional neural network for SAR image change
detection (SAR-SFAnet). The SAR-SFAnet is fully unsuper-
vised and has three characteristics. First, stacked denoising
auto-encoder (SDAE) is established to automatically extract
features from SAR images. Second, slow feature analysis
(SFA) theory is employed to project the multi-dimensional
features into a new space, suppressing the unchanged com-
ponents and emphasizing the changed components. Third, an
alternative optimization strategy is introduced. On the one
hand, the changed probabilities guide the features learned by
bi-temporal SDAEs to have more consistent representations,
and on the other hand, the features extracted from SDAEs
make the change detection map more accurate.
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Fig. 1. Flowchart of the proposed method.

Fig. 2. Structure of SDAE and the basic model.

2. METHODOLOGY

Consider two co-registered SAR images, Ix and Iy , acquired
over the same geographical area at different times. The aim
is to generate a binary map, representing changes between Ix
and Iy . The flowchart is illustrated in Figure 1, consisting of
two modules, pre-training and iterative feature learning.

2.1. Deep learning models
Deep learning models, which contain many hidden layers,
have become an effective way to automatically learn features
from data. In this paper, SDAE [8] is selected as the basic
model to learn discriminative features. The structure of SDAE
and the structure of the basic model are shown in Figure 2.

2.2. Slow feature analysis theory
SFA, an image transformation method, extracts invariant and
slowly varying spectral features to suppress the unchanged
and emphasize the changed components of the input signals.
SFA has been successfully applied to multispectral image
change detection task by projecting the multi-dimensional
data into a new space [9, 10]. However, we aim to pro-
cess single-polarization SAR images. Therefore, the features
learned by deep networks are taken as the input of SFA.

We adopt the theory of iterative slow feature analysis
(ISFA) [10], which iteratively assigns larger weights to un-
changed pixels to obtain the best feature space.

Consider m-dimensional features of the i-th pixel in two
images, xi, yi ∈ Rm. SFA is to find a set of projection func-
tions gj(xi) = wTj xi, by solving the objective function,

min
wj

1

n

n∑
i=1

(wTj xi − wTj yi)2, j ∈ [1, 2, . . . ,m] (1)

with the constraints:



1
2n

[
n∑
i=1

wTj xi +
n∑
i=1

wTj yi] = 0

1
2n

[
n∑
i=1

(wTj xi)
2

+
n∑
i=1

(wTj yi)
2
] = 1

1
2n

[
n∑
i=1

(wTj xi)(w
T
l xi) +

n∑
i=1

(wTj yi)(w
T
l yi)] = 0

(2)

The optimization problem in (1) is equivalent to the gen-
eralized eigenvalue problem,

AW = BWΛ (3)

where A and B can be calculated as:
A = 1

n

n∑
i=1

(xi − yi)(xi − yi)T

B = 1
2n

[
n∑
i=1

xix
T
i +

n∑
i=1

yiy
T
i ]

(4)

Then, the difference between the input bi-temporal fea-
tures can be calculated as:

SFAj = ||wTj xi − wTj yi||22 (5)

ISFA is to assign each pixel a weight in the above calcu-
lation process. The weight is calculated by,

vi = P{χ2(N) > T i} (6)

according to the chi-squared distribution T i =
N∑
j=1

(SFAi
j)

2

λj
.

Thus, (1)-(4) can be rewritten in weighted form. The it-
eration begins with all pixels having equal weights, and then
the unchanged pixels obtain larger weights during the itera-
tion, and then the iteration stops until convergence.

2.3. Change detection strategy
2.3.1. Pre-training
We employ the SDAE introduced in Section 2.1 to generate
the features of bi-temporal images. First, Iy corrupted by
the multiplicative noises with Gamma distribution is input to
SDAE-y, obtaining its features. The parameters of SDAE-y
is achieved by minimizing the reconstruction error defined in
mean square error loss.

Because of the difference in acquisition conditions caused
by the time span, the local intensity distributions of the same
ground object may be different. Therefore, the feature extrac-
tor with the same parameters is unable to obtain comparable
features in the bi-temporal images. In order to make the fea-
tures learned by SDAE-x and SDAE-y have more consistent
representations, we assign the parameters θy in SDAE-y to
SDAE-x, and then further adjust θx by minimizing the pixel-
wise difference between the bi-temporal features.

f(θx) =

N∑
i=1

[λi

n∑
j=1

||hi,jx (θx)− hi,jy ||22] (7)

where N is the number of hidden layers, λi controls the
weight of each hidden layer, n is the number of pixels, and
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hi,jx , hi,jy represent the feature vectors obtained by SDAE-x
and SDAE-y, respectively.

2.3.2. Iterative learning strategy
In order to make the pixelwise features more similarity in the
unchanged areas and more discriminatively in the changed
areas, an iterative learning strategy is introduced.

The objective function is defined as

minE(θx) =
1

n

n∑
j=1

[pj · ||hN,jx (θx), hN,jy ||SFA]− λ
n∑
j=1

pj (8)

and

pj = 1− ||hN,jx , hN,jy ||SFA (9)

where || · ||SFA is the distance calculated by SFA theory, as
described in (5). pj indicates the unchanged probability of

the j-th pixel.
n∑
j=1

pj is a regularization term controlled by a

user-defined parameter λ, preventing a full zero-probability.
In addition, the intermediate features acquired from the

other hidden layers are also very important, and most meth-
ods usually ignore them. Thus, we combine the effects of
intermediate features to enhance the change detection perfor-
mance. The cross-entropy loss function is adopted here, but a
very small value of x will result in a very large −x log x. To
overcome this, we use the sigmoid cross-entropy defined as:

Ei(θx) = − 1
n

n∑
j=1

[
pj · log(σ(|hi,jx (θx)− hi,jy |))

+ (1− pj) · log(σ(1− |hi,jx (θx)− hi,jy |))
]
(10)

Thus, the objective function (8) is improved as

minE(θx) = 1
n

n∑
j=1

[pj · ||hN,jx (θx), hN,jy ||SFA]

− λ
n∑
j=1

pj +
N−1∑
i=1

λiEi(θx)
(11)

The optimization of (11) is achieved by alternately solv-
ing θx and pj . Fixing θx, calculate pj using (9), and then
fixing pj , optimize θx using the backpropagation method. Fi-
nally, the difference map can be achieved by employing the
SFA method on the extracted features, and then the change
detection map can be obtained by using the thresholding al-
gorithm on the difference map.

3. EXPERIMENTS

In this section, two real cases are utilized to verify the effec-
tiveness of the proposed method. The first data set consists
of a pair of SAR images acquired by Radarsat-1 sensor on
August 26, 1999 and August 2, 1999, respectively. The size
of the data set is 627×619 pixels, as shown in Figure 3 (a)
and (b). The second data set has two SAR images captured
by ERS-2 sensor over the city of San Francisco. Their sizes

are 256×256 pixels, as shown in Figure 4 (a) and (b). In ad-
dition, the ground truth images were defined manually with
expert knowledge, as shown in Figure 3 (c) and 4 (c).

Five unsupervised SAR change detection methods are em-
ployed for comparison. They are the PCA-based neural net-
works (PCANet) [11], the convolutional wavelet-based neural
networks (CWNNs) [6], the multiscale capsule network (Ms-
CapsNet) [7], the convolutional coupling network (SCCN)
[12] and the affinity-based neural networks (X-Net) [13]. In
addition, to make a quantitative analysis, four evaluation cri-
teria are used, including false positive (FP), false negative
(FN), overall accuracy (OA) and Kappa coefficient (KC).

The change detection results are shown in Figure 3 and 4,
and the quantitative analysis is presented in Table 1. We can
see that the results of CWNNs tend to be rather noisy, and the
results of SCCN and X-Net also suffer from high FP values.
PCANet and Ms-CapsNet perform better since they explore
the spatial relation information, and have certain robustness
to speckle noise. The results of our proposed method are the
most satisfactory in terms of visual inspection and quantita-
tive analysis. They exhibit less false alarm regions and mis-
detections, and obtain the best OA and KC values. The effec-
tiveness benefits from the iterative learning strategy, which
makes the features generated from bi-temporal SDAEs have
more consistent representations.

4. CONCLUSIONS
In this paper, a slow feature analysis method based on con-
volutional neural network is proposed for SAR image change
detection. It takes advantage of the feature learning capability
of convolutional neural networks and the transforming capa-
bility of slow feature analysis theory. In addition, an alterna-
tive optimization strategy is introduced, making the extracted
bi-temporal features more consistent and making the change
detection map more accurate. Finally, two SAR data sets are
used to demonstrate the effectiveness of our method.
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Fig. 3. First data set: (a) Before-phase image; (b) After-phase image; (c) Ground truth; (d) PCANet; (e) CWNNs; (f) Ms-
CapsNet; (g) SCCN; (h) X-Net; (i) SAR-SFAnet.
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