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   Dear Editor,
Loop  closure  detection  (LCD)  is  an  important  module  in

simultaneous  localization  and  mapping  (SLAM).  In  this  letter,  we
address the LCD task from the semantic aspect to the geometric one.
To  this  end,  a  network  termed  as  AttentionNetVLAD  which  can
simultaneously  extract  global  and  local  features  is  proposed.  It
leverages  attentive  selection  for  local  features,  coupling  with
reweighting  the  soft  assignment  in  NetVLAD via  the  attention  map
for  global  features.  Given  a  query  image,  candidate  frames  are  first
identified  coarsely  by  retrieving  similar  global  features  in  the
database via hierarchical navigable small world (HNSW). As global
features  mainly  summarize  the  semantic  information  of  images  and
lead  to  compact  representation,  information  about  spatial  arrange-
ment  of  visual  elements  is  lost.  To  provide  fine  results,  we  further
propose  a  feature  matching  method  termed  as  local  motion  and
structure  consensus  (LMSC)  to  conduct  geometric  verification
between candidate  pairs.  It  constructs  local  neighborhood structures
of  local  features  through  motion  consistency  and  manifold
representation,  and  formulates  the  matching  problem  into  an
optimization  model,  enabling  linearithmic  time  complexity  via  a
closed-form  solution.  Experiments  on  several  public  datasets
demonstrate  that  LMSC performs  well  in  feature  matching,  and  the
proposed LCD system can yield satisfying results.

Related  work: LCD  aims  to  lessen  the  cumulative  error  of  the
pose  estimation  in  the  SLAM  system  by  identifying  reobservations
during  the  navigation  [1].  It  is  achieved  by  1)  first  searching  a
connection between the current  and the historic  observations and 2)
then  regarding  the  recovered  SE(3)/Sim(3)  pose  as  a  constraint  to
optimize the pose graph. In this letter, we focus on the former step in
the  visual  SLAM  system.  Namely,  we  mainly  solve  how  to  find
reliable image pairs to constitute loop-closing pairs.

The  first  step  of  LCD is  commonly  studied  as  an  image  retrieval
task.  But  differently,  the  reference  database  in  LCD  is  incremental
while the size of that in image retrieval is generally fixed for a short
period  of  time.  In  this  step,  it  is  important  to  determine  how  to
generate  a  global  descriptor  for  image  representation.  Notable  early
global  image  descriptors  are  dominated  by  keypoint  detection
coupling  with  aggregation  of  associated  local  descriptors,  such  as
BoVW [2], VLAD [3] or ASMK [4]. These approaches rely on a visual
dictionary, which can be trained off-line [5],  [6],  or on-line [7],  [8].
Compared  with  the  off-line  manner,  on-line  ones  are  more  scene-
agnostic and become increasingly popular during recent years. In these
aggregation-based  approaches,  inverted  index  [6]  or  voting  [8],  [9]
technique is commonly exploited to accelerate the searching process.
Recently,  deep approaches  gain  increasing popularity  in  the  context

of  image  representation.  These  CNN  models  are  trained  based  on
ranking triplet [10], [11] or classification [12] losses, which can acq-
uire  deep  semantic  information  of  images  and  perform  well  even
with  large  viewpoint  changes.  It  is  demonstrated  that  LCD  appro-
aches  built  on  deep  global  representation  can  yield  good  perfor-
mance [13]–[16]. In these approaches, HNSW [17] is always selected
as a technique for searching acceleration.

After candidate pairs being identified in the first step, a geometric
verification process is  followed to guarantee precision.  It  is  roughly
achieved  by  first  building  the  putative  set  based  on  the  similarity
between  local  descriptors  and  then  rejecting  false  matches  (i.e.,
outliers). Later, the preserved true matches (i.e., inliers) are exploited
to recover fundamental or essential matrix. Little LCD literature has
discussed  this  step,  and  most  approaches  use  RANSAC  [18]  to
achieve  it.  It  assumes  the  transformation  between  image  pairs  is
rigid,  and  the  parametric  model  can  be  acquired  by  alternating
between sampling and verification.  RANSAC is  vulnerable to dom-
inated outliers and non-rigid deformation. Numerous non-parametric
approaches  have  been  extensively  studied  to  address  this  issue,
ranging  from  graph  matching  [19],  generalized  geometric  constr-
aints [20] to locality consistency assumptions [21], [22].
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AttentionNetVLAD: Our  feature  extraction  network  is  a  follow-
up  of  DELG  [12].  As Fig. 1 shows,  it  can  simultaneously  extract
global  and local  features  of  an image.  The local  part  is  the  same as
DELG, where keypoints  are indicated via the attention map and the
corresponding  descriptors  are  the  output  of  an  auto-encoder.  Since
the global representation of DELG is trained via a classification loss
to  indicate  which  landmark  the  image  belongs  to,  its  distinguish
capability  is  not  sufficient  for  LCD.  After  all,  scenes  during  a
traversal  may  be  similar  and  it  may  be  regarded  as “the  same
landmark”.  To  address  this  issue,  we  incorporate  NetVLAD  [10],
which  is  tailored  for  place  recognition,  within  DELG  for  global
representation  of  an  image.  Specifically,  the  dense  descriptors  of
size  is first reshaped to  with , followed
by  an  L2-normalization  operation  along  the  channel  dimension.
Later,  a  soft  assignment  is  generated  via  a  convolutional
layer. Here, J indicates the number of cluster centers, and  serves
as  the  probability  of  the  feature  being assigned to  the  cluster j.
To  capture  context  information  and  adjust  the  impact  of  a  local
feature  at location n to the global representation, we reweight the
soft  assignment  with  the attention map.  We reshape the attention
map to an N-dimensional column vector  with . Formally,
for -dimensional  features ,  the  VLAD  core

 is given by
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where  the  column  vector  with  dimension  denotes  the j-th
cluster  center,  is  the i-th  element  of a.  After  the  aggregation
operation,  the  resulting  matrix  is  first  performed  with  intra
(column)-wise  normalization,  unfolding  to  a  vector,  and
then  being  L2-normalization  along  with  whitening  and  L2-
normalization.
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The weights of common parts between our AttentionNetVLAD and
DELG are initialized by the official  pre-trained model (R50-DELG)
and  the  whole  AttentionNetVLAD  is  trained  via  knowledge
distillation  [14].  Specifically,  the  teacher  network  is  VGG16+
NetVLAD  and  has  been  released  in  [10].  We  train  the  student  by
minimizing  the  mean  square  error  loss  between  its  predictions  and
target global descriptors exported by the teacher on GLDv2 [23]. The
number of cluster centers J is set to , and an FC layer is introduced
additionally  to  make  the  dimension  of  the  output  of  the  student
network equal to that of the teacher network ( ). Training details
involving  the  input  image size,  batch  size,  learning  rate,  etc.  are  all
referred to [12]. In this way, the new model can inherit the property
of the teacher, i.e., being able to capture time-invariant visual clues at
a  high  structural  level,  meanwhile  with  the  training  time  being
reduced drastically.
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Local motion and structure consensus: The literature argues that
local neighborhood structures of keypoints are not vulnerable to non-
rigid deformation [21]. Thus we choose to conduct feature matching
based on local information.
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•  Inter-distance  based  on  motion  consistency:  Suppose  a  set  of
putative  matches  is  established  by  the  similarity
between local descriptors, with  and  being the
coordinates  of  corresponding  keypoints  from  the  source  and
reference  image.  Meanwhile,  we  denote  as  the  motion
vector,  depicting  the  motion  trajectory  of  a  pairwise  match  across
two  images.  If  we  denote  the K-nearest  neighbors  of  in  as

, with their corresponding motion vectors as , it
can  be  concluded  in Fig. 2(a) that  tends  to  be  more  consistent
with  in  both  length  and  orientation  for  an  inlier,  while  an
outlier  does  not  obey  this  rule.  So,  we  can  measure  the  motion
consistency of  by
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where  is the mean of . It is a weak local constraint and a
smaller  means higher motion consistency.
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•  Intra-distance  based  on  manifold  representation  consistency:  In
our  case,  the  local  geometric  structure  of  a  sample  ( )  can  be
represented  by  with  (  with ,  where

 is  defined  as  the K-nearest  neighbors  of  in ).  As Fig. 2(b)
shows, for an inlier , the local geometric structures of  and 
tend to be similar, while those of an outlier appear dissimilar. Based
on  locally  linear  embedding  [24],  we  reconstruct  each  data  point 
by N linear  coefficients ,  enforcing  and 

 if  does not belong to .  For simplicity, only non-zero values
are  preserved  thus  is  actually  reconstructed  by .  The-
refore,  the  local  geometry  structures  of  can  be  charac-
terized by searching for the least square solution of the  matrix
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According  to  the  one-to-one  correspondence M established  in
,  we  can  map  each  point  in  to  its  correspon-

ding  one  in ,  and  denote  the  set  as .
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WNy WCyThe  similar  definitions  for  and  lead  to  the  intra-dis-
tance
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q = 1/2We set  for better robustness against outliers. This distance
represents  the  similarity  of  intrinsic  geometry  between  two  points.
So,  it  is  a  stronger  local  constraint  compared  with  motion  consis-
tency.

xi yi

U

• Problem formulation. The two above assumptions about the local
consistency  of  inliers  are  built  in  an  ideal  case,  i.e.,  there  are  no
outliers in the K-nearest neighborhood of  and . Thus to construct
a  relatively clean correspondence set  for  consistency calculation,  an
iterative filtering strategy is  used [25].  Based on the reliable set ,
the cost function is defined as
 

C(I;S,U,λ) =
∑
i∈S

(
Ui ·di

intra +1−Ui
)
+λ(N − |I|) (6)

I λ > 0
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where  is the unknown inlier set and  aims to achieve a trade-
off between the first item, i.e.,  penalizing any match with dissimilar
local  structure,  and  the  second  item,  i.e.,  discouraging  outliers.
Regarding , it equals to 1 only when  is satisfied,
where α is set to the -  value after sorting  in the
ascending  order.  In  this  case,  the  from-weak-to-strong  local
constraints are imposed, where samples in  that do not meet motion
consistency would be penalized first.

I
(xi,yi) pi ∈ {0,1}

pi = 1 pi = 0
Dist(xi,yi)

To provide a closed-form solution for , we associate each sample
 with  a  binary  value  to  indicate  whether  a

correspondence is an inlier ( ) or an outlier ( ). Therefore,
if  we  denote  the  first  item  in  (6)  as , C in  (6)  can  be
rewritten as
 

C(I;S,U,λ) =
N∑

i=1

pi (Dist(xi,yi)−λ)+λN. (7)

Dist(xi,yi) S
pi Dist(xi,yi) > λ

λ = 0.17.
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 can be calculated as  long as  is  established,  thus  the
only unknow variable in (7) is . Besides,  would lead
to a positive term, resulting in an increase of the cost, and vice versa.
In  this  letter,  we  set  To  minimize  the  cost,  the  optimal
solution of  can be decided by
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Fig. 1. AttentionNetVLAD and its training process.
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Fig. 2. Illustration  of  local  inter-distance  and  intra-distance  in  LMSC.  The  example  is  shown  in  an  ideal  situation,  i.e.,  no  outliers  existing  in  the  local
neighborhood  ( ).  In  the  source  image, , ,  and  are  presented.  In  the  reference  image, , ,  and  are
presented.
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pi =

{0, Dist(xi,yi) > λ,

1, Dist(xi,yi) ≤ λ,
i = 1, . . . ,N. (8)

I pi =
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As such, the inlier set  is composed of putative matches with 
. The time and space complexity of LMSC is about  and

.  Namely,  LMSC  has  linearithmic  time  complexity  and  linear
space complexity in regard to the scale of the given putative set.
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Loop closure detection pipeline: When a query image  comes to
the pipeline, we first extract its global and  local features
simultaneously  via  AttentionNetVLAD.  Then,  the  global  feature  is
used  to  retrieve  the  nearest  neighbor  image  in  the  reference
database  under  the  cosine  distance.  Specifically,  the  incremental
database built by HNSW would ignore  neighboring images
obtained  before  the  query.  Here, T =  10  is  the  consuming  time  in
non-redundance path, while f is the frame rate shown in Table 1. The
parameters  in  HNSW  are  referred  to  [13].  Only  when  the  distance
between two images  is greater than  = 0.2 would them be
transferred  into  the  second  phase,  i.e.,  geometric  verification  via
LMSC.  Later,  if  the  cardinality  of  the  inlier  set  preserved  by
LMSC is  sufficient  enough,  (i.e., ),  the  image  pair  is  most
likely to represent the same scene. Finally, the image pair is checked
by  a  temporal  constraint  [26]  to  filter  false  positives  that  can  not
persist over time. Since global features involve semantic information
of  scenes  while  local  features  coupling  with  feature  matching
indicate  geometric  relationship  between  scenes,  our  LCD  pipeline
can be deemed semantic-to-geometric.
 

Table 1.  Dataset Information. “# Images” Means the Number of Images

Dataset # Images Image resolution Frame rate

KITTI
Sequence 00 (K00) 4541

1241 × 376 10
Sequence 02 (K02) 4661

St. Lucia
100909 14:10 (St1410) 20894

640 × 480 15
180809 15:45 (St1545) 21434

New College (NC) 52480 512 × 384 20
 
 

Experimental  setup: We  implement  AttentionNetVLAD  with
TensorFlow, and run on an Intel(R) Core(TM) i9-9920X CPU @3.50
GHZ machine with three TITAN RTX GPUs. The information of six
sequences selected for evaluation is presented in Table 1. The frame
rates of St1410 and St1545 are downsampled to 3 Hz, meanwhile the
right  measurements of NC with the frame rate of 1 Hz are adopted.
Ground  truth  (GT)  which  is  present  in  the  form  of  binary  matrices
and preserves the image-wise correspondence of datasets is provided
by An et al. [13].

Results  on  feature  matching: We  select  33  loop-closing  pairs
according  to  GT  from  the  datasets  shown  in Table 1 to  evaluate
LMSC.  The  putative  set  of  each  image  pair  is  established  based
on  SIFT  [27],  followed  by  GT  generation  through  manual  check
of  each  putative  match,  which  results  in  the  average  number  of
putative  matches  and  the  inlier  ratio  are  345  and  51.28%,  respec-
tively.  As Fig. 3 shows,  the  runtime  of  LMSC  scales  up  with  the
increase of K due to the linearithmic time complexity and F-score =
(2·Precision·Recall)/(Precision + Recall) in the left plot is applied for
comprehensive evaluation in feature matching. On the whole, K = 12
outperforms  other  cases  with  a  relatively  low  time  cost,  thus  we
choose it for subsequent experiments.

We  report  the  quantitative  performance  of  LMSC  in Fig. 4,
involving six feature matching methods (i.e., RANSAC [18], GS [19],
GMS  [22],  ICF  [28],  RFM-SCAN  [29]  and  LPM  [21])  for
comparison.  It  can  be  seen  that  compared  with  Precision,  LMSC is
better  at  Recall,  and  outperforms  other  methods  in  F-score  with
relatively high efficiency.

Results on loop closure detection: We adopt maximum recall rate
at 100% precision (MR) to evaluate the performance of LCD. Firstly,
we  perform  it  based  on  DELG,  NetVLAD  (teacher)  and
AttentionNetVLAD  (student)  respectively,  along  with  LMSC  for
geometric check. Results are shown in Table 2. DELG is tailored for
the instance recognition task, thus the performance of it degenerates
with  the  similar  structures  occured  in  LCD scenes.  NetVLAD is  of

low  efficiency  due  to  the  requirement  of  additional  local  feature
extraction. Its coupling with AL outperforms that with SURF may be
caused by the fact that SURF cannot ignore redundant information in
scenes  [26],  which  reduces  the  accuracy  of  feature  matching.
Through training with knowledge distillation, our AttentionNetVLAD
can at the same time learn prior knowledge of perceptual changes in
NetVLAD, and be efficient enough for real-time requirements.

Secondly,  on  the  basis  of  AttentionNetVLAD,  different  feature
matching  methods  involving  RANSAC,  LPM  and  LMSC  are  emb-
edded  into  our  LCD pipeline,  and  the  results  are  shown in Table 3.
Records  of  runtime  in  the  table  exclude  the  process  of  putative  set
construction.  Obviously,  the  pipeline  with  LMSC  yields  better
performance  on  MR  than  RANSAC  and  LPM.  This  is  because
RANSAC performs poor when resampling in putative sets with low
inlier  ratio,  while  LPM  cannot  separate  inliers  from  relatively  low-
precision  noisy  matches  due  to  its  weak  local  geometric  constraint.
When the process of geometric verification is considered, the average
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Fig. 3. The choice of the optimal K.
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Fig. 4. Quantitative results of LMSC. From left to right: Precision, Recall, F-
score  and  Runtime  (ms)  with  respect  to  the  cumulative  distribution.  The
coordinate  on the curves means that  there are  percent of image
pairs which have precisions, recalls or runtime no more than y.
 

 

Table 2.  LCD Results on Different Feature Extraction Approaches. “AL”
Means the Local Part in AattentionNetVLAD

Dataset
DELG NetVLAD+

SURF
NetVLAD+

AL
Attention-
NetVLAD

MR (%)/Runtime for feature extraction (ms)
K00 92.51/38.7 92.77/93.0 94.16/109.5 94.29/45.1
K02 79.57/38.4 74.40/95.9 81.50/114.3 80.37/48.7
K05 86.99/38.5 91.33/83.3 88.43/101.8 91.57/39.5

St1410 72.00/34.6 74.43/75.4 79.71/89.2 80.39/35.0
St1545 85.31/34.7 79.55/75.4 86.78/89.8 88.47/34.7

NC 87.47/25.1 83.39/52.7 88.89/67.3 89.05/26.4
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runtime  of  our  system  on  the  dataset  with  the  maximum  image
resolution (K00) is about 116.14 ms/frame.
 

Table 3.  LCD Results on Different Feature Matching Approaches

Approach
K00 K02 K05 St1410 St1545 NC

MR (%)/Runtime for feature matching (ms)

RANSAC 91.75/87.4 74.77/93.6 87.71/88.2 75.41/73.5 79.17/79.5 55.24/76.4

LPM 93.53/3.6 78.26/3.6 85.78/3.5 79.87/3.6 84.85/3.7 86.90/3.3

LMSC 94.29/58.2 80.37/61.0 91.57/63.4 80.39/58.8 88.47/59.0 89.05/67.0

 
 

Finally, we report the comparative results of our method with state-
of-the-art  LCD  approaches  in Table 4.  The  results  of  ESA-VLAD
[14] and Zhang et al. are cited from [26], while others are cited from
[13].  Overall,  our  pipeline  has  satisfying  performance  on  all  dat-
asets. Albeit our results are marginally worse than Zhang et al. [26],
the  runtime  of  our  pipeline  is  about  one  time  faster  than  them.
Meanwhile,  they  need  a  pretrained  visual  dictionary  to  conduct
candidate frame selection, while ours is completely operated online.
 

Table 4.  Comparative Results

Approach K00 K02 K05 St1410 St1545 NC

DLoopDetector [6] 72.43 68.22 51.97 14.87 31.36 47.56

Kazmi and Mertsching [30] 90.39 79.49 81.41 58.10 72.55 51.09

Tsintotas et al. [8] 93.18 76.01 94.20 9.77 15.07 52.44

FILD++ [13] 94.92 73.52 95.42 66.41 81.36 82.37

ESA-VLAD [14] 97.46 79.94 − 79.59 88.47 91.02

Zhang et al. [26] 94.29 81.00 91.81 82.88 88.59 −

Proposed 94.29 80.37 91.57 80.39 88.47 89.05

 
 

Conclusions: In  this  work,  we  conduct  LCD  in  a  semantic-to-
geometric,  coarse-to-fine  manner.  We  first  propose  Attention-
NetVLAD  to  achieve  global  and  local  feature  extraction  simu-
ltaneously.  The  global  feature  is  used  to  perform  candidate  frame
selection  via  HNSW, while  the  local  one  is  exploited  for  geometric
verification  via  LMSC.  LMSC  is  the  proposed  feature  matching
method,  which  is  able  to  identify  reliable  matches  efficiently  by
imposing from-weak-to-strong local geometric constraints. Based on
the  above  two  components,  the  whole  LCD  system  is  at  the  same
time  high-performance  and  efficient  compared  with  state-of-the-art
approaches.
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