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   Abstract—It  is  nontrivial  to  achieve  global  zero-error
regulation  for  uncertain  nonlinear  systems.  The  underlying
problem  becomes  even  more  challenging  if  mismatched
uncertainties  and  unknown  time-varying  control  gain  are
involved, yet certain performance specifications are also pursued.
In  this  work,  we  present  an  adaptive  control  method,  which,
without the persistent excitation (PE) condition, is able to ensure
global zero-error regulation with guaranteed output performance
for parametric strict-feedback systems involving fast time-varying
parameters  in  the  feedback  path  and  input  path.  The
development  of  our  control  scheme  benefits  from  generalized -
dependent  and -dependent  functions,  a  novel  coordinate
transformation  and “congelation  of  variables” method.  Both
theoretical  analysis  and  numerical  simulation  verify  the
effectiveness and benefits of the proposed method.
    Index Terms—Adaptive  control,  global  property,  guaranteed
performance, uncertain nonlinear systems.
  

I.  Introduction

W E consider  the  following  SISO nonlinear  systems  with
fast time-varying parameters [1]:

 

ẋ1 = ϕ
T
1 (x1)θ(t)+ x2

...
ẋi = ϕ

T
i (xi)θ(t)+ xi+1

...
ẋn = ϕ

T
n (xn)θ(t)+b(t)u

y = x1

(1)

xi = [x1, . . . , xi]T ∈ Ri u ∈ R
y ∈ R ϕi : Ri→ Rq,

i = 1, . . . ,n, ϕi(0) = 0.
θ(t) ∈ Rq b(t) ∈ R

where  is  the  state  vector,  is  the
input,  and  is  the  output.  The  regressors 

 are  smooth  mappings  and  satisfy 
 and  satisfy the following assumptions [1].

θ(t)Assumption 1 (Bounded parameters): The parameter  is

θ(t) ∈ Θ0, t ≥ 0 Θ0
Θ0

Θ0

piecewise continuous and  for all , where  is a
compact  set.  The “radius” of  is  assumed  to  be  known,
while  can be unknown.

b(t)
ℓb sgn(ℓb) = sgn(b(t)) , 0 0 < |ℓb| ≤

|b(t)| t ≥ 0 b(t)

Assumption  2  (Sign-definite  parameter): The  control  gain
 is bounded away from zero in the sense that there exists a

constant ,  such  that  and 
,  for  all .  The  sign  of  is  known  and  does  not

change.

θ(t)
ℓθ ℓθ

θ(t)

θ(t)

Stabilization  of  system (1)  satisfying  Assumptions  1  and  2
is  originally  investigated  in  [1]–[3],  where  it  is  shown  that
asymptotic  stability  can  be  achieved  by  the  so-called
congelation  of  variables  method  and  both  full  state  feedback
and  partial  state  feedback  approaches  are  considered.  By
“congelation of variables” it  means that  the time-varying 
can be substituted by a constant  (  can be regarded as the
average  of )  to  avoid  unnecessary  time  derivatives  while
not  destroying  the  certainty  equivalence  principle  [4].  It  is
noted that if the parameter  in (1) is unknown but constant,
numerous  adaptive  control  results  have  been  reported  in  the
literature  during  the  past  decades,  including  the  well-known
adaptive  backstepping  control,  robust  and  adaptive  control,
adaptive  observers,  immersion  and  invariance  adaptive
control, and neural adaptive control, etc. (see [4]–[10] and the
references therein).

However,  real-word  engineering  systems  with  fast  time-
varying  parameters  are  frequently  encountered.  For  instance,
the value of a circuit resistor might change with temperature,
and some morphing aerial vehicles are normally designed with
varying  structures  and  parameters  in  order  to  complete  some
specific  tasks,  where  the  parameters  might  change  with  time
or system states swiftly [11], [12]. For these types of systems,
traditional  adaptive  methods  might  not  be  able  to  ensure
desired control performance in terms of transient behavior and
convergence  accuracy,  or  even  maintain  the  stability  of  the
system.  Efforts  have  been  made  (see,  for  instance  [13]  and
[14])  in  developing  adaptive  control  methods  with  the  aid  of
persistence  of  excitation  to  achieve  exponential  stability  of
linear  time-varying  systems.  In  [15],  it  is  shown  that  the  PE
condition  is  not  necessary  to  stabilize  a  linear  time-varying
system.  The  results  in  [16]  and  [17]  implement  the
asymptotic/exponential tracking of robotic systems with/with-
out  time-varying  parameters.  In  [18]–[20],  along  with
observer  based  adaptive  control,  a  projection  algorithm  is
proposed to ensure the boundedness of the slow time-varying
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parameter  estimate.  In  the  context  of  adaptive  control  for
time-varying  nonlinear  systems,  [21]  explores  a  soft  sign
function  based  approach  to  deal  with  unknown  time-varying
parameters.  Recently,  an  elegant  method  based  on  the
“congelation  of  variables” method  is  proposed  in  [1]–[3]  to
asymptotically  stabilize  a  class  of  nonlinear  system with  fast
time-varying parameters, which is further extended to address
multi-agent  systems  in  [22]  and  [23].  Thus  far,  meaningful
results on adaptive control of systems with unknown and fast
time-varying  parameters  are  still  limited,  rendering  the
underlying problem interesting yet challenging.

In  this  note,  we  address  the  stabilization  problem  of  fast
time-varying  system  as  described  in  (1)  and  our  goal  is  to
achieve zero-error full state regulation while at the same time
maintaining  global  output  performance,  i.e.,  regulating  each
state  to  zero  asymptotically  and  meanwhile  confining  the
convergence  process  of  the  output  within  a  prescribed
boundary.  Our  development  consists  of  three  major  steps:  i)
disassociating  the  recursive  controller  design  from  the  initial
condition  of  system  (1)  via  two  generalized  functions  and  a
novel  coordinate  transformation,  thereby  obtaining  a  global
prescribed performance controller; ii) designing adaptive laws
via  the “congelation  of  variables” method  to  estimate  fast
time-varying parameters involved in the constrained systems;
and iii)  separating the lumped nonlinear terms and exploiting
additional  nonlinear  damping  terms  in  each  virtual  control
input  to  completely  offset  the  undesired perturbations  caused
by unknown time-varying control  gain  to  achieve asymptotic
convergence.  With  this  comprehensive  treatment,  output
convergence  transient  behavior  is  well  preset  and  asymptotic
(zero-error)  regulation  is  achieved  in  the  presence  of
mismatched time-varying uncertainties.

Unlike  most  prescribed  performance  control  methods  that
only  achieve  uniformly  ultimately  bounded  (UUB)  stability
for  nonlinear  systems with  unknown but  constant  parameters
[24]–[32],  the  proposed  method  ensures  zero-error  stabiliz-
ation  and  global  output  performance  for  systems  with  fast
time-varying parameters and mismatched uncertainties.  

II.  Preliminaries
  

A.  Two Useful Functions and Coordinate Transformation
Before  presenting  the  control  algorithm,  we  introduce  two

useful functions and a novel coordinate transformation, which
plays important roles in control design.

β(t)Definition  1: The  generalized  performance  function 
satisfies the following properties:

β(t) : [0,∞)→ R+1)  is an n-times differentiable function;
β(0) = 1 limt→+∞ β(t) < 12)  and ;
β(t) ∈ L∞ β̇(t) ∈ L∞, ∀t ∈ [0,+∞)3)  and .

Remark  1: There  are  many  (in  fact,  an  infinite  number  of)
functions  that  satisfy  the  aforementioned  properties.  For
example,
 

β(t) =

(1−β∞)
(T − t

T

)n
+β∞, 0 ≤ t < T

β∞, t ≥ T
(2)

β∞ = limt→+∞ β(t) T > 0where ,  is  a  constant  and n is  the
system  order.  Note  that  the  performance  function  is  not
necessarily  monotonically  decreasing,  which  might  be
advantageous  in  various  applications,  e.g.,  when  the  system
time-varying  parameter  changes  strongly  or  the  system  is
perturbed  by  some  calibration  so  that  a  large  error  would
enforce a large input action.

ψ(x)Definition  2: The  generalized  normalized  function 
satisfies the following properties:

ψ(x) : R→ (−1,1)1)  is  a  monotonically  increasing  and n-
times differentiable function;

limx→±∞ψ(x) = ±1 ψ(0) = 02)  and ;
ψ′(x)

[0,∞) ψ′(x) = dψ
dx

3)  is  bounded  below  by  a  positive  constant  over
, where .

ψ(x)Remark 2: We list two choices for  as follows:
 

ψ(x) = x√
x2+1

, ψ(x) = tanh(x) (3)

and for the above two choices, we have
 

ψ′(x) = 1
(
√

x2+1)3/2
, ψ′(x) = sech2(x). (4)

ψ−1Denoting the inverse function by , it is seen that1
 

ψ′(x) > 0, ψx =
ψ

x
> 0

ψ−1(β(0)) = ψ−1(1) = +∞. (5)
β(t) ψ(x)Making  use  of  such  and ,  we  construct  the

following  coordinate  transformation  function  to  enable  the
properties on z and x as stated in Lemma 1
 

z(β,ψ) =
β(t)ψ(x)

β2(t)−ψ2(x)
. (6)

β(t)
∀t ≥ 0 z ∈ L∞

−ψ−1(β) < x < ψ−1(β)

Lemma  1: For  any  as  defined  in  Section  II  and z as
defined  in  (6),  if , ,  then  it  holds  that

.
t = 0

β(0) = 1 ψ(x) ∈ (−1,1) β(0)−ψ(|x(0)|)
> 0 |x(0)| < ψ−1(β(0))

z ∈ L∞ β(t)−ψ(x) , 0
∃ t ∈ (0,∞) |x(t)| ≥ ψ−1(β(t))

β(t)−ψ(|x(t)|) ≤ 0 β(0)−ψ(x(0))
> 0 ∃ t1 ∈ (0, t] ψ(|x(t1)|) = β(t1)

z1
z ∈ L∞

Proof: We first consider the moment when . According
to  and ,  we  know  that 

,  i.e., .  Next,  we  continue  the  proof  by
contradiction.  Note  that  implies .
Assume  that  such  that ,  i.e.,

. As a result, by recalling that 
,  we  have  causes ,  and

therefore yields an unbounded , which, however, contradicts
the premise . ■

This coordinate transformation introduced in (6) appears as
a  more  straightforward  approach  compared  to  the  tuning
function  modified  transformation  [27]  and  the  multiple
cascade transformation [33], by reason of its simple structure,
smoothness and nonsingularity.  

B.  Control Objective

Fβ(t)
Fβ(t) β(t)

The  control  objective  is  to  design  an  adaptive  control  law
such  that  the  closed-loop  system  is  asymptotically  stable,
while  the  system output  is  always  confined  within  a  prescri-
bed  performance  funnel .  Furthermore,  the  boundary  of

 is ,  which  can  be  pre-defined  at  user’s  will,
irrespective of initial conditions.  

ψ(x) ψx
x ∈ R
1 Properties  1  and  2  of  ensure  that  is  positive  and  invertible  for  all

.

 1074 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 9, NO. 6, JUNE 2022



β(t)
β(t) = (1−β∞)e−t +β∞

ψ−1(β)
β→∞ β(t)
t→∞ ψ−1(β)
t→∞ ψ−1(β(0))→∞ |x| < ψ−1(β)

l1 l2
|x(t)| < l1e−l2t + ϵ x(0)

e−l2t

β(t)

Remark 3: If we choose a function  with an exponential
decay  rate,  e.g., .  By  qualitative
analysis,  is  a function that  increases monotonically as

,  and  is  a  function  that  decays  exponentially  as
,  thus  is  a function that decays exponentially as
 and . Therefore,  implies that

there  exist  some  positive  constants ,  and ϵ such  that
 for  any ,  resulting  in  the  fact  that  the

system output converges at least  exponentially fast to the
corresponding  set.  Similarly,  if  we  choose  as  defined  in
(2),  one  can  find  that  the  system  output  converges  to  a
prescribed  set  at  a  prescribed  time T,  a  favorable  feature  in
practice.  

III.  Motivating Example

Consider the following first-order system2:
 

ẋ = b(t)u+ θ(t)x (7)
θ(t) ∈ R

b(t) ∈ R
where x is  the  state, u is  the  control  input,  satisfies
Assumption 1, and  satisfies Assumption 2.

By using the coordinate transformation (6), we can convert
(7) into the following z-dynamics:
 

ż = Π(x, t)ẋ+Ψ(x, t) (8)
with
 

Π(x, t) =
(β2(t)−ψ2(x))β(t)ψ′(x)+2ψ2(x)ψ′(x)β(t)

(β2(t)−ψ2(x))2

Ψ(x, t) =
β̇(t)ψ(x)(β2(t)−ψ2(x))−2β2(t)β̇(t)ψ(x)

(β2(t)−ψ2(x))2

Π > 0
∀z ∈ L∞

u = ρ̂ū ρ̂
1/ℓb ū

where Ψ and Π are known time-varying smooth functions and
are  bounded  as  long  as z is  bounded.  In  addition,  for

.  These  facts  ensure  the  controllability  of  (8).
Motivated  by  [1],  we  design ,  with  being  an
“estimate” of , and  being the compensating signal to be
specified later. Then, (8) can be written as
 

ż = Π
(
ū+ θ̂x+ (θ(t)− ℓθ)x+ (b(t)− ℓb)ρ̂ū

+ (ℓθ − θ̂)x− ℓb

(
1
ℓb
− ρ̂

)
ū+
Ψ

Π

)
(9)

θ̂ ℓθ Ψ/Π ∈ L∞ ∀z ∈ L∞
ℓθ ℓb

θ(t) b(t)

where  is  an “estimate” of ,  for .  Note
that  and  are unknown constants,  which can be regarded
as  the “average” of  and ,  respectively.  Consider  the
Lyapunov function candidate
 

V =
1
2
z2+

1
2γθ

(ℓθ − θ̂)2+
|ℓb|
2γρ

(
1
ℓb
− ρ̂

)2

(10)

γρ > 0where . Then, the derivative of (10) along the trajectory
of (7) becomes
 

V̇ = Π
(
zū+ zθ̂x+ z∆θx+

Ψ

Π
z
)

+Πz∆bρ̂ū+
1
γθ

(ℓθ − θ̂)(γθzΠx− ˙̂θ)

− |ℓb|
γρ

(
1
ℓb
− ρ̂

) (
γρ sgn(ℓb)zΠū+ ˙̂ρ

)
(11)

∆θ = θ(t)− ℓθ ∆b = b(t)− ℓb.where  and  The  last  two  lines  of
(11) will be canceled by the following adaptive laws:
 

˙̂θ(x,β) = γθzΠx (12)

 

˙̂ρ = −γρ sgn(ℓb)zΠū. (13)

z(x,β)
x = 0⇔ z = 0

x =W(x,β)z
W(x,β)

W = x
z =

x(β2−Ψ2)
βΨ =

β2−Ψ2

βΨx

∈ R+

Remark  4: Note  that  as  defined  in  (6)  is  a  smooth
function and . Thus we can directly express x as

 by  using Hadamard’s  lemma (see  [1]–[3],  [34]),
where  is  a  bounded  smooth  mapping  for  every
bounded z. As a matter of fact, here 

.
According  to  Remark  1  and  (5),  the  perturbation  terms  in

the first line of (11) can be rewritten as
 

zθ̂x+
Ψ

Π
z = zθ̂x+

Ψx

Π
zx =

(
θ̂+
Ψx

Π

)
W(x,β)z2

z∆θx = ∆θW(x,β)z2. (14)
By applying Young’s inequality, then

 (
θ̂+
Ψx

Π

)
W(x,β)z2 ≤ 1

2

(
θ̂+
Ψx

Π

)2

W2z2+
1
2
z2 (15)

 

∆θW(x,β)z2 ≤ 1
2
δ∆θW

2z2+
δ∆θ
2

z2 (16)

δ∆θ ≥ |∆θ | θ(t)
ū

where  is  the “radius” of  the  compact  set  of .
Now consider  with a nonpositive nonlinear gain as
 

ū = −
 k
Π
+

1
2

(
δ∆θ +1

)
+

W2

2

(
θ̂+
Ψx

Π

)2z
= − κ(x,β, θ̂)z (17)

k > 0where .
We are now in the position to state the following theorem.

x(t)
𝟋β = {(t, x) ∈ R≥0×

R
∣∣∣|x(t)|/ψ−1(β(t)) < 1

}
limt→∞ θ̂ limt→∞ ρ̂

ℓθ 1/ℓb

[0,∞)

Theorem 1: Under Assumptions 1 and 2, when the fast time-
varying  parameters  appear  in  the  feedback  path  and  input
path, the nonlinear system (7) is globally asymptotically stable
by  using  the  control  law (17)  and  the  parameter  update  laws
(12)  and  (13).  Furthermore,  the  state  is  always  confined
within  the  prescribed  performance  funnel 

,  and  ultimately  converges  to  zero.
Furthermore,  and  exist  (although  not
necessarily equal to  and , respectively). In addition, the
control input and update laws remain uniformly bounded over

.
Proof: Substituting (17) into (11), yields

 

V̇ ≤ − kz2+Π

(
z∆θx− 1

2
δ∆θW

2z2−
δ∆θ
2

z2
)

+Π

zθ̂x− β̇
β
zx− W2

2

(
θ̂− β̇

β

)2

z2− 1
2
z2


+Πz∆bρ̂ū

≤ − kz2−Πκ(x,β, θ̂)∆bρ̂z2. (18)
˙̂ρ(t) =γρΠsgn(ℓb)κz2

Π > 0 κ(x,β, θ̂) > 0 b(t) > 0
0 < ℓb < b(t)

Then, substituting (17) into (13) yields ,
where  and .  When ,  according  to
Assumption  2,  we  can  obtain  and  thus

  
2 For  simplicity,  arguments  of  functions  are  sometimes  omitted  if  no
confusion occurs.
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sgn(ℓb) > 0 ∆b > 0 ˙̂ρ(t) ≥ 0
ρ̂(0) > 0 ρ̂(t) > 0 z∆bρ̂ū = −κ∆bρ̂(t)z2 ≤ 0

b(t) < 0
∆b < 0, sgn(ℓb) < 0, ˙̂ρ(t) ≤ 0 z∆bρ̂ū =

−κ∆bρ̂(t)z2 ≤ 0 ρ̂(0) < 0
−Πκ∆bρ̂z2 ≤ 0

z(0)
V(t) ≤ V(0) z(t), θ̂, ρ̂ W(x,β)

 and , implying that . It follows from
 that ,  and  therefore .

Similarly,  when ,  according to Assumption 2,  we can
obtain  and  therefore 

 by  selecting  the  initial  condition .
Recalling (12) and (13), and noting the fact , it
can  be  concluded  that  for  any  bounded  initial ,

, which yields   , and  are bounded.
Π, 1/Π
β(t)

ż ∈ L∞ z ∈ L2
limt→∞ z(t) = 0

limt→∞ x(t) = 0

x(t) ∈ 𝟋β = {(t, x) ∈ R≥0×R
∣∣∣|x(t)|/ψ−1(β(t)) < 1}

The boundedness  of  ,  Ψ and κ is  guaranteed by the
boundedness  of z and ,  and  it  follows  from  (9)  and  (18)
that  and . Therefore, invoking Barbalat’s lemma
one can conclude that , which further indicates
that .  Hence  the  closed-loop  system  (7)  is
asymptotically  stable.  Furthermore,  by  using  Lemma  1,  we
have .

θ̂ ρ̂
z ∈ L2

˙̂θ ∈ L1
˙̂ρ ∈ L1

θ̂ ρ̂ t→∞

˙̂θ ∈ L∞ ˙̂ρ ∈ L∞ u = ρ̂ū ∈ L∞

To  show  the  asymptotic  constancy  of  and ,  recalling
(12),  (13),  (18)  and  the  fact  that ,  we  have  and

. Then, by using the argument similar to Theorem 3.1 in
[35],  it  is  concluded  that  and  have  a  limit  as .
Furthermore, it is seen from (12), (13) and (17) that the update
laws , , and the control input . ■  

IV.  Design for High-Order Time-Varying Systems

Motivated  by  the  design  process  for  the  first-order  system,
we  now  explore  its  applicability  to  a  general  higher-order
system as described in (1). For such a strict-feedback system,
we use the classical backstepping method [36], with additional
special treatment in each step, as detailed in what follows:

α1 = x2− z2
ẋ1 = ϕ

T
1 θ(t)+ x2 z1

Step 1: Let  and according to (6), we can convert
 into the following -dynamics:

 

ż1 = Π

(
α1+ z2+ϕ

T
1 θ(t)+

Ψ

Π

)
= Π

(
α1+ z2+ϕ

T
1 θ̂+ϕ

T
1 (θ(t)− ℓθ)+

Ψ

Π

+ ϕT
1 (ℓθ − θ̂)

)
(19)

Π(x1, t) Ψ(x1, t)
ℓθ ∈ Rq

ϕ1 ϕ1(x1) =Φ1(x1)x1
Φ1(x1) ∈ Rq

where  and  are  given below equation (8),  and
 is  an  unknown  constant  vector.  By  Hadamard’s

lemma, one can express the regressor  as ,
where  is a smooth mapping. The third line of (19)
will be treated by the following tuning function:
 

τ1(x1,β) = Γz1Φ1Πx1 (20)
Γ = ΓT ∈ Rq×qwhere  is the positive adaptation gain. Consider

the Lyapunov function candidate
 

V1 =
1
2
z2

1+
1
2

(ℓθ − θ̂)TΓ−1(ℓθ − θ̂) (21)

then, by recalling Remark 4
 

V̇1 = Π

(
z1α1+ z1z2+

Ψx1

Π
z1x1+ z1ϕ

T
1 θ̂+ z1ϕ

T
1∆θ

)
+ (ℓθ − θ̂)TΓ−1(τ1− ˙̂θ) (22)

Ψx1 = Ψ/x1 x1 ∈ L∞where  is  positive  and  invertible  for  all .
Invoking Young’s inequality, yields
 

z1ϕ
T
1∆θ = z1Φ

T
1∆θx1 ≤

δ∆θ
2
ΦT

1Φ1W2
1 z

2
1+

δ∆θ
2

z2
1 (23)

W1 α1where  is shown in Remark 4. The virtual control law  is
designed as
 

α1(x1, β̄
(1), θ̂) =− 1

Π
(k1+ ζ1)z1−

Ψx1

Π
x1−ϕT

1 θ̂ (24)

β̄(1) = [β, β̇]T k1 > 0where , , and
 

ζ1 =
1
2

(
1
ϵψ
+δ∆θΠΦ

T
1Φ1W2

1 +Πδ∆θ + (n−1)δ∆θ

)
ϵψ > 0 δ∆θ

θ(t) Π(x1, t) ∈ R+ Φ1 ∈ Rq

W1 ∈ R V̇1

is  the  nonlinear  damping  gain  with  and  being  the
“radius” of the compact set of . ,  and

 are computable functions. The resulting  is
 

V̇1 ≤ − k1z2
1+Πz1z2−

(n−1)
2

δ∆θz
2
1−

1
2ϵψ

z2
1

+ (ℓθ − θ̂)TΓ−1(τ1− ˙̂θ). (25)
Πz1z2The second term  in the right hand side of (22) can be

canceled at the next step.
ẋ2 = x3+ϕ

T
2 (x2)θ(t) α2 = x3− z3

ż2 = ẋ2− α̇1

Step 2: Recall  and let .  We
rewrite  as
 

ż2 = α2+ z3−
∂α1

∂x1
x2−

∂α1

∂θ̂

˙̂θ− ∂α1

∂β
β̇− ∂α1

∂β̇
β̈

+ϕT
2 θ(t)−

∂α1

∂x1
ϕT

1 θ(t). (26)

w2(x2, θ̂, β̄
(1)) = ϕ2− ∂α1

∂x1
ϕ1Define ,  then  the  second  line  of

(26) can be rewritten as
 

wT
2 θ(t) = wT

2 θ̂+wT
2 (θ(t)− ℓθ)+wT

2 (ℓθ − θ̂). (27)
θ(t)− ℓθ ∆θ

δ∆θ δ∆θ ≥ |∆θ |
z1 α1(x1, β̄

(1), θ̂) α1(0, β̄(1), θ̂) = 0 θ̂

β̄(1) z2 x2
x2 = 0⇔ z2 = 0

w2 w2 =WT
2 (x2, β̄

(1), θ̂)z2
W2(x2, β̄

(1), θ̂) ∈ R2×q

Denote  by , and according to Assumption 1, there
exist a known constant  such that . Also note that

,  and  are  smooth  and .  The -
and -dependent  change  of  coordinates  between  and 
is smooth, invertible, and . Using Hadamard’s
lemma,  one can directly  express  as ,
where  is  a  smooth  mapping.  Therefore,
one can calculate that
 

z2wT
2 (θ(t)− ℓθ) = z2∆

T
θ w2 = z2∆

T
θ WT

2 z2

≤ 1
2
δ∆θ |W2|2Fz

2
2+

δ∆θ
2

zT
2 z2

=
δ∆θ
2

(
|W2|2F +1

)
z2

2+
δ∆θ
2

z2
1 (28)

zT
2 z2 = z2

1+ z2
2 |W2|F =

√∑2
i=1

∑q
j=1(W2i j)2

V2 = V1+
1
2 z

2
2

where  is  used  and 
denotes the Frobenius norm. Choosing the Lyapunov function
candidate , its derivative along the trajectories of
(1) is
 

V̇2 ≤ − k1z2
1+Πz1z2−

(n−1)
2

δ∆θz
2
1−

1
2ϵψ

z2
1

+ z2α2+ z2

(
−∂α1

∂x1
x2−

∂α1

∂θ̂

˙̂θ− ∂α1

∂β
β̇− ∂α1

∂β̇
β̈

)
+
δ∆θ
2

(
|W2|2F +1

)
z2

2+
δ∆θ
2

z2
1+ z2wT

2 θ̂+ z2z3

+ (ℓθ − θ̂)TΓ−1(Γw2z2+τ1− ˙̂θ). (29)
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According to (29), we design the tuning function as
 

τ2(x2, β̄
(1), θ̂) = τ1+Γw2z2. (30)

α2In addition, the virtual control law  is constructed as
 

α2(x2, β̄
(2), θ̂) = −Πz1− (k2+ ζ2)z2−wT

2 θ̂

+
∂α1

∂x1
x2+

∂α1

∂β
β̇+

∂α1

∂β̇
β̈+

∂α1

∂θ̂
τ2 (31)

β̄(2) = [β, β̇, β̈]T k2 > 0 ζ2(x2, β̄
(1), θ̂)where , ,  and  is  the  nonli-

near damping gain, as follows:
 

ζ2 =
1
2

(
δ∆θ |W2|2F + (n−1)δ∆θ +

1
ϵψ

)
. (32)

After  some  simplifications  and  using  (30)  and  (31),  we
express (29) as
 

V̇2 ≤ − k1z2
1− k2z2

2−
1
2

(
(n−2)δ∆θ +

1
ϵψ

)
zT

2 z2

+ z2z3+

(
z2
∂α1

∂θ̂
+ (ℓθ − θ̂)TΓ−1

)
(τ2− ˙̂θ) (33)

z2z3where  can be canceled at the next step.
α3 = x4− z4

z3 = x3−α2 ẋ3 = x4+ϕ
T
3 (x3)θ(t)

z3

Step  3: Introducing  and  according  to
,  we  can  transform  to  the

following -dynamics:
 

ż3 = α3+ z4−
∂α2

∂x1
x2−

∂α2

∂x2
x3−

∂α2

∂β
β̇− ∂α2

∂β̇
β̈

− ∂α2

∂β̈

...
β − ∂α2

∂θ̂

˙̂θ+wT
3 θ̂+wT

3 (ℓθ − θ̂)

+wT
3 (θ(t)− ℓθ). (34)

V3 = V2+
1
2 z

2
3

Now  we  choose  the  Lyapunov  function  candidate
, then

 

V̇3 ≤ − k1z2
1− k2z2

2−
1
2

(
(n−2)δ∆θ +

1
ϵψ

)
zT

2 z2

+ z3z4+

(
z2
∂α1

∂θ̂
+ (ℓθ − θ̂)TΓ−1

)
(τ2− ˙̂θ)

− z3

 2∑
j=1

∂α2

∂x j
x j+1+

2∑
j=0

∂α2

∂β( j) β
( j+1)+

∂α2

∂θ̂

˙̂θ


+ z3α3+ z2z3+ z3wT

3 θ̂+ z3wT
3 (ℓθ − θ̂)

+ z3wT
3 (θ(t)− ℓθ) (35)

w3(x3, β̄
(2), θ̂) = ϕ3− ∂α2

∂x1
ϕ1− ∂α2

∂x2
ϕ2 ∈ Rq

w3(0, β̄(2), θ̂) = 0

w3 w3 =WT
3 (x3, β̄

(2), θ̂)z3 W3 ∈ R3×q

where  is  the  new
regressor  vector,  and  it  can  be  verified  that .
Using  the  analysis  similar  to  that  used  in  (27)  and  (28),  one
can express  as , where  is a
smooth mapping. Therefore, we obtain an upper bound of the
last line of (35), as follows:
 

z3wT
3 (θ(t)− ℓθ) ≤

δ∆θ
2

(
|W3|2F +1

)
z2

3+
δ∆θ
2

zT
2 z2. (36)

Then,  we  design  the  following  tuning  function  and  virtual
control law, respectively:
 

τ3(x3, β̄
(2), θ̂) = τ2+Γw3z3 (37)

 

α3(x3, β̄
(3), θ̂) = −z2− (k3+ ζ3)z3−wT

3 θ̂+
∂α2

∂θ̂
τ3

+

2∑
j=1

∂α2

∂x j
x j+1+

2∑
j=0

∂α2

∂β( j) β
( j+1)+

∂α1

∂θ̂
Γz2w3 (38)

β̄(3) = [β, β̇, β̈,
...
β ]T k3 > 0where , , and

 

ζ3 =
1
2

(
δ∆θ |W3|2F + (n−2)δ∆θ +

1
ϵψ

)
. (39)

V̇3Now, in virtue of (37) and (38), we can rewrite  as
 

V̇3 ≤ −
3∑

j=1

k jz2
j + z3z4−

1
2

(
(n−3)δ∆θ +

1
ϵψ

)
zT

3 z3

+

(
z2
∂α1

∂θ̂
+ z3

∂α2

∂θ̂
+ (ℓθ − θ̂)TΓ−1

)
(τ3− ˙̂θ). (40)

z3z4where  can be canceled at the next step.
i (i = 3, . . . ,n−Step 1): We  are  now  in  the  position  to

summarize  the  expression  of  the  input  signals  by  previous
design steps.
 

zi = xi−αi−1

wi(xi, β̄
(i−1), θ̂) = ϕi−

i−1∑
j=1

∂αi−1

∂x j
ϕ j

τi(xi, β̄
(i−1), θ̂) = τi−1+γθwizi

αi(xi, β̄
(i), θ̂) = −zi−1− (ki+ ζi)zi−wT

i θ̂

+

i−1∑
j=1

∂αi−1

∂x j
x j+1+

i−1∑
j=0

∂αi−1

∂β( j) β
( j+1)

+

i−1∑
j=2

∂α j−1

∂θ̂
Γz jwi+

∂αi−1

∂θ̂
τi

ζi =
1
2

(
δ∆θ |Wi|2F + (n+1− i)δ∆θ +

1
ϵψ

)

(41)

ki > 0 ϵψ > 0 β̄(i) = [β, β̇, . . . ,β(i)]T ∈ Ri+1

Wi ∈ Ri×q

Vi = Vi−1+
1
2 z

2
i

where , , ,  and
 is  a  smooth  mapping.  Based  upon  (41),  the

derivative of  can be computed as
 

V̇i ≤ −
i∑

j=1

k jz2
j + zizi+1−

1
2

(
(n− i)δ∆θ +

1
ϵψ

)
zT

i zi

+
( i−1∑

j=1

∂α j

∂θ̂
z j+1+ (ℓθ − θ̂)TΓ−1

)
(τi− ˙̂θ). (42)

θ̂
Step  n: This  step  is  different  from  the  previous  steps.  On

one hand, the actual control law and update law of  should be
designed in this step. On the other hand, we need to extend the
congelation  of  variables  for  time-varying  parameters  in  the
feedback path  to  the  scenario  where  time-varying parameters
are in the input path.

ẋn = ϕ
T
n θ(t)+b(t)uTo proceed, we rewrite  as

 

żn = wT
n θ(t)+b(t)u− ∂αn−1

∂θ̂

˙̂θ−
n−1∑
j=1

∂αn−1

∂x j
x j+1

−
n−1∑
j=0

∂αn−1

∂β( j) β
( j+1) (43)
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wn = ϕn−
∑n−1

j=1
∂αi−1
∂x j

ϕ j

u = ρ̂ū

where .  The  main  difference  will  start
from the following design. For the next developments we need
the following intermediate result by means of :
 

znżn = znwT
n θ̂+ znwT

n (θ(t)− ℓθ)+ znwT
n (ℓθ − θ̂)

+ znū+ zn(b(t)− ℓb)ρ̂ū+ znℓb

(
1
ℓb
− ρ̂

)
ū

− zn
∂αn−1

∂θ̂

˙̂θ− zn

n−1∑
j=1

∂αn−1

∂x j
x j+1

− zn

n−1∑
j=0

∂αn−1

∂β( j) β
( j+1) (44)

ℓb
b(t) ρ̂ 1/ℓb

δ∆θ
θ(t)

b(t)
z1(b(t)− ℓb)ρ̂ū

ū
zn(b(t)− ℓb)ρ̂ū

where  is  an unknown constant  which can be regard as  the
average of ,  and  is  an “estimate” of .  Note that  we
need  to construct the nonlinear damping gain to cancel the
effect of the unknown , as our previous steps do. However,
the same method cannot be used directly for dealing with 
since the perturbation term  is coupled with the
control  input.  Here  we  apply  a  special  way  to  cope  with  the
unknown time-varying quantities, i.e., designing  skillfully to
ensure  the  perturbation  term  in  the  second  of
(44) is always negative.

Consider the Lyapunov function candidate
 

Vn = Vn−1+
|ℓb|
2γρ

(
1
ℓb
− ρ̂

)2

+
1
2
z2

n (45)

γρ > 0where , then
 

V̇n = V̇n−1−
|ℓb|
γρ

(
1
ℓb
− ρ̂

)
˙̂ρ+ znżn

≤−
n−1∑
j=1

k jz2
j −

1
2

(
δ∆θ +

1
ϵψ

)
zT

n−1zn−1

+

n−1∑
j=1

∂α j

∂θ̂
z j+1+ (ℓθ − θ̂)TΓ−1

 (τn−1− ˙̂θ)

+ zn−1zn+ znwT
n θ̂+ znwT

n∆θ + znwT
n (ℓθ − θ̂)

+ znū+ zn∆bρ̂ū− zn

n−1∑
j=0

∂αn−1

∂β( j) β
( j+1)

− zn

n−1∑
j=1

∂αn−1

∂x j
x j+1− zn

∂αn−1

∂θ̂

˙̂θ

+ znℓb

(
1
ℓb
− ρ̂

)
ū− |ℓb|

γρ

(
1
ℓb
− ρ̂

)
˙̂ρ (46)

∆b = b(t)− ℓb wn = ϕn−
∑n−1

j=1
∂αn−1
∂x j

ϕ j

θ̂ ρ̂

where  and .  Now,  to
cancel  the  third  and  last  lines  of  (46),  we  design  the  update
laws for the parameters  and , as follows:
 

˙̂θ = τn = τn−1+Γwnzn

= Γ
(
z1Φ1Πx1+

n∑
j=2

w jz j
)

(47)

 

˙̂ρ = −γρsgn(ℓb)znū. (48)

Ω(xn, β̄
(n), θ̂) = zn−1 + wT

n θ̂ −
∂αn−1
∂θ̂

τn−∑n−1
j=1

∂αn−1
∂x j

x j+1−
∑n−1

j=0
∂αn−1
∂β( j) β

( j+1)−∑n−1
j=2

∂α j−1

∂θ̂
Γz jwn

i = 1, . . . ,n−1 αi wi τi
αi = wi = τi = Ω = 0 xi = 0

Remark  5: Define 
.  It  can  be

further  verified,  for ,  that , ,  and  Ω  are
smooth,  and  if .  Note also that  the
coordinate transformation
 

z1 =
β(t)ψ(x1)

β2(t)−ψ2(x1)
(49)

zi = xi−αi−1 i > 1
xi = 0⇔ zi = 0
wn(x, β̄(n−1), θ̂) wn =WT

n vz
Ω = Ω̄T z z = [z1, . . . ,zn]T Wn ∈ Rn×q

Ω̄ ∈ Rn

and  ( )  is  also  smooth,  invertible  and
.  According  to  Hadamard’s  lemma,

 and  Ω  can  be  expressed  as  and
,  respectively,  with ,  and

 being smooth mappings.
ϵψ > 0Applying Young’s inequality with , yields

 

znΩ = znΩ̄
T z ≤ 1

2

(
ϵΩ|Ω̄|2+

1
ϵΩ

)
z2

n+
1

2ϵΩ
zT

n−1zn−1

 

znwT
n∆θ ≤

δ∆θ
2

(
|Wn|2F +1

)
z2

n+
δ∆θ
2

zT
n−1zn−1.

u = ρ̂ū
zn∆bρ̂ū

Finally,  we  choose  the  actual  control  law  such  that
the time-varying perturbed term  is nonpositive
  ū = −κ

(
x,β, . . . ,β(n), θ̂

)
zn

κ = kn+
1
2

(
δ∆θ |Wn|2F +δ∆θ +

1
ϵΩ
+ ϵΩ|Ω̄|2

) (50)

kn > 0where . Inserting (47)−(50) into (46), yields
 

V̇n ≤ −
n∑

j=1

k jz2
j − κ∆bρ̂(t)z2

n. (51)
  

V.  Stability Analysis

ρ̂(t)

˙̂ρ = γρ sgn(ℓb)κz2
n

ρ̂(0) > 0 0 < ℓb ≤ b(t) ∆b > 0
ρ̂(t) > 0 −κ∆bρ̂z2

n < 0
ρ̂(0) < 0 b(t) ≤ ℓb < 0

∆b < 0 ρ̂(t) < 0
zn∆bρ̂ū = −κ∆bρ̂z2

n ≤ 0
V̇n ≤ −

∑n
j=1 k jz2

j ≤ 0 θ̂

ρ̂ t ≥ 0.

Firstly,  it  can  be  shown  that  in  the  right  hand  side  of
(51)  is  a  monotonic  increasing  (or  decreasing)  function  by
calculating equation (48) as . In addition, one
can select  when  (in this case, ) to
make  sure  that ,  thereby  obtaining .
Similarly,  one  can  select  when  (in  this
case, )  to  make  sure  that ,  thereby  obtaining

 again.  Therefore,  (51)  can  be  simp-
lified as ,  which guarantees that z, ,  and

 are bounded for all 

W1 1/Π τ1
α1 x2

x2 = z2+α1
w2 W2 τ2 α2

xi αi (i = 3, . . . ,n−1)

˙̂θ ∈ L∞ ˙̂ρ ∈ L∞
θ̂ ρ̂ V̇n ≤ −

∑n
j=1 k jz2

j
z j ∈ L2 θ̂ ∈ L1 ρ̂ ∈ L1

θ̂ ρ̂ t→∞

Next,  in  view  of  Remark  4  and  the  boundedness  of z,  it
follows that ,  and Π are bounded, and therefore  and

 are  bounded,  which  further  proves  the  boundedness  of 
along  with  the  coordinate  transformation  and  the
boundedness of  due to (41). Hence ,  and  are also
bounded. Following this line of argument, the boundedness of
state ,  virtual  control  ,  and  the  actual
control  input u are  ensured.  In  addition,  it  is  seen  from  (47)
and  (48)  that  and .  To  show  the  asymptotic
constancy  of  and ,  it  follows  from  that

; then, from (47) and (48) we get  and ; by
using  the  argument  similar  to  Theorem  3.1  in  [35],  it  is
concluded that  and  have a limit as .

ż ∈ L∞ z ∈ L2∩L∞
limt→∞ z(t) = 0 limt→∞ x(t) = 0

Finally,  it  follows  from (19),  (26),  (34),  (43)  and  (51)  that
 and . Then, using Barbalat’s lemma yields

,  which  further  indicates  that .
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x1(t)

𝟋β = {(t, x1) ∈ [R≥0)×R
∣∣∣|x1(t)|/ψ−1(β(t)) < 1}

Therefore, the closed-loop system is asymptotically stable. By
virtue  of  Lemma  1,  we  get  that  output  is  always
constrained  within  the  prescribed  performance  funnel

.
The above facts prove the following result.

x1(t)

𝟋β = {(t, x1) ∈ R≥0×R
∣∣∣|x1(t)|/ψ−1(β(t)) < 1}

limt→∞ θ̂ limt→∞ ρ̂
ℓθ 1/ℓb

[0,∞)

Theorem 2: Suppose that the design procedure is applied to
the nonlinear system (1) with fast time-varying parameters in
feedback  and  input  paths,  then,  the  closed-loop  system  is
asymptotically  stable  and  the  system  output  is  always
confined  within  the  prescribed  performance  funnel

 and  ultimately
decays to zero. Furthermore,  and  exist but
they are not necessarily equal to  and .  In addition, the
control input and update laws remain uniformly bounded over

. ■

θ(t) b(t)
θ(t)

ℓθ θ(t)
∆θ(t) θ(t)− ℓθ

b(t)

zn∆bρ̂ū ≤ 0

Remark  6: The  proposed  controller  primarily  consists  of
three units: the robust unit, the -adaptive unit and the -
adaptive  unit.  Note  that  the -adaptive  unit  is  completely
equivalent  to  the  design  of  update  laws  in  classical  adaptive
control since we use the unknown constant  to replace .
The time-varying perturbation term  caused by  is
allocated to the robust unit for processing. This is an easy-to-
understand  and  easy-to-implement  solution,  in  other  words,
the proposed controller is simple in structure and user-friendly
in  design.  In  addition,  the -adaptive  unit  is  deliberately
designed  for  unknown  and  time-varying  control  gain,  whose
main  purpose  is  to  ensure  the  perturbation  term ,
thereby  avoiding  the  adaptive  parameter  drifting  caused  by
unknown gains.

{ki}ni=1 > 0 θ̂(0) ≥ 0 ρ̂(0) > 0 δ∆θ > 0 ϵψ > 0 γθ > 0 γρ > 0
Γ > 0

ki δ∆θ

Remark  7: The  control  scheme  involves  the  selection  of
, , , , , , 

and ,  which theoretically can be chosen quite arbitrarily
by users. Certain compromises between convergence rate and
control effort needs to be made when making the selection for
those  parameters  for  a  given  system.  For  example,  the
parameters  and  are proportional to convergence rate and
control effort in this paper. Thus, reducing the input effort will
cause the convergence rate to slow down. However, it is worth
noting that  the  prescribed constraint  rule  will  not  be  violated
no matter how the parameters are selected.

β(t)

β(t)
t→∞

β(t)

Remark  8: In  [37],  an  exponential  function  that
increases  monotonically  with  time  is  included  in  the  control
law  and  the  adaptive  law,  resulting  in  zero-error  exponential
regulation of the closed-loop system. However, the adaptation
scaling  gain  has  grown  so  large  to  hardly  even  be
computable  as .  Therefore,  it  needs  to  add  a  saturation
to  for  implementation,  which  obviously  results  in  some
loss  of  control  accuracy.  In  contrast,  the  proposed  method
provides  a  simpler  solution,  and without  loss  of  final  control
accuracy,  completely  eliminates  the  necessity  for  the  control
gain to grow with time.

Remark  9: Different  from  traditional  prescribed  perform-
ance  control  (see,  for  instance,  [25]–[27])  that  can  only
achieve bounded regulation, the size of the regulation residual
set  is  reversely  proportional  to  the  control  gain,  such  that
higher  final  control  precision  is  essentially  the  price  of  large
control gain, and the proposed control method is able to steer

−ψ−1(β) < x1(t) < ψ−1(β)

each system state to zero asymptotically without the need for
prohibitively  large  controller  gain.  Furthermore,  no  matter
how small the control gain is,  always
holds.

Remark  10: Our  control  scheme benefits  from the  Chen &
Astolfi’s  method  [1]–[3]  in  dealing  with  unknown  time-
varying parameters. Furthermore, by introducing the perform-
ance  function  and  employing  a  novel  coordinate  transforma-
tion, our control scheme is able to explicitly address the global
transient  behavior  of  system output,  together  with  its  steady-
state performance.  

VI.  Simulation

To verify the effectiveness of the proposed control method,
we consider the following system3:
 

ẋ1 = θ(t)x1+ x2
ẋ2 = b(t)u
y(t) = x1 (52)

with fast time-varying parameters4
 

b(t) = 2+0.1cos(x1)+ sgn(x1x2) (53)
 

θ(t) = 2+0.8sin(t)+ sin(x1x2)+0.2sin(x1t)+ sgn(sin(t)).
(54)

x1

[x1(0); x2(0)] = [1;−1]
k1 = k2 = γρ = 0.1 δ∆θ = 1, Γ = 0.1I θ̂(0) = 0 ρ̂(0) = 0.25

β(t) = 4e−0.4t +0.1
z1 = tan(πx1/(2β)) β1(t) =

0.9e−0.4t +0.1

It  is  not  difficult  to  verify  that  Assumptions  1  and  2  are
satisfied.  The  control  objective  is  to  make  the  state  move
back to zero at a prescribed rate no slower than exponentially
and  ultimately  converges  to  zero.  Now  we  consider  three
controllers: Controller 1 is the adaptive controller proposed by
Chen & Astolfi in [1]; Controller 2 is the semi-global adaptive
prescribed  performance  controller  which  can  be  obtained  by
combining  Controller  1  and  the  controller  proposed  in  [25];
Controller 3 is the global controller proposed in Theorem 2. In
fact,  Controller  2  can  be  viewed  as  a  special  case  of  Con-
troller  3.  For  fair  comparison,  we  set ,

,  ,  and 
for  all  controllers.  In  addition,  we  select 
and  for  Controller  2,  and  select 

 for Controller 3.

θ̂ ρ̂

θ(t) b(t)

The responses of the state signals are shown in Figs. 1 and
2, and the responses of control input signals are shown in Fig 3.
The  evolution  of  adaptive  parameters  and  are  shown  in
Figs. 4 and 5,  respectively.  In  addition,  we  also  illustrate  the
time-varying  parameters  and  in Fig 6,  which  shows
that  the  state-dependent  parameters  are  fast  time-varying and
nondifferentiable. From these simulation results, we know that
the proposed controllers outperforms the adaptive controller in
[1], since the transient behavior of the system can be confined
to  a  prescribed  performance  boundary.  In  particular,
comparing Controller 1 with Controllers 2 and 3, one can find  

θ(t) b(t) = 1

b(t) θ(t)
b(t)

|θ̇(t)| < ϵ |ḃ(t)| < ϵ

3 Note  that  when  is  an  unknown  constant  and ,  this  model  is  a
simplified  version  of  the  one  studied  by  [37],  where  the  exponential
regulation  is  proposed  for  a  class  of  strict-feedback  systems  with  known
control gain and unknown constants θ.
4 Here  and  are  fast  time-varying  parameters  and  they  are  only
piecewise continuous yet  may undergo sudden changes. Therefore, some
classical adaptive schemes [15], [19] are not available because those methods
require  the  parameters  be  slow  time-varying  (i.e.,  here  exists  a  parameter ϵ
such that  and ).
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a  counterintuitive  phenomenon,  that  is,  a  faster  system
response can be achieved without increasing the control effort
for  the  same  choice  of  controller  parameters.  In  short,  all
results  show that  the  proposed methods  are  powerful  enough
to  stabilize  the  nonlinear  system  with  fast  time-varying
parameters.  

VII.  Conclusion

This  work  presents  an  adaptive  control  strategy  with
guaranteed performance for strict-feedback nonlinear systems
involving  fast  time-varying  parameters.  It  is  shown that  with
this  strategy,  not  only  each  system  state  is  regulated  to  zero
asymptotically, but also the system output is strictly confined
within  an  exponentially  decaying  boundary,  making  system
output  well  behaved  during  the  transient  period  and  steady-
state  phase.  We  start  with  a  simple  scalar  system  with  time-
varying  parameters  in  the  feedback  path  and  input  path  to

illustrate our core idea in addressing time-varying parameters
and output  performance constraints  simultaneously.  By using
classical backstepping technology and nonlinear damping, we
then extend our method to a higher-order system and remove
the  need  for  overparametrization.  Furthermore,  the  diversity
of  performance  function  selection  and  the  diversity  of
normalized function selection together with the independence
on  initial  conditions  imply  the  universality  of  our  controller,
and  simulation  comparisons  confirm  the  effectiveness  and
benefits of these methods.

Prior to this work, the prevailing wisdom in adaptive control
in  the  context  of  exponential  stability  for  time-varying
systems  was  that  certain  persistent  excitation  conditions
(sufficiently  rich  signals)  must  be  present.  Here  in  this  work
we develop a  method that  achieves exponential  convergence,
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pointwise  in  time,  without  the  need  for  PE  conditions.
Interesting future research topics include studying exponential/
finite-/prescribed-time  regulation  of  nonlinear  systems  with
unknown  time-varying  parameters  and  control  directions,
studying  robustness  with  respect  to  external  disturbances  via
adaptive  disturbance  rejection,  and  borrowing  the  ideas  in
[38]–[40]  to  explore  the  distributed  control  of  multi-agent/
large-scale systems with time-varying parameters.
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