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   Abstract—In  this  article,  the  problem  of  state  estimation  is
addressed for discrete-time nonlinear systems subject  to additive
unknown-but-bounded  noises  by  using  fuzzy  set-membership
filtering.  First,  an  improved  T-S  fuzzy  model  is  introduced  to
achieve highly accurate approximation via an affine model under
each  fuzzy  rule.  Then,  compared  to  traditional  prediction-based
ones,  two  types  of  fuzzy  set-membership  filters  are  proposed  to
effectively  improve filtering performance,  where the  structure of
both filters  consists  of  two parts:  prediction and filtering.  Under
the  locally  Lipschitz  continuous  condition  of  membership
functions,  unknown  membership  values  in  the  estimation  error
system can be treated as multiplicative noises with respect to the
estimation error. Real-time recursive algorithms are given to find
the  minimal  ellipsoid  containing  the  true  state.  Finally,  the
proposed  optimization  approaches  are  validated  via  numerical
simulations  of  a  one-dimensional  and  a  three-dimensional
discrete-time nonlinear systems.
    Index Terms—Affine  model,  membership  functions,  set-
membership filtering, stability, Takagi-Sugeno fuzzy modeling.
  

I.  Introduction

H∞
H∞

MANY  applications  involve  nonlinear  systems  and
unwanted  noises.  The  noise  arises  from  inputs  of  the

system  and  outputs  derived  with  the  aid  of  a  noisy  sensor.
Filtering  is  necessary  to  obtain  information  about  some
quantities  that  are  essentially  internal  to  the  system.  As  a
result, an extensive body of theory relating to filter design has
grown,  such  as  the  famous  Kalman  filter  and  its  extensions
[1]–[4],  the  filter  [5]–[7],  and  several  others  [8]–[10].
Kalman  filter  is  a  minimum  variance  estimator,  and  the 
filter  minimizes  the  worst-case  estimation  error.  The  system
noise,  including  process  noise  and  measurement  noise,  is
normally  assumed  to  be  statistically  known  in  the  Kalman

filtering framework. Nevertheless, the bound of noises can be
obtained in many practical applications, such as radar, voltage
control  [11],  system  guidance  and  navigation,  and  target
tracking and attacking. This leads to set-membership filtering
[12]–[14].  The  idea  of  set-membership  filtering  is  to  give  an
ellipsoid  centered  at  the  state  estimate  containing  the  true
state,  and  the  size  of  the  ellipsoidal  set  is  subsequently
minimized.  A  reliable  localization  problem  was  discussed  in
[15]  for  autonomous  mobile  robots  in  an  unstructured
environment.  The  need  of  statistical  information  of  the  noise
was  relaxed  and  linearization  errors  were  taken  into  account
by  the  proposed  set-membership  filter.  Set-membership
filtering  was  recently  implemented  in  radar  applications  in
[16] to estimate the position of an octorotor. Note that a great
many  applications  involve  linear  systems,  as  it  spurs  linear
set-membership filtering. However, most applications involve
nonlinear systems. By comparison, nonlinear set-membership
filter design is very hard, if not impossible, in many instances.
For this reason, there has been a lack of attention for nonlinear
set-membership  filters.  An  attempt  is  made  in  this  article  to
design  fuzzy  set-membership  filter  algorithms  for  nonlinear
systems.

yk x̂k xk+1

x̂k

xk+1
yk+1

Due  to  its  high-precision  modeling  and  low-complexity
computation, we first use a Takagi-Sugeno (T-S) fuzzy model
to  approximate  the  nonlinear  system.  T-S  fuzzy  modeling  is
based  on  a  fuzzy  partition  of  the  state  space,  known  as  IF-
THEN rules. Under each fuzzy rule, a basis system is formed.
The  fuzzy  model  is  given  by  the  aggregation  of  the  basis
systems,  that  is,  a  convex  combination  of  the  basis  systems
weighted by membership functions. The commonly used basis
systems  are  linear  systems  [17]–[26].  However,  nonlinear
systems  in  general  are  hard  to  be  approximated  with  high
accuracy by using only the combination of linear systems. To
increase  the  accuracy  of  the  T-S  fuzzy  model,  we  use  affine
basis  systems.  Based  on  the  obtained  T-S  fuzzy  model,  two
fuzzy  set-membership  filters  are  constructed  to  find  minimal
ellipsoids centered at the estimated states that contain the true
states.  Previous  works  addressed  the  problem  of  set-
membership  filtering  using prediction-type  observers  [19],
[27],  that  is,  and  are  used  to  estimate .  Our
constructed filter is comprised of both prediction and filtering.
The prediction step will be executed using , the fuzzy model
and  the  knowledge  of  the  process  noise;  the  filtering  step
involves  updating  the  predicted  value  of  with  measures

.  Furthermore,  we  exploit  properties  of  membership
functions, which is critical to address the stability problem of
the  estimation  error  system.  However,  set-membership
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filtering  problems in  the  literature  usually  do  not  include  the
stability  analysis,  as  we  do  in  this  article.  The  problem  of
finding  a  minimal  ellipsoid  which  contains  the  true  system
state  is  eventually  transformed  into  linear  objective  minimi-
zation with linear matrix inequality (LMI) constraints.

The  main  contributions  of  this  article  are  summarized  as
follows.

1) Under each fuzzy subspace, we utilize an affine model to
achieve a more accurate approximation compared with linear
models  when  the  same  fuzzy  rules  are  applied.  A  complete
procedure for identifying the T-S fuzzy model is given.

2)  Two  fuzzy  set-membership  filters,  namely,  FSMF1  and
FSMF2,  are  proposed,  where  the  structure  of  both  filters
consists  of  prediction  and  filtering.  Compared  with  the
prediction-type  observers,  the  proposed  filters  can  further
reduce  the  state  estimation  error  by  using  the  most  recent
measurements.

3)  Both  the  proposed  filters  are  capable  of  stabilizing  the
estimation error system and attenuating noises, while filters in
most  previous  studies  focus  on  noise  attenuation  only.  In
addition,  the  design  of  FSMF2  takes  full  advantage  of  the
locally  Lipschitz  continuous  condition  of  the  membership
function, which has not been explored in previous studies. The
simulation  example  shows  a  case  that  FSMF2  completely
rejects the measurement noise for a stable nonlinear system.

The remainder of this article is  structured as follows. First,
the fuzzy set-membership estimation problem is formulated in
Section  II  where  the  T-S  fuzzy  model  is  discussed  and  two
fuzzy set-membership filters are designed to cater to different
scenarios. Then, the filter designs are discussed to ensure that
the true state is contained in an ellipsoidal set centered at the
estimated  state  in  Section  III.  In  Section  IV,  a  one-
dimensional  nonlinear  system  and  a  vertical  mass-spring
system are given to evaluate the estimation performance of the
proposed  two  filters.  Our  conclusions  and  discussions  of
future  research  are  included  in  Section  V.  The  proofs  of
lemmas are given in Appendices.  

II.  Problem Formulation and Filter Design
  

A.  Nonlinear Plant

[0,T ]

Let  us  study  the  class  of  discrete-time  systems  with  a
prototype of the nonlinear, finite dimensional system depicted
in Fig. 1. Given a finite horizon , the system is described
by state-space equations:
 

xk+1 = f (xk)+Bkwk (1)
 

yk =Ck xk +Dkvk. (2)
xk x0The n dimensional  system  state ,  with  the  initial  state ,

X yk
f (·) xk

X Bk Ck Dk
wk ∈ Rw

belongs to a compact set ,  is the measurement at time k,
 is a known continuous nonlinear function of  defined on

,  and , ,  and  are  known matrices.  The  input  to  the
system  signifies  the  process  noise  constrained in  the
following ellipsoidal set
 

Wk =
{
wk |wT

k Q−1
k wk ≤ 1

}
(3)

Qk > 0

vk ∈ Rv

where  is  a  known  symmetric  positive  definite  matrix
with compatible dimension, characterizing the orientation and
the size of the ellipsoid, and  is the measurement noise
constrained in the following ellipsoidal set
 

Vk =
{
vk |vT

k R−1
k vk ≤ 1

}
(4)

Rk > 0where  is  a  known  symmetric  positive  definite  matrix
with compatible dimension.  

B.  Fuzzy Model and Fuzzy Filter
We adapt fuzzy filtering algorithms to the nonlinear system

(1). Toward this end, the nonlinear model is represented by a
set  of  affine  models  which  are  connected  via  fuzzy
membership functions under a set of fuzzy rules.

x1,k M1,i x2,k M2,i, . . . , xn,k Mn,iPlant Rule i: If  is ,  is  and  is ,
then
 

fi(xk) = Aixk +bi, i ∈ {1, . . . ,N} (5)

xk = [x1,k, . . . , xn,k]T Mh,i h ∈ {1, . . . ,n}

Ai
bi
Ai [Ai,Ck+1]

i ∈ {1, . . . ,N} Ai bi

where ,  for  are fuzzy sets
representing a  fuzzy subset  where fuzzy rules  can be applied
for reasoning, N represents the number of fuzzy rules, and 
and  are constant matrices and vectors, respectively. Assume
that  is  nonsingular  and  the  pair  is  completely
observable  for .  The dimensions of  and  are
determined  by  the  nonlinear  function f.  The  fuzzy
approximation of the nonlinear function f inferred from (5) for
all N rules is obtained as
 

f (xk) =
N∑

i=1

βi(xk) fi(xk) (6)

βi(xk)with the normalized weight  for Rule i defined by
 

βi(xk) =
µi(xk)

N∑
i=1
µi(xk)

(7)

µi(xk) ≥ 0where  are  fuzzy  membership  functions.  Thus,  we
obtain:
 

βi ≥ 0,
N∑

i=1

βi = 1. (8)

In  the  following  example,  we  will  show how to  obtain  the
fuzzy model for a given nonlinear function.

f (x1, x2) =
x1x2 f (x1, x2)

x1 ∈ [−1.5,1.5] x2 ∈ [0.05,0.15]

Example  1: Consider  the  nonlinear  function 
.  It  is  aimed to  approximate  the  function  in  the

intervals  and  using  the  T-S
fuzzy  modeling  method.  Let  us  define  four  fuzzy  sets  with
their corresponding normalized weights as follows: 

 

Bk ∑
+

+
Delay Ck +

+

Dk

vk

f (·)

wk xk+1 xk yk∑

 
Fig. 1.     Finite-dimensional nonlinear systems serving as basic signal model.
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β1(x) =
(1.5− x1)(0.15− x2)

0.3
,

β2(x) =
(1.5− x1)(x2−0.05)

0.3
,

β3(x) =
(x1+1.5)(0.15− x2)

0.3
,

β4(x) =
(x1+1.5)(x2−0.05)

0.3
.

Ai bi i ∈ {1, . . . ,4}
x1 x2

[−1.5,1.5] [0.05,0.15]
γ = 0.001

In order to identify the parameters  and  for ,
we take 1000 points for  and  uniformly distributed in the
interval  and ,  respectively. By applying
the  weighting  parameters  approach  with  [28],  the
fuzzy system becomes

x1 x2Rule 1: If  is around –1.5, and  is around 0.05, then
 

f1(x1, x2) = 0.0345x1−0.0057x2−0.023; (9)
x1 x2Rule 2: If  is around –1.5, and  is around 0.15, then

 

f2(x1, x2) = −0.069+0.1034x1−0.0057x2; (10)
x1 x2Rule 3: If  is around 1.5, and  is around 0.05, then

 

f3(x1, x2) = 0.023+0.0345x1+0.0057x2; (11)
x1 x2Rule 4: If  is around 1.5, and  is around 0.15, then

 

f4(x1, x2) = 0.069+0.1034x1+0.0057x2. (12)

1.857∗10−4
The  error  between  the  nonlinear  system  and  the  identified
fuzzy model is within . As can be seen, this fuzzy
model  is  obviously  very  close  to  the  nonlinear  function  and
presents a good approximation. Besides, the occurrence of ill-
conditioned matrices during modeling is avoided.

x̂0
x0 x̂k ∈ X

k ∈ {1, . . . ,T }

Here  we  propose  two  T-S  fuzzy  set-membership  filters,
which  will  be  introduced  below.  We  define  to  be  the
estimated  value  of  given  no  measurements.  Then 
can be obtained recursively for .

k ≥ 0

1)  FSMF1: The  first  T-S  fuzzy  set-membership  filter,
named FSMF1, comprises the systems depicted in Fig. 2 and
Fig. 3 and is described for  by the equations:
 

+
−

−

Lk+1
i

+
+

Ck+1

xk+1
i

bi

+

+
Ai

yk+1 x̂k+1
i

x̂k

∑∑

∑

 
Fig. 2.     Fuzzy filter under filter rule i.
 

x̂1,k M1,i x̂2,k M2,i, . . . x̂n,k Mn,iFilter Rule i: If  is ,  is , and  is ,
then
 

x̄i
k+1 = Ai x̂k +bi, i ∈ {1, . . . ,N} (13)

 

x̂i
k+1 = x̄i

k+1+Li
k+1(yk+1−Ck+1 x̄i

k+1) (14)
Mh,i h ∈ {1, . . . ,n}

Ai bi

Li
k+1

where the fuzzy sets  for  are the same as the
ones  used in  the  plant  rules,  and  are  defined in  (5)  and
can  be  derived  by  the  T-S  fuzzy  modeling,  and  the  gain
matrices  are to be determined.

x̂k+1One  obtains  the  filtered  estimate  from  (14)  of  all N
rules as follows 

x̂k+1 =

N∑
i=1

βi(x̂k)x̂i
k+1 (15)

βi

βi(x̂k) βi(xk)
where  the  normalized  weight  is  defined  in  (7).  Note  that

 is defined from .

x̂i
k+1 x̂i

k+1
x̂k x̂k

The  filter  depicted  in Fig. 2 is  designed  under  each  rule
according  to  (13)  and  (14).  The  defuzzification  process  is
shown in Fig. 3 according to (15) which is the aggregate fuzzy
estimate.  The output  in Fig. 2 is  the input  in Fig. 3,
and one of the outputs  in Fig. 3 is the input  in Fig. 2.

k ≥ 0

2)  FSMF2: The  second  T-S  fuzzy  set-membership  filter,
named  to  FSMF2,  comprises  the  systems  depicted  in Fig. 4
and Fig. 5 and is described for  by the equations:

 

βi (·)

…
…

×

x̂k+1
i

+
+

+

+
+

β1 (·) ×

x̂k+1
1

+
+

βN (·) ×

x̂k+1
1

+
+

x̂k+1

Delay
x̂k

∑

 
Fig. 3.     Fuzzy filtering fusion.
 

 

βi (·)

Ai

bi 

+ ×

+

+

+
+

β1(·)

A1

b1

+ ×
+

βN (·)

AN

bN

+
×

+

x̂k x̄k+1

∑

∑

∑

∑

…
…

 
Fig. 4.     Fuzzy prediction.
 

 

+
−

Lk+1
+

+

Ck+1

yk+1 x̂k+1

x̄k+1

∑∑

 
Fig. 5.     Fuzzy filtering.
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x̂1,k M1,i x̂2,k M2,i, . . . , x̂n,k Mn,iFilter Rule i: If  is ,  is  and  is ,
then
 

x̄k+1 =

N∑
i=1

βi(x̂k)(Ai x̂k +bi) (16)

 

x̂k+1 = x̄k+1+Lk+1(yk+1−Ck+1 x̄k+1) (17)
Mh,i h ∈ {1, . . . ,n}

Ai bi
i ∈ {1, . . . ,N}

Lk+1

where the fuzzy sets  for  are the same as the
ones  used in  the  plant  rules,  and  are  defined in  (5)  and
can  be  derived  by  the  T-S  fuzzy  modeling  for ,
and the gain matrix  is to be determined.

x̂k+1
x̂k x̄k+1

The  predictor  depicted  in Fig. 4 is  designed  according  to
(16) using the T-S fuzzy model. The filter depicted in Fig. 5 is
designed according to (17). The delayed output  in Fig. 5
is the input  in Fig. 4, and the output  in Fig. 4 is one of
the inputs in Fig. 5.  

C.  Objective
The estimation error at time k is defined as

 

ek = xk − x̂k. (18)
x0 x̂0The  initial  state  and  initial  estimate  are  assumed  to  be

confined in the following ellipsoid
 

eT
0 P−1

0 e0 ≤ 1 (19)
P0where  is a given symmetric positive-definite matrix.

x̂(k) x(k)
The  objective  of  this  article  is  to  find  a  minimal  ellipsoid

centered at  which contains , that is,
 

eT
k P−1

k ek ≤ 1 (20)

Li
k i ∈ {1, . . . ,N} Lk

k ≥ 1
by  optimizing  for  in  FSMF1,  and  in
FSMF2, respectively, for .  

III.  Main Results
  

A.  Preliminaries
[A,C]

(I−LC)A

Lemma 1: If the pair  is completely observable and A
is  nonsingular,  then  there  exists  an L such  that  an  arbitrary
characteristic polynomial  can be obtained.

The proof of Lemma 1 is presented in Appendix A.
Φi ∈ Rn×(n+m) P = PT ∈ Rn×n

Y ∈ Rp×(n+m) Z = ZT ∈ Rp×p X = XT ∈ R(n+m)×(n+m)
Lemma  2: Given  matrices , ,

, , ,  the
following inequality
  ∑N

i=1 βiΦ
T
i P−1∑N

i=1 βiΦi+X ∗
Y Z

 ≤ 0 (21)

βiholds for any  satisfying (8) if the following N inequalities
 

X ∗ ∗
Y Z ∗
Φi 0 −P

 ≤ 0 (22)

i ∈ {1,2, . . . ,N}hold for .
The proof of Lemma 2 is presented in Appendix B.  

B.  Design of FSMF1
Define the estimation error under fuzzy rule i as

 

ei
k+1 = xk+1− x̂i

k+1, i ∈ {1, . . . ,N}

Then, from (15) and (18),
 

ek+1 =

N∑
i=1

βi(x̂k)ei
k+1. (23)

ei
k+1From (14), we can obtain the state estimation error  as

 

ei
k+1 = (I−Li

k+1Ck+1)(xk+1− x̄i
k+1)

−Li
k+1Dk+1vk+1. (24)

xk+1− x̄i
k+1Let us calculate  using (1), (5), (6), (13) and (18)

 

xk+1− x̄i
k+1 =

N∑
j=1

β j(xk)(A jxk +b j)+Bkwk −Ai x̂k −bi

=

N∑
j=1

β j(xk)A jek +

N∑
j=1

β j(xk)(A j−Ai)x̂k

+

N∑
j=1

β j(xk)(b j−bi)+Bkwk. (25)

Based on (24)–(25), we can obtain
 

ei
k+1 =

N∑
j=1

β j(xk)(I−Li
k+1Ck+1)

× (A jek + (A j−Ai)x̂k +b j−bi+Bkwk
)

−
N∑

j=1

β j(xk)Li
k+1Dk+1vk+1. (26)

ηkLet us define  as
 

ηk =
[

eT
k wT

k vT
k+1 1T

n×1

]T
. (27)

Then, from (23) the estimation error can be rewritten as
 

ek+1 =

N∑
j=1

β j(xk)Φ j,kηk (28)

where
 

Φ j,k = [ Φ j1,k Φ j2,k Φ j3,k Φ j4,k ]

Φ j1,k =

N∑
i=1

βi(x̂k)(I−Li
k+1Ck+1)A j

Φ j2,k =
∑N

i=1
βi(x̂k)(I−Li

k+1Ck+1)Bk

Φ j3,k =
∑N

i=1
βi(x̂k)Li

k+1Dk+1

Φ j4,k =
∑N

i=1
βi(x̂k)(I−Li

k+1Ck+1)

× ((A j−Ai)x̂k +b j−bi
)
.

P0 Pk+1
k ≥ 0

Given  and k,  the  minimal  ellipsoid  can  be  found
recursively  for  by  solving  the  following  optimization
problem:
 

min
Pk+1, Li

k+1

tr{Pk+1}

s.t. eT
k+1P−1

k+1ek+1 ≤ 1 (29)
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eT
k P−1

k ek ≤ 1 (30)
 

wT
k Q−1

k wk ≤ 1 (31)
 

vT
k+1R−1

k+1vk+1 ≤ 1. (32)
xk

β j(xk) j ∈ {1, . . . ,N}

xk

It is worth mentioning that the true values of the state  and
 are  unknown  for .  Thus,  the  problem

becomes how we guarantee constraint  (29)  with an unknown
.  This  challenge  is  overcome  by  taking  advantage  of  (8),

(28) and constraints (30)–(32). The main result is shown in the
following theorem.

Pk+1

Theorem 1: For  the  discrete-time nonlinear  system (1),  the
system  output  (2),  and  FSMF1  (13)–(15),  a  feasible  in
(29) can be found by solving the following N LMIs:
 [

−Pk+1 Φ j,k
∗ −Ω j,k

]
≤ 0, j ∈ {1, . . . ,N} (33)

Pk+1 Φ j,k
σc, j,k c ∈ {1,2,3}

where  determines  the  minimal  ellipsoid  (20),  is
defined in (28),  for  are positive scalars, and
 

Ω j,k = diag{σ1, j,kP−1
k ,σ2, j,kQ−1

k ,σ3, j,kR−1
k+1,Ω4, j,k}

Ω4, j,k = 1−σ1, j,k −σ2, j,k −σ3, j,k.

Proof: According to (28), (29) can be rewritten as
 

ηT
k

N∑
j=1

β j(xk)ΦT
j,kP−1

k+1

N∑
j=1

β j(xk)Φ j,kηk ≤ 1 (34)

and the constraints (30)–(32) can be written as
 

ηT
k diag{P−1

k ,0,0,−1}ηk ≤ 0

ηT
k diag{0,Q−1

k ,0,−1}ηk ≤ 0

ηT
k diag{0,0,R−1

k+1,−1}ηk ≤ 0.

(35)

σc, j,k c ∈ {1,2,3} j ∈ {1, . . . ,N}
Then, by applying S-Procedure [29], (35) implies (34) if there
exists a positive scalar  for ,  such
that
 

N∑
j=1

β j(xk)ΦT
j,kP−1

k+1

N∑
j=1

β j(xk)Φ j,k −Ω j,k ≤ 0. (36)

Y = 0By  taking  Lemma  2  into  consideration  with ,  the
inequality (36) holds if the following N inequalities
 [

−Pk+1 Φ j,k
∗ −Ω j,k

]
≤ 0 (37)

j ∈ {1, . . . ,N}hold for , which are the conditions in (33).

k ≥ 1

Based  on  the  above  discussion,  we  conclude  that  the
constraint  (29)  is  satisfied  if  the  inequality  (33)  holds.  By
induction,  the  true  state  is  guaranteed  to  be  within  the
ellipsoids determined by (20) for all  if (19) holds. ■

Li
k+1 i ∈ {1, . . . ,N}

(I−Li
k+1Ck+1)A j j ∈ {1, . . . ,N}

∑N
j=1 β j(xk)(I−Li

k+1Ck+1)A j

xk

Pk+1

Based  on  Lemma  1,  a  sequence  of  for 
always exist to make  for  stable.
However,  finding  a  necessary  and  sufficient  condition  to
guarantee that  in (26) is stable for
unknown  is an open problem. A sufficient condition can be
found  through  (33)  by  deleting  unrelated  terms.  Theorem  1
shows  a  feasibility  condition  of .  In  what  follows,  the
minimal  ellipsoid  will  be  given  through  the  solution  of  the

following convex optimization problem.

Pk+1

For  the  discrete-time  nonlinear  system  (1),  the  system
output  (2)  and  FSMF1  (13)–(15),  the  minimal  ellipsoidal  set
parameterized  by  in  (20)  can  be  found  by  solving  the
following optimization problem:
 

min
Pk+1, Lk , σc, j,k

tr{Pk+1} (38)

 

s.t.
[
−Pk+1 Φ j,k
∗ −Ω j,k

]
≤ 0 (39)

Ω j,k j ∈ {1, . . . ,N} Φ j,kwhere  for  is defined in Theorem 1 and 
is defined in (28).

The  equations  of  FSMF1  for  the  discrete-time  nonlinear
system (1) are summarized as follows:

• Fuzzy modeling:
 

f (xk) =
N∑

i=1

βi(xk) (Aixk +bi)

• Fuzzy prediction:
 

x̄i
k+1 = Ai x̂k +bi, i ∈ {1, . . . ,N}

• Fuzzy filtering:
 

x̂i
k+1 = x̄i

k+1+Li
k+1(yk+1−Ck+1 x̄i

k+1), i ∈ {1, . . . ,N}
• Defuzzy filtering:

 

x̂k+1 =

N∑
i=1

βi(x̂k)x̂i
k+1.

  

C.  Design of FSMF2

µ(·) βi(·)
To  use  the  fuzzy  filter  FSMF2,  the  membership  function

 is specially chosen such that the normalized weight 
satisfies the locally Lipschitz continuous condition
 

∥βi(α)−βi(γ)∥ ≤ Fi ∥α−γ∥ (40)
α ∈ X γ ∈ X

ek+1

for  all  and .  From  (17),  we  can  obtain  the  state
estimation error  as
 

ek+1 = (I−Lk+1Ck+1)(xk+1− x̄k+1)

−Lk+1Dk+1vk+1. (41)
xk+1− x̄k+1We calculate  using (1), (5), (6), (16) and (18)

 

xk+1− x̄k+1 =

N∑
i=1

βi(xk)(Aixk +bi)+Bkwk

−
N∑

i=1

βi(x̂k)(Ai x̂k +bi)

=

N∑
i=1

(
βi(xk)−βi(x̂k)

)
(Ai x̂k +bi)

+

N∑
i=1

βi(xk)Aiek +Bkwk. (42)

We denote
 

g(xk, x̂k) ≜
N∑

i=1

(
βi(xk)−βi(x̂k)

)
(Ai x̂k +bi). (43)
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x̂k βi(x̂k) Ai bi i ∈ {1,2, . . . ,N}
βi

h(x̂k)

Notice  that , ,  and  for  are
known  to  the  filter  at  time k.  Since  satisfies  locally
Lipschitz  continuous  condition,  there  exists  a  function 
such that
 

∥g(xk, x̂k)∥ ≤ h(x̂k)∥ek∥ . (44)
h(x̂k)The value of  can be calculated by solving the following

optimization problem:
 

max
xk∈X

∥g(xk, x̂k)∥
∥ek∥

s.t. ∥ek∥ , 0
(xk − x̂k)T P−1

k (xk − x̂k) ≤ 1.

Based on (41)–(43), we get
 

ek+1 =

N∑
i=1

βi(xk)(I−Lk+1Ck+1)(Aiek +Bkwk)

+ (I−Lk+1Ck+1)g(xk, x̂k)−Lk+1Dk+1vk+1. (45)
Define

 

ηk =
[

eT
k gT (xk, x̂k) wT

k vT
k+1

]T
. (46)

Then, (45) can be rewritten as
 

ek+1 =

N∑
i=1

βi(xk)Φi,kηk (47)

where
 

Φi,k = [ (I−Lk+1Ck+1)Ai I−Lk+1Ck+1

(I−Lk+1Ck+1)Bk −Lk+1Dk+1 ].
P0 Pk+1

k ≥ 0
Given  and k,  the  minimal  ellipsoid  can  be  found
recursively  for  by  solving  the  following  optimization
problem:
 

min
Pk+1, Lk+1

tr{Pk+1}

s.t. eT
k+1P−1

k+1ek+1 ≤ 1 (48)
 

eT
k P−1

k ek ≤ 1 (49)
 

gT (xk, x̂k)g(xk, x̂k) ≤ h2(x̂k)eT
k ek (50)

 

wT
k Q−1

k wk ≤ 1 (51)
 

vT
k+1R−1

k+1vk+1 ≤ 1. (52)
xk

βi(xk) i ∈ {1, . . . ,N}

xk

It  is  worth mentioning that  the  true value of  the  state  is
unknown,  as  is  the  value  of  for .  The
problem  becomes  how  to  guarantee  the  constraint  (48)  with
unknown . This challenge is overcome by taking advantage
of  (8),  (47)  and  constraints  (49)–(52),  and  the  main  result  is
shown in the following theorem.

Pk+1

Theorem 2: For  the  discrete-time nonlinear  system (1),  the
system  output  (2)  and  FSMF2  (16)–(17),  a  feasible  in
(48) can be found by solving the following N LMIs:
 −Ωi,k ∗ ∗

0 −Ψi,k ∗
Φi,k 0 −Pk+1

 ≤ 0, i ∈ {1, . . . ,N} (53)

Pk+1 Φi,k
σd,k d ∈ {1, . . . ,4}

where  determines  the  minimal  ellipsoid  (20),  is
defined in (47),  for  are positive scalars, and
 

Ωi,k = diag{Ω1,i,k,σ2,kI,σ3,kQ−1
k ,σ4,kR−1

k+1}

Ω1,i,k = σ1,kP−1
k −σ2,kh2(x̂k)I

Ψi,k = 1−σ1,k −σ3,k −σ4,k.

Proof: According to (47), (48) can be written as
 

ηT
k

N∑
i=1

βi(xk)ΦT
i,kP−1

k+1

N∑
i=1

βi(xk)Φi,kηk ≤ 1 (54)

and the constraints (49)–(52) can be written as
 

ηT
k diag{P−1

k ,0,0,0}ηk ≤ 1

ηT
k diag{−h2(x̂k)I, I,0,0}ηk ≤ 0

ηT
k diag{0,0,Q−1

k ,0}ηk ≤ 1

ηT
k diag{0,0,0,R−1

k }ηk ≤ 1.

(55)

σd,k d ∈ {1, . . . ,4}
Then,  applying  S-Procedure,  (55)  implies  (54)  if  there  exist
positive scalars  for  such that
 

N∑
i=1
βi(xk)ΦT

i,kP−1
k+1

N∑
i=1
βi(xk)Φi,k −Ωi,k ∗

0 −Ψi,k

 ≤ 0.

According  to  Lemma  2,  the  above  inequality  holds  if  the
following N inequalities
 

−Ωi,k ∗ ∗
0 −Ψi,k ∗
Φi,k 0 −Pk+1

 ≤ 0 (56)

i ∈ {1, . . . ,N}hold for , which are the conditions in (53).

k ≥ 1
By induction, we infer that the true state is guaranteed to be

within  the  ellipsoids  determined  by  (20)  for  all  if  (19)
holds. ■

Lk+1
(I−Lk+1Ck+1)Ai i ∈ {1, . . . ,N}

Lk+1∑N
i=1 βi(xk)(I−Lk+1Ck+1)Ai

xk

Pk+1

Based on Lemma 1, a sequence of  always exist to make
 for  stable.  It  is  challenging  to

find a common  to simultaneously stabilize N systems. In
addition,  finding  a  necessary  and  sufficient  condition  to
guarantee that  in (45) is stable for
unknown  is an open problem. A sufficient condition can be
found  through  (53)  by  deleting  unrelated  terms.  Theorem  2
shows  a  feasibility  condition  of .  In  what  follows,  the
minimal  ellipsoid  will  be  given  through  the  solution  of  the
following convex optimization problem.

Pk+1

For  the  discrete-time  nonlinear  system  (1),  the  system
output  (2)  and  FSMF2  (16)–(17),  the  minimal  ellipsoidal  set
parameterized  by  in  (20)  can  be  derived  by  solving  the
following optimization problem:
 

min
Pk+1, Lk , σd,k

tr{Pk+1} (57)

 

s.t.

−Ωi,k ∗ ∗
0 −Ψi,k ∗
Φi,k 0 −Pk+1

 ≤ 0 (58)

Ωi,k Ψi,k i ∈ {1, . . . ,N}
Φi,k

where  and  for  are defined in Theorem 2,
and  is defined in (47).

The  equations  of  FSMF2  for  the  discrete-time  nonlinear
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system (1) is summarized as follows:
• Fuzzy modeling:

 

f (xk) =
N∑

i=1

βi(xk) (Aixk +bi)

• Fuzzy prediction:
 

x̄k+1 =

N∑
i=1

βi(x̂k)(Ai x̂k +bi)

• Fuzzy filtering:
 

x̂k+1 = x̄k+1+Lk+1(yk+1−Ck+1 x̄k+1).
Remark 1: The differences between FSMF1 and FSMF2 are

compared from three different aspects.
Li

k+1 i ∈ {1, . . . ,N}
Lk+1

• Complexity: There are N filter gains  for 
in FSMF1, while there is only one filter gain  in FSMF2.

(A j−Ai)x̂k
b j−bi i, j ∈ {1, . . . ,N}

• Stability: Using  FSMF1,  the  estimation  error  cannot
converge  to  zero  even  when  there  are  no  process  and
measurement noises due to the constant terms  and

 for  in (28);  using FSMF2, it  is  possible
that the estimation error converges to zero when there are no
process and measurement noises in view of (44) and (45).

•  Performance: The  estimation  performance  of  FSMF1 is
in  general  better  than  that  of  FSMF2  since  there  are  more
parameters  to  optimize.  This  is  especially  true  when  the
number  of  fuzzy  rules  is  large  and  the  process  and  measure-
ment noises are present.  

IV.  Simulation

In  this  section,  two  nonlinear  systems  are  given  to  show
how the proposed two filters work and to prove the validity.  

A.  One-dimensional Nonlinear System

[0,1.5]
Consider  the  discrete-time  nonlinear  process  on  the  time

horizon  given by
 

xk+1 = ρ× (1−0.05T ) xk +0.04T x2
k

with corresponding measurement model
 

yk = xk + vk

x0 = 2.3 T = 0.01
vk x0

where ,  sec is the inter-sample interval, ρ is a
coefficient,  and  is  the  measurement  noise.  Note  that  is
unknown  to  the  filter.  In  what  follows,  FSMF2  will  be
designed to estimate the state of the above nonlinear system.

ρ = 1 R = 0 ρ = 1
R = 0.09 ρ = 0.9 R = 100

We consider three cases: (1)  and ; (2)  and
; and (3)  and .

f (x) = x2

x ∈
[
x, x̄
]

1)  Noise-free  conditions: The  first  step  is  to  form  a  fuzzy
model by using a set of fuzzy rules to represent the nonlinear
function  as  a  set  of  affine  models  connected  by
fuzzy membership functions. Let us define two fuzzy sets for

 with corresponding membership functions:
 

µ1(x) =
x̄− x
x̄− x
, µ2(x) =

x− x
x̄− x
.

The corresponding fuzzy model is
xRule 1: If x is around , then

 

f1(x) = (x−α)︸ ︷︷ ︸
A1

x+ αx︸︷︷︸
b1

;

x̄Rule 2: If x is around , then
 

f2(x) = (x̄−α)︸ ︷︷ ︸
A2

x+ αx̄︸︷︷︸
b2

.

Then, we can derive
 

f (x) = µ1(x) f1(x)+µ2(x) f2(x)

0 µi
i ∈ {1,2}
g(xk, x̂k) = h(x̂k)ek h(x̂k) =

∑N
i=1 γi(Ai x̂k +bi) γ1 =

−1
x̄−x

and γ2 =
1

x̄−x x = 2 x̄ = 3 α = 2.5
A1 = −0.5 A2 = 0.5 b1 = 5 b2 = 7.5

where the error between the nonlinear function and the fuzzy
model  is .  Notice  that  the  membership  functions  for

 are  linear  functions.  Then  (43)  can  be  written  as
,  where , 

.  In  this  case,  and .  We  set .
Then, , , , and .

ρ = 1 R = 0Case 1. , 

vk = 0
This  case  is  dedicated  to  the  stability  analysis  of  the

estimation  error  system with  when  FSMF2 is  applied.
The estimation error is
 

ek+1 =

2∑
i=1

βi(xk)(I−Lk+1)
(
Ai+h(x̂k)

)
ek

h(x̂k) = 1
3 x̂k +

5
6where .

To  guarantee  the  stability  of  the  above  estimation  error
system, the following condition
 ∣∣∣∣∣∣∣

2∑
i=1

βi(xk)(I−Lk+1)
(
Ai+h(x̂k)

)∣∣∣∣∣∣∣ < 1

βi(xk)must  be  satisfied.  Note  that  is  unknown.  A  sufficient
condition to satisfy the above inequality is:
 ∣∣∣(I−Lk+1)

(
Ai+h(x̂k)

)∣∣∣ < 1, i ∈ {1,2}
Lk+1and  a  condition  on  which  stabilizes  the  estimation  error

system is
 

1− |Ai+h(x̂k)|−1 < Lk+1 < 1+ |Ai+h(x̂k)|−1 . (59)
x̂0 L1 = 1

ek k ≥ 1
Regardless of the initial estimation , we can choose ,
then the estimation error  is zero for all .

xk x̂k
x̂0 = 2.8

P0 = 0.25 ek

Fig. 6 depicts  the  true  state  and  its  estimate  (upper
plot)  and  the  estimation  error  (lower  plot)  with ,

, from which we can see that the estimation error 
converges to zero in one step. This example shows the validity
of FSMF2 in the stabilization of the estimation error system in
noise-free conditions.

vk = 0
ek+1

2)  Noisy  conditions: In  the  following,  we  show  the
performance  of  FSMF2  in  noisy  conditions.  The  assumption
that  is  no  longer  used.  Thus,  we  have  the  estimation
error 
 

ek+1 =

N∑
i=1

βi(xk)(I−Lk+1)(Ai+h(x̂))ek −Lk+1vk+1.

ek vk+1Then, the augmented form of  and  is denoted by
 

ηk =
[

eT
k vT

k+1

]T
.

ek+1Thus, the state estimation error  can be rewritten as
 

ek+1 =

2∑
i=1

βi(xk)Φi,kηk
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Φi,k = [ (I−Lk+1)(Ai+h(x̂k)) −Lk+1 ]where .
x̂k+1

Pk+1

The  minimal  ellipsoid  centered  at  parameterized  by
 can  be  found  by  solving  the  following  optimization

problem with LMI constraints:
 

min
Pk+1, Lk , σ j,k

tr{Pk+1}

s.t.

−Ωi,k ∗ ∗
0 −Ψi,k ∗
Φi,k 0 −Pk+1

 ≤ 0

Φi,k i ∈ {1,2}where  for  is defined above, and
 

Ωi,k = diag{σ1,kP−1
k ,σ2,kR−1

k+1}
Ψi,k = 1−σ1,k −σ2,k.

In what follows, we will show the performance of the filter
for divergent states and convergent states, respectively.

ρ = 1 R = 0.09Case 2. , 
X = [1.5,3.5]

A1 = 1.0008
A2 = 1.0016 b1 = −0.0010 b2 = −0.0023 x̂0 = 2.6
P0 = 0.16 {vk}

[−0.3, 0.3]
xk x̂k

Pk

Rk Pk eT
k P−1

k ek

ek+1

Pk

Pk

Rk eT
k P−1

k ek

Let us consider .  By employing the T-S fuzzy
modeling  method  in  Section  II-B,  we  obtain ,

, ,  and .  Set ,
. The measurement noise sequence  is generated

from the uniform distribution in . Fig. 7 shows the
true state  and its estimate  (upper plot), where true states
are within the bounds (the green lines) determined by  and

, respectively. Fig. 8 shows  and . It can be seen
from  the  equation  of ,  there  is  a  trade-off  between  the
stabilization of the estimation error and the attenuation of the
measurement noises. It is shown in Fig. 8 that  converges to
0.09.  The  main  role  of  FSMF2  is  to  stabilize  the  estimation
error  system  by  taking  values  very  close  to  1  so  that 
converges to . Besides, since  is kept below 1, then
inequality (20) is guaranteed.

ρ = 0.9 R = 100Case 3. , 
X = [−1,10]

A1 = 0.8997
A2 = 0.9041 b1 = 0.005 b2 = −0.0051 x̂0 = 8.3
P0 = 36 {vk}

[−10, 10]
xk x̂k

Pk

Let  us  consider .  By  employing  the  T-S  fuzzy
modeling  method  in  Section  II-B,  we  obtain ,

, , .  We  set ,
.  The  measurement  noise  sequence  is  generated

from  the  uniform  distribution  in . Fig. 9 shows  the
true state  and its estimate  (upper plot), where true states
are within the bounds (the green lines) determined by  and

Rk Pk eT
k P−1

k ek

Pk

eT
k P−1

k ek

,  respectively. Fig. 10 shows  and .  It  should  be
mentioned  that  converges  to  0  even  with  measurement
noises  present.  Besides,  since  is  kept  below  1,  then
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inequality (20) is guaranteed.

Ai bi i ∈ {1, . . . ,N}

Remark  2: We  adopt  the  T-S  fuzzy  modeling  method  in
Section  II-B  for  cases  with  noise.  The  T-S  fuzzy  modeling
method shown in  the  noise-free  case  can  also  be  used,  but  it
leads  to  bounded  estimation  error  for  Case  3.  Different
combinations  of  and  for  have  substantial
influence over the convergence of the estimation error system.  

B.  Vertical Mass-Spring System

x3,k = 0.1

This  example  uses  a  vertical  mass-spring  system.  As  a
nonlinear  model  parameter  estimation  problem,  we  assume
that  is  an  unknown  constant.  The  discrete-time
nonlinear plant and linear observation equations for this model
are
 

x1,k+1 = x1,k +T x2,k

x2,k+1 = −ω2T x1,k + x2,k −2ωT x2,k x3,k +12T +wk

x3,k+1 = x3,k

zk = x1,k + vk

xk =
[
x1,k x2,k x3,k

]T
T = 0.02

ω = 10

where  are  the  position,  velocity,  and
damping  factor  states,  respectively,  sec  is  the  inter-
sample  interval,  rad/s  is  the  undamped  resonant
frequency, and
 

wT
k wk ≤ 4.47T (ft/s)2,vT

k vk ≤ 0.001 (ft)2.

x0 = [0 0 0.1]TThe initial condition is .
xl,k ∈

[
xl, x̄l
]

l ∈ {2,3}
Let us define two fuzzy sets in the interval  for

 with their corresponding membership functions
 

µl,1(xl,k) =
x̄l− xl,k

x̄l− xl
, µl,2(xl,k) =

xl,k − xl

x̄l− xl

and normalized weights as follows:
 

β1(x2,k, x3,k) = µ2,1×µ3,1, β2(x2,k, x3,k) = µ2,1×µ3,2

β3(x2,k, x3,k) = µ2,2×µ3,1, β4(x2,k, x3,k) = µ2,2×µ3,2

x2 = −2 x̄2 = 2 x3 = −0.1 x̄3 = 0.3where , , , .
By employing the T-S fuzzy modeling method in Section II-

B, we can obtain the following fuzzy model:
x2,k x3,kRule 1: If  is around –2, and  is around –0.1, then 

xk+1 =

 1 0.02 0
−2 1.0317 0.0079
0 0 1

 xk +

 0
0.2242

0

 ;
x2,k x3,kRule 2: If  is around –2, and  is around 0.3, then

 

xk+1 =

 1 0.02 0
−2 0.9050 0.0079
0 0 1

 xk +

 0
0.2875

0

 ;
x2,k x3,kRule 3: If  is around 2, and  is around –0.1, then

 

xk+1 =

 1 0.02 0
−2 1.0317 −0.0079
0 0 1

 xk +

 0
0.2558

0

 ;
x2,k x3,kRule 4: If  is around 2, and  is around 0.3, then

 

xk+1 =

 1 0.02 0
−2 0.9050 −0.0079
0 0 1

 xk +

 0
0.1925

0

 .
Next, we can further derive

 

xk+1 =

4∑
i=1

βi(x2,k, x3,k)(Aixk +bi).

x̂0 = [0 0 0]T P0 = diag{2,2,0.1}
x̂1,k x̂2,k

x̂3,k x3,k

Pk

eT
k P−1

k ek

The  discussed  system  is  unstable.  The  initial  estimate  is
chosen  as , .  In Fig. 11,
estimates  and  approach  the  system states  well  while

 approaches  gradually.  Estimating  the  parameter  is  a
notorious  nonlinear  problem.  The  problem  becomes  even
more  difficult  due  to  the  fact  that  only  the  first  state  of  the
system  is  measurable. Fig. 12 shows  the  trace  of  the  matrix

.  Considering  that  both  the  process  noises  and  the
measurement noises are unknown-but-bounded, the estimation
error at every step will accumulate to make sure that the true
state  is  contained  in  the  minimal  ellipsoid  even  in  the  worst
case scenario. Similar problem is mentioned in the simulation
of  [12].  Meanwhile,  since  is  kept  below  1,  then  the
minimal ellipsoid condition in (20) is guaranteed. In view that
the  system  is  unstable,  the  estimation  performance  is
acceptable.
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Fig. 11.     System states  and  their  estimates  of  the  vertical  spring-mass
system.
 

In  summary,  both  filters  can  be  implemented  online  based
on  real-time  data  except  the  T-S  fuzzy  modeling,  which  is
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Li
k+1

i ∈ {1, . . . ,N} Lk+1
x̂k+1 yk+1

done  offline.  We  can  use  Theorem  1  to  derive  for
 and  Theorem  2  to  obtain  at  each  time

instant.  The  estimate  can  be  computed  once  is
obtained.  

V.  Conclusions and Future Research

In this  article,  the state estimation problem was studied for
discrete-time  nonlinear  systems  subject  to  unknown-but-
bounded  noises.  An  improved  T-S  fuzzy  model  was
introduced  to  achieve  highly  accurate  approximation.  Two
fuzzy  set-membership  filters,  namely,  FSMF1  and  FSMF2,
were  proposed  that  consider  both  the  prediction  and  the
filtering.  Some  features  of  the  membership  functions  were
utilized  in  the  filter  design  so  that  the  stability  of  the
estimation  error  system  can  be  ensured.  Computational
procedures were given for finding the minimal ellipsoid. Both
filters can run online recursively to provide the state estimate.
The  methods  were  validated  in  simulation.  FSMF2  showed
the  ability  to  stabilize  the  estimation  error  system  and  reject
measurement noises.

The  estimation  performance  is  very  sensitive  to  the
parameters  in  the  fuzzy  model.  Finding  a  satisfactory  filter
becomes  challenging  when  the  number  of  fuzzy  rules
increases.  This  is  especially  true  when  the  state  of  the
nonlinear  system  does  not  converge  to  zero.  Possible
directions  for  future  work  are  the  co-design  of  the  fuzzy
model  and  the  fuzzy  filter  and  to  employ  nonnegative
polynomials to obtain a less conservative version of Lemma 2.
In addition, we plan to extend our results to networked control
systems  by  taking  into  account  event-triggered  communi-
cation, packet loss, etc.  

Appendix A
Proof of Lemma 1

[A,C]The n-dimensional  pair  is  observable  if  and  only  if
the matrix
 

O = [CT (CA)T · · · (CAn−1)]T

has rank n. Since A is nonsingular,
 

rankOA = rankO = n.

[A,CA]
A−LCA

Therefore,  the  pair  is  observable,  that  is,  there  exists
an L such that an arbitrary characteristic polynomial 
can be obtained.  

Appendix B
Proof of Lemma 2
βi i ∈ {1,2, . . . ,N}Multiplying (22) by  for  leads to

 
βiX ∗ ∗
βiY βiZ ∗
βiΦi 0 −βiP

 ≤ 0 (60)

i ∈ {1,2, . . . ,N}Summing (60) over i,  yields to
 

∑N
i=1 βiX ∗ ∗∑N
i=1 βiY

∑N
i=1 βiZ ∗∑N

i=1 βiΦi 0 −∑N
i=1 βiP

 ≤ 0 (61)

that is,
 

X ∗ ∗

Y Z ∗∑N
i=1 βiΦi 0 −P

 ≤ 0. (62)

Utilizing Schur Complement to (62), we have
 ∑N

i=1 βiΦ
T
i P−1∑N

i=1 βiΦi+X ∗

Y Z

 ≤ 0 (63)

which is the same as (21).
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