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   Dear Editor,
This letter investigates a class of distributed optimization problems

with  constrained  communication.  A  quantized  discrete-time  event-
triggered  zero-gradient-sum  algorithm  (QDE-ZGS)  is  developed  to
optimize  the  sum  of  local  functions  over  weight-balanced  directed
networks.  Based  on  an  encoder-decoder  scheme  and  a  zooming-in
technique,  an  event-triggered  quantization  communication  is
designed.  Theoretical  analysis  shows  that  the  exact  convergence  to
the  global  optimal  solution  is  guaranteed  when  the  triggering
threshold  is  bounded  and  the  scaled  sequence  introduced  by  the
zooming-in  technique  is  quadratic  summable.  When  the  scaled
sequence  is  bounded  by  an  exponential  decay  function,  QDE-ZGS
converges  linearly  to  the  unique global  optimal  solution.  Numerical
simulations are conducted to demonstrate the theoretical results.∑n

i=1 fi(x)
In  this  letter,  a  class  of  distributed  optimization  problems,

minimizing the  sum of  local  objective  functions  via  local
communication  over  a  network  with n agents,  is  considered,  which
has  attracted  considerable  attention  with  wide  applications  in  large-
scale machine learning, cognitive networks, power systems, etc. [1].
Due  to  the  sublinear  convergence  of  distributed  subgradient  decent
algorithm  (DGD)  and  its  extensions  [2],  [3],  auxiliary-variable
algorithms  are  motivated  with  fast  convergence  but  high  commun-
ication and computation load [4]. Lately, a well-designed linear ZGS
algorithm was proposed without any extra variable [5]–[7].

Most of literature, including aforementioned ones, heavily relies on
the  accurate  state  information,  which  inevitably  brings  great
challenges  for  the  communication  capacity  due  to  bandwidth
constraints.  To  address  this  problem,  the  quantized  communication
was deployed widely in the network environment [8].  On this front,
the  zooming-in  based  quantized  communication  was  introduced  for
average  consensus  subject  to  constrained  data  rate  [9].  Leveraging
the  same  mechanism,  a  series  of  subgradient  based  distributed
optimization  algorithms  have  been  designed  under  constrained
communication  over  undirected  [10]  and  directed  networks  [11],
[12],  where  only  sublinear  convergence  was  guaranteed.  For  the
linear  convergence,  auxiliary-variable  quantized  algorithm  was
developed  [13],  resulting  in  the  inevitable  increase  of  computation
cost.  For  a  communication-efficient  algorithm,  it  is  expected  to
achieve fast convergence with less computation cost.

Besides,  based  on  the  fact  that  communication  is  contributed  to
more energy consumption compared with computation [14], the data
transmission  at  every  iteration  puts  strict  requirements  on  the
communication capacity,  which is  beyond the ability of  agents  with
limited  energy.  Considering  the  communication  bandwidth  limita-
tion,  the  event-triggered  communication  mechanism  has  been
introduced  from  distributed  control  [15],  [16]  into  distributed
optimization  [17],  [18].  Based  on  the  zooming-in  technique,  an
event-triggered quantized communication mechanism was developed

in  [19]  over  time-varying  communication  networks,  which  is  not
applicable  over  fixed  networks.  A  distributed  constrained  optimiz-
ation  problem  was  solved  through  the  zooming-in  technique  based
event-triggered quantized communication in [20]. The authors in [21]
focused  on  the  same  problem  in  the  continuous-time  setting  and
inexact  convergence  was  achieved.  It  should  be  noted  that  only  the
sublinear or asymptotic convergence was guaranteed in [19]–[21]. It
is  of  practical  significance to design a linear convergence algorithm
with constrained communication.

Motivated by above discussions, this letter incorporates the event-
triggered  quantized  communication  mechanisms  into  the  discrete-
time  ZGS  algorithm  and  the  linear  convergence  is  achieved  over
directed  networks.  The  main  contributions  are  summarized  as
follows:

1)  A  zooming-in  based  event-triggered  quantized  communication
mechanism is designed, where only the bounded triggering threshold
is required.

2)  The  exact  convergence  is  achieved  under  event-triggered
quantized  communication  on  the  condition  that  the  scaled  sequence
introduced by the zooming-in technique is quadratic summable.

3) When the scaled sequence is  bounded by an exponential  decay
function,  the  linear  convergence  is  established,  which  is  faster  than
other quantized algorithms [10], [11], [13] and event-triggered based
algorithms [19]–[21] without any auxiliary variables.

Rn n×m
Rn×m

In ∈ Rn×n N 1n = [1,1, . . . ,
1] ∈ Rn ⊗ || · || l2

Notations: Given n-dimensional  real  vector  space  and 
real  matrix  space ,  we  denote  identity  matrix  and  the  set  of
natural  number  by  and ,  respectively. 

.  denotes  the  Kronecker  product,  and  presents  the -
norm for a vector or matrix.

Preliminaries and algorithm description: Consider a distributed
unconstrained optimization problem with n agents,  where  all  agents
collaboratively minimize an objective function, that is
 

min F(x) =
n∑

i=1

fi(x) (1)

fi : Rm→ Rwhere  is a private information, accessed only by agent i.
The basic assumption is made as follows.

X∗
fi, ∀i ∈ V θi θi > 0

Assumption  1:  For  optimization  problem  (1),  1)  the  set  of  global
minimizer  is  nonempty  and  2)  twice  continuously  differentiable

, is -strongly convex with .

G = {V,E,A} V = {v1, . . . ,vn}
E ⊆ V×V A = [ai j] ∈ Rn×n

ai j > 0 (i, j) ∈ E vi
v j ai j = 0 aii = 0

N in
i = { j|(i, j) ∈ E}

Nout
i = { j|( j, i) ∈ E} G
D = diag{deg1, . . . ,degn} degi =

∑n
j=1 ai j

L =D−A∑n
i=1 ai j =

∑n
j=1 ai j

In  this  letter,  the  communication  among n agents  is  over  an  one-
way  communication  network,  which  can  be  depicted  as  a  diagraph

 where  the  collection  of  nodes  is  and
edges  set  is .  Let  denote  the  weighted
adjacency  matrix,  with  if ,  i.e.,  can  receive
information from ,  otherwise, and . The in-neighbors
and out-neighbors set of agent i are denoted as  and

 separately.  In  graph ,  the  degree  matrix  is
 with  agent i's  in-degree ,

while the Laplacian matrix is . A graph is weight-balanced
if .

Assumption  2:  The  network  in  this  letter  is  weight-balanced  and
strongly connected.

For  the  data  rate  constraints  in  the  communication  network,  the
event-triggered  quantized  communication  is  adopted  and  an
encoding-decoding  scheme  is  designed  based  on  event-triggered
mechanism  to  transmit  quantized  states  to  their  own  neighboring
agents, when the triggering condition is satisfied.

Z = (z1, . . . ,zn)T ∈ Rm Q(Z) =
(q(z1),q(z2), . . . ,q(zn))T q(zi) = l (2l−1)/2 ≤
zi < (2l+1)/2 q(zi) = −q(−zi)
zi < −1/2 |q(zi)− zi| ≤ 1/2 ϕi

For  a  vector ,  a  uniform  quantizer 
 is  selected  with  for 

 for  nonnegative  integers l and  when
. Obviously, . For agent i, the encoder  at

time k executes as 
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zi(k) = Q
(

xi(k)− ξi(k−1)
s(k−1)

)
ξi(k) = s(k−1)z̃i(k)+ ξi(k−1), k > 0

(2)

xi(k) zi(k)with the input  and the output . The quantization error is
 

∆i(k) = zi(k)− xi(k)− ξi(k−1)
s(k−1)

= ei(k)+
ξi(k)− xi(k)

s(k−1)
(3)

∆T
i (k)∆i(k) ≤ m/4with .

z̃i(k)
z̃i(k) = zi(k) k ∈ κi z̃i(k) = z̃i(k−1)

κi =
{
kl

i |l ∈ N
}

kl
i

Moreover,  stands for the information from agent i at the latest
triggering  instant,  i.e.,  when ,  and 
otherwise, where  and  is the l-th triggering instant of
agent i, determined by
 

kl+1
i =min

k∈N

{
k > kl

i

∣∣∣∥ei(k)∥2 ≥ Ei(k)
}

(4)

ei(k) = zi(k)− z̃i(k)
i ∈ V k0

i = 0 z̃ j(k) ϕ j

j ∈ N in
i x̂ ji(k)

φ ji

with  the  measurement  error .  Without  loss  of
generality,  for ,  set .  Agent i receives  from ,

 and decodes them to estimate the state of agent j, ,  by
the decoder 
 {

x̂ ji(0) = 0
x̂ ji(k) = s(k−1)z̃ j(k)+ x̂ ji(k−1), k > 0

(5)

invoking (2) yields that
 

x̂ ji(k) = x̂ j(k) = ξ j(k). (6)
{s(k)} Ei(k)∑∞

k=0 s2(k) <∞ E(k) =maxi∈V Ei(k)
maxk∈N E(k) = Em {E(k)}

Assumption  3:  For  sequences  and ,  the  following
statements  are  in  force:  1) ;  2) ,
and , which means sequence  is bounded.

To  solve  problem  (1)  under  event-triggered  quantized  commu-
nication, the QDE-ZGS is proposed that
 

xi(k+1) = (∇ fi)−1
(
c

n∑
j=1

ai j
(
x̂ j(k)− ξi(k)

)
+∇ fi(k)

)
xi(0) = x∗i

(7)

xi
x∗ ∈ X xi(0) = x∗i x∗i fi

∇ fi(k) fi(x) x = xi(k)
g(·) g−1 g−1(y) = x g(x) = y

where state  represents the estimate of agent i to the global optimal
solution  and  with  the  minimizer  of .  We  use

 to  denote  the  gradient  of  at . The  inverse
function of  is ,  such that  if .  Since  QDE-
ZGS algorithm (7) is  in the discrete-time setting, the Zeno behavior
can be directly excluded. ∑n

i=1∇ fi(k+1)−∑n
i=1∇ fi(k)=c

∑n
i=1

∑n
j=1 ai j(x̂ j(k)−ξi(k))=c

∑n
i=1

∑n
j=1 ai j(x̂ j(k)− x̂i(k))∑n

i=1∇ fi(0) = 0
∑n

i=1∇ fi(k) = 0 k ∈ N

Remark  1:  From  (7),  one  can  easily  have  that 

= 0.  Thus,  implies that  for .  In
other  words,  every  instant  of  this  algorithm  holds  the  optimal
condition.  Only  if  states  among  agents  achieve  consensus,  the
optimization problem (1) is well solved [22].

Noting (2) and (5), substituting (3) into (7) yields that
 

∇ fi(k+1) = ∇ fi(k)+ c
n∑

j=1

ai j(x̂ j(k)− ξi(k))

= ∇ fi(k)+ c
n∑

j=1

ai j(s(k−1)(∆ j(k)− e j(k))

+ x j(k)− (s(k−1)(∆i(k)− ei(k))+ xi(k))).
For  the  sake  of  convenience  and  simplicity,  QDE-ZGS  can  be

equivalently rewritten as
 

∇F (k+1) =− cL(
s(k−1)(∆(k)− e(k))+ x(k)

)
+∇F (k)

x(0) = [x∗1
T , . . . , x∗n

T ]T
(8)

x(k) =
[
x1(k)T , . . . , xn(k)T

]T L = L⊗ Im ∇F(k) ∆(k)
e(k)
where ,  and ,  and

 are defined in the similar way.
Main results: First, we show an another iteration form of (7)

 

xi(k+1) = xi(k)+di(k) (∇ fi (k+1)−∇ fi (k)) (9)
with
 

di(k) =
∥xi(k+1)− xi(k)∥2

(∇ fi(k+1)−∇ fi(k))T (xi(k+1)− xi(k))
.

D(k) = diag {d1(k), . . . ,dn(k)} D(k) ≤
(1/θ)In θ =mini∈V θi

Let .  From  Assumption  1, 
 with . Combining (8), rewriting (9) in the matrix

form yields
 

x(k+1) = x(k)+ (D(k)⊗ Im) (∇F(k+1)−∇F(k)) . (10)

0 < c < (a−2)εθ/6a
a > 2

Theorem 1:  Under  Assumptions  1−3,  QDE-ZGS (7)  under  event-
triggered  quantized  communication  (2)  and  (5)  with  (4)  solves
problem  (1)  if  the  gain c satisfies  that  with
constants .

Proof: Define a Lyapunov candidate
 

V(k) =
n∑

i=1

(
fi(x∗)− fi(k)+∇ fi(k)T (xi(k)− x∗)

)
.

By Assumption 1, it is obviously that
 

V(k) ≥
n∑

i=1

θi
2
∥xi(k)− x∗∥2 (11)

V(k) = 0 xi(k) = x∗ V(k)where  only when .  The difference of  can be
calculated as
 

△V(k) = V(k+1)−V(k)

=

n∑
i=1

(
− fi(xi(k+1))+ fi(xi(k))

−∇ fi(k)T (xi(k)− xi(k+1))

+ (∇ fi(k+1)−∇ fi(k))T xi(k+1)
)

where the last equality comes from Remark 1.
θi fi(x) fi(xi(k+1))

− fi(xi(k))≥∇ fi(k)T (xi(k+1)−xi(k))+(θi/2)∥xi(k+1)−xi(k)∥2≥0.
Since -strong  convexity  of ,  one  obtains  that 

 Bas-
ed on (8), it yields that
 

△V(k) ≤
n∑

i=1

− θi
2
∥xi(k+1)− xi(k)∥2

+ (∇F(k+1)−∇F(k))T x(k+1). (12)

ε = sup
{
ϵ |ϵLLT ≤ L+LT

}
a > 2

In  view  of  Lemma  1  and  A.2  in  [7],  there  exists  a  constant ε
satisfying . From Young’s inequality, for a
positive constant , it can be conducted that
 

− s(k−1)(∆(k)− e(k))T Lx(k)

≤ as2(k−1)
2ε

∆(k)T∆(k)+
as2(k−1)

2ε
e(k)T e(k)+

1
a

y(k) (13)

y(k) = x(k)T
((

L+LT
)
⊗ Im

)
x(k) ∈ Rwhere  is  used  to  simplify  the

proof.
From (10) and (8), we have 

(s(k−1)(∆(k)− e(k))+ x(k))T
(
LT D(k)L⊗ Im

)
× (s(k−1)(∆(k)− e(k))+ x(k))

≤ 3
εθ

y(k)+
3∥L∥2s2(k−1)

θ

(
e(k)T e(k)+∆(k)T∆(k)

)
. (14)

k > 0By substituting (13) and (14) into (12), for , one obtains that
 

△V(k) ≤ s2(k−1)
(

ac
2ε
+

3c2∥L∥2
θ

)
e(k)T e(k)

+ s2(k−1)
(

ac
2ε
+

3c2∥L∥2
θ

)
∆(k)T∆(k)

+

(
2−a
2a

c+
3c2

εθ

)
y(k)
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invoking (4) and the boundness of quantization error yields that
 

△V(k) ≤ − a−2
2a

c
(
1− 6ac
εθ(a−2)

)
y(k)

+ s2(k−1)
(

ac
2ε
+

3c2∥L∥2
θ

)(
nE(k)+

mn
4

) (15)

summing up which from 1 to r–1 with respect to k yields
 

V(r) ≤ V(1)−
r−1∑
k=1

a−2
2a

c
(
1− 6ac
εθ(a−2)

)
y(k)

+

(
anc
8ε
+

3nc2∥L∥2
4θ

) r−1∑
k=1

s2(k−1)(4E(k)+m).

(16)

r→∞
1−6ac/εθ(a−2) > 0 c < (a−2)εθ/6a

From  Assumption  3,  when ,  the  third  term  of  (16)  exists.
Considering  when  holds,  one
obtains that
 

lim
r→∞

a−2
2a

c
(
1− 6ac
εθ(a−2)

)
y(k) = 0

limk→∞Lx(k) = 0indicating . Recalling Remark 1, the problem (1) is
well solved through the algorithm (7). ■

Next, the linear convergence rate is discussed.
Theorem  2:  If  conditions  given  in  Theorem  1  are  satisfied,  when

the gain c satisfies that
 

0 < c < c̃ ≜min
{

(a−2)εθ
6a

,
2a

ρ(a−2)

}
(17)

Cs > 0 0 < β < 1, β , 1+ ζ
s(k) ≤Csβ

k
2 ζ ≜ −(ρ(a−2)/2a)c

(
1− (6ac/εθ(a−2))

)and there exist positive constants  and  that
 with , QDE-ZGS

linearly solves problem (1) such that
 

n∑
i=1

∥xi(k)− x∗∥2 ≤ 2
θ

((
V(1)− Ξ

β− ζ −1

)
(1+ ζ)k +

Ξ

β− ζ −1
βk

)
(18)

where Ξ is defined in (19).
V(k) ≤ x(k)T (P⊗ Im) x(k) P = [Pi j] ∈

Rn×n
Proof:  It  is  clear  that ,  where 

 is well defined as follows:
 

Pi j =



(
1
2
− 1

n

)
Θi +

1
2n2

n∑
l=1

Θl, if i = j

−
Θi +Θ j

2n
+

1
2n2

n∑
l=1

Θl, otherwise

P ≥ 0 P1n = 0
ρ = sup{ϱ|ϱP ≤ L+

LT } k > 0 V(k) ≤ (1/ρ)y(k)
1−6ac/εθ(a−2) > 0

which implies that  and . By Lemma A.2 and Section 2.2
in  [7],  there  is  a  positive  constant ρ satisfying 

 such  that  for , .  It  follows  from  (15)  and
 that:

 

△V(k) ≤ − ρ(a−2)
2a

c
(
1− 6ac
εθ(a−2)

)
V(k)

+ s2(k−1)
(

anc
8ε
+

3nc2∥L∥2
4θ

)
(4E(k)+m)

≤ ζV(k)+ s2(k−1)
(

anc
8ε
+

3nc2∥L∥2
4θ

)
(4E(k)+m)

a > 2
−1 <−ρ(a−2)/2ac < ζ < 0
where ζ is  defined  in  (18).  Together  with  (17)  and ,

. Then
 

V(k+1) ≤ (1+ ζ)V(k)

+ s2(k−1)
(anc

8ε
+

3nc2∥L∥2
4θ

)
(4E(k)+m)

. . .

≤ (1+ ζ)k V(1)+
(anc

8ε
+

3nc2∥L∥2
4θ

)
×

k−1∑
r=0

(1+ ζ)r s2(k− r−1)(4E(k− r)+m) .

s(k) ≤Csβ
k
2 E(k) < EmConsidering  and , then

 

V(k+1) ≤ (1+ ζ)k V(1)+Ξ
k−1∑
r=0

(1+ ζ)rβk−r−1

=

(
V(1)− Ξ

β− ζ −1

)
(1+ ζ)k +

Ξ

β− ζ −1
βk (19)

Ξ ≜Csnc
(
aθ+6cε∥L∥2

)
(4Em +m)/8εθwith . The result (18) follows

readily from (11) and (19). ■

(2,1) (2,5) (3,1)

fi(x) = (1/2)(x− yi)2

yi = [1.12,2.04,2.98,3.82,4.74]
x∗i = yi

x(0) = [1.12,2.04,2.98,3.82,4.74] x∗ =
2.94

Simulation: Theoretical  findings  are  illustrated  by  the  following
numerical  example.  Consider  a  multi-agent  system  with  5  agents
interconnected  through  the  communication  network  depicted  in
Fig. 1, where the weights on , ,  are randomly selected
and  the  others  are  constructed  following  Assumption  2.  The  local
objective functions of each agent is designed as 
with ,  where  the  first  three  comes
from  [7].  In  this  case,  the  local  optimal  solution ,  and

;  the  global  optimal  solution 
.

 

5

4 3

2

1

 
Fig. 1. Communication network.
 

s(k) = 10/(k+1) s(k) = 10×0.98k

E(k) = 10×
0.8k Ei(k) = E(k), i ∈ V

We  choose  and  to  show  the
effect  of  Theorems  1  and  2,  respectively.  Furthermore, 

 is the maximal triggering threshold and .

xi, i ∈ V {s(k)}

[96,94,93,93,94] s(k) = 10/(k+1)
[49,48,48,56,60] s(k) = 10×0.98k∑n

i=1 ∥xi(k)− x∗∥

{s(k)}
s(k) = 10×0.98k

0
s(k) = 10×0.98k

According  to  (7)  with  (2)–(5),  the  simulation  results  are  given  as
follows. The time evolutions of states  using both  are
depicted  in Fig. 2.  Moreover,  the  number  of  triggering  instants  for
each  agent  is  when  and  is

 when , which are shown in Fig. 3.
We  define  the  residual  as  to  demonstrate  the
convergence  rate,  and Fig. 4 depicts  the  evolutions  of  residual  for
both  choice  of .  Additionally,  the  residual  evolutions  of

 without  event-triggered  scheme,  seen  as  the
triggering  threshold  is ,  is  also  shown  in Fig. 4,  where  the  linear
convergence rate is naturally obtained for . It reveals
that  the  usage  of  event-triggered  scheme  not  only  decrease  the
communication burden, but also have a more exact result with barely
changed performance.

Conclusions: This  letter  has  designed  QDE-ZGS  to  solve  the
distributed  optimization  problems  with  constrained  communication.
An  event-triggered  quantized  communication  has  been  developed
based on the encoder-decoder scheme and the zooming-in technique.
Theoretical analysis has shown that exact convergence to the global
optimal  solution  under  a  summable  scaled  sequence,  and  the  linear
convergence  is  achieved.  Note  that  the  unbalanced  networks  is  still
an  open  issue.  Furthermore,  how  to  analysis  the  convergence  rate
with  the  finite-level  uniform  quantizer  or  logarithmic  quantizer  is
also  an  interesting  issue,  which  deserves  to  be  studied  in  the  near
future.

Acknowledgments: This work was supported by National Natural
Science  Foundation  of  China  (61988101,  61922030,  61890930-3)
and  Shanghai  International  Science  Technology  Cooperation  Pro-
gram (21550712400).

YUAN et al.: A LINEAR ALGORITHM FOR QUANTIZED EVENT-TRIGGERED OPTIMIZATION OVER DIRECTED NETWORKS 1097 



References
 T. Yang, X. Yi, J. Wu, Y. Yuan, D. Wu, Z. Meng, Y. Hong, H. Wang,
Z.  Lin,  and  K.  H.  Johansson, “A  survey  of  distributed  optimization,”
Annu. Rev. Control, vol. 47, pp. 278–305, Jan. 2019.

[1]

 A.  Nedic  and  A.  Ozdaglar, “Distributed  subgradient  methods  for
multiagent  optimization,” IEEE Trans. Autom. Contr.,  vol. 54,  no. 1,
pp. 48–61, Jan. 2009.

[2]

 X. Ren, D. Li,  Y. Xi,  and H. Shao, “Distributed subgradient algorithm
for  multi-agent  optimization  with  dynamic  stepsize,” IEEE/CAA J.
Autom. Sinica, vol. 8, no. 8, pp. 1451–1464, Aug. 2021.

[3]

 A.  Nedić,  A.  Olshevsky,  and  W.  Shi, “Achieving  geometric  converg-
ence  for  distributed  optimization  over  time-varying  graphs,” SIAM J.

[4]

Optim., vol. 27, no. 4, pp. 2597–2633, Jan. 2017.
 J.  Lu,  C.  Y.  Tang,  R.  Regier,  and  T.  D.  Bow, “Gossip  algorithms  for
convex  consensus  optimization  over  networks,” IEEE Trans. Autom.
Contr., vol. 56, no. 12, pp. 2917–2923, Dec. 2011.

[5]

 J.  Lu  and  C.  Y.  Tang, “Zero-gradient-sum  algorithms  for  distributed
convex  optimization:  The  continuous-time  case,” IEEE Trans. Autom.
Contr., vol. 57, no. 9, pp. 2348–2354, Sep. 2012.

[6]

 W.  Chen  and  W.  Ren, “Event-triggered  zero-gradient-sum  distributed
consensus  optimization  over  directed  networks,” Automatica,  vol. 65,
pp. 90–97, Mar. 2016.

[7]

 W.  He,  T.  Luo,  Y.  Tang,  W.  Du,  Y.-C.  Tian,  and  F.  Qian, “Secure
communication  based  on  quantized  synchronization  of  chaotic  neural
networks under an event-triggered strategy,” IEEE Trans. Neural Netw.
Learning Syst., vol. 31, no. 9, pp. 3334–3345, Sep. 2020.

[8]

 T.  Li,  M.  Fu,  L.  Xie,  and  J.-F.  Zhang, “Distributed  consensus  with
limited  communication  data  rate,” IEEE Trans. Autom. Contr.,  vol. 56,
no. 2, pp. 279–292, Feb. 2011.

[9]

 P.  Yi  and  Y.  Hong, “Quantized  subgradient  algorithm  and  data-rate
analysis for distributed optimization,” IEEE Trans. Control Netw. Syst.,
vol. 1, no. 4, pp. 380–392, Dec. 2014.

[10]

 C. Huang, H. Li, D. Xia, and L. Xiao, “Quantized subgradient algorithm
with  limited  bandwidth  communications  for  solving  distributed
optimization  over  general  directed  multi-agent  networks,” Neurocom-
puting, vol. 185, pp. 153–162, Apr. 2016.

[11]

 H.  Li,  C.  Huang,  Z.  Wang,  G.  Chen,  and  H.  G.  Ahmad  Umar,
“Computation-efficient  distributed  algorithm  for  convex  optimization
over  time-varying  networks  with  limited  bandwidth  communication,”
IEEE Trans. Signal Process., vol. 6, pp. 140–151, 2020.

[12]

 Y.  Kajiyama,  N.  Hayashi,  and  S.  Takai, “Linear  convergence  of
consensus-based  quantized  optimization  for  smooth  and  strongly
convex  cost  functions,” IEEE Trans. Autom. Contr.,  vol. 66,  no. 3,
pp. 1254–1261, Mar. 2021.

[13]

 V. Shnayder, M. Hempstead, B.-R. Chen, G. W. Allen, and M. Welsh,
“Simulating  the  power  consumption  of  large-scale  sensor  network
applications, ” in Proc.  2nd  Int.  Conf.  Embedded  Networked  Sensor
Systems, New York, USA, Nov. 2004, pp. 188–200.

[14]

 W. He, B. Xu, Q.-L. Han, and F. Qian, “Adaptive consensus control of
linear  multiagent  systems  with  dynamic  event-triggered  strategies,”
IEEE Trans. Cybern., vol. 50, no. 7, pp. 2996–3008, Jul. 2020.

[15]

 X. Ge, S. Xiao, Q.-L. Han, X.-M. Zhang, and D. Ding, “Dynamic event-
triggered  scheduling  and  platooning  control  co-design  for  automated
vehicles  over  vehicular  ad-hoc  networks,” IEEE/CAA J. Autom. Sinica,
vol. 9, no. 1, pp. 31–46, Jan. 2022.

[16]

 Y.  Kajiyama,  N.  Hayashi,  and  S.  Takai, “Distributed  subgradient
method with  edge-based event-triggered communication,” IEEE Trans.
Autom. Contr., vol. 63, no. 7, pp. 2248–2255, Jul. 2018.

[17]

 C. Liu, H. Li, Y. Shi, and D. Xu, “Distributed event-triggered gradient
method  for  constrained  convex  minimization,” IEEE Trans. Autom.
Contr., vol. 65, no. 2, pp. 778–785, Feb. 2020.

[18]

 H. Li,  S.  Liu,  Y.  C.  Soh,  and L.  Xie, “Event-triggered communication
and  data  rate  constraint  for  distributed  optimization  of  multiagent  sys-
tems,” IEEE Trans. Syst. Man Cybern. -Syst.,  vol. 48,  no. 11,  pp. 1908–
1919, Nov. 2018.

[19]

 N. Hayashi, K. Ishikawa, and S. Takai, “Distributed subgradient method
for constrained convex optimization with quantized and event-triggered
communication,” IEICE Trans. Fundam. Electron. Commun. Comput.
Sci., vol. E103-A, no. 2, pp. 428–434, Feb. 2020.

[20]

 S.  Liu,  L.  Xie,  and  D.  E.  Quevedo, “Event-triggered  quantized
communication-based  distributed  convex  optimization,” IEEE Trans.
Control Netw. Syst., vol. 5, no. 1, pp. 167–178, Mar. 2018.

[21]

 W.  Shi,  Q.  Ling,  G.  Wu,  and  W.  Yin, “EXTRA:  An  exact  first-order
algorithm  for  decentralized  consensus  optimization,” SIAM J. Optim.,
vol. 25, no. 2, pp. 944–966, Jan. 2015.

[22]

 

0 50 100 150 200 250 300
Iteration

(a)

1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

Agent 1
Agent 2
Agent 3
Agent 4
Agent 5

0 50 100 150 200 250 300
Iteration

(b)

Agent 1
Agent 2
Agent 3
Agent 4
Agent 5

1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

 
xi, i ∈ V s(k) s(k) =

10/(k+1) s(k) = 10×0.98k

Fig. 2. Time  evolutions  of  state  for  different .  (a) 
; (b) .

 

 

Iteration
(a)

Agent 5

Agent 4

Agent 3

Agent 2

Agent 1

0 50 100 150 200 250 300

Agent 5

Agent 4

Agent 3

Agent 2

Agent 1

Iteration
(b)

0 50 100 150 200 250 300

 
s(k) s(k) = 10/(k+1) s(k) =

10×0.98k

Fig. 3. Triggering  instants  for  different .  (a) ;  (b) 
 .

 

 

0 1000 2000 3000 4000 5000 6000 7000 8000
Iteration

10−15

10−10

10−5

100

R
es

id
ua

l

s(k) = 10×0.98k

s(k) = 10×0.98k without ETS

10s(k) = k+1

 
Fig. 4. Performance comparison.
 

 1098 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 9, NO. 6, JUNE 2022

http://dx.doi.org/10.1016/j.arcontrol.2019.05.006
http://dx.doi.org/10.1109/TAC.2008.2009515
http://dx.doi.org/10.1109/JAS.2021.1003904
http://dx.doi.org/10.1109/JAS.2021.1003904
http://dx.doi.org/10.1137/16M1084316
http://dx.doi.org/10.1137/16M1084316
http://dx.doi.org/10.1109/TAC.2011.2160020
http://dx.doi.org/10.1109/TAC.2011.2160020
http://dx.doi.org/10.1109/TAC.2012.2184199
http://dx.doi.org/10.1109/TAC.2012.2184199
http://dx.doi.org/10.1016/j.automatica.2015.11.015
http://dx.doi.org/10.1109/TNNLS.2019.2943548
http://dx.doi.org/10.1109/TNNLS.2019.2943548
http://dx.doi.org/10.1109/TAC.2010.2052384
http://dx.doi.org/10.1109/TCNS.2014.2357513
http://dx.doi.org/10.1016/j.neucom.2015.12.043
http://dx.doi.org/10.1016/j.neucom.2015.12.043
http://dx.doi.org/10.1016/j.neucom.2015.12.043
http://dx.doi.org/10.1109/TAC.2020.2989281
http://dx.doi.org/10.1109/TCYB.2019.2920093
http://dx.doi.org/10.1109/JAS.2021.1004060
http://dx.doi.org/10.1109/TAC.2018.2800760
http://dx.doi.org/10.1109/TAC.2018.2800760
http://dx.doi.org/10.1109/TAC.2019.2916985
http://dx.doi.org/10.1109/TAC.2019.2916985
http://dx.doi.org/10.1109/TSMC.2017.2694323
http://dx.doi.org/10.1587/transfun.2019MAP0007
http://dx.doi.org/10.1587/transfun.2019MAP0007
http://dx.doi.org/10.1109/TCNS.2016.2585305
http://dx.doi.org/10.1109/TCNS.2016.2585305
http://dx.doi.org/10.1137/14096668X
http://dx.doi.org/10.1016/j.arcontrol.2019.05.006
http://dx.doi.org/10.1109/TAC.2008.2009515
http://dx.doi.org/10.1109/JAS.2021.1003904
http://dx.doi.org/10.1109/JAS.2021.1003904
http://dx.doi.org/10.1137/16M1084316
http://dx.doi.org/10.1137/16M1084316
http://dx.doi.org/10.1109/TAC.2011.2160020
http://dx.doi.org/10.1109/TAC.2011.2160020
http://dx.doi.org/10.1109/TAC.2012.2184199
http://dx.doi.org/10.1109/TAC.2012.2184199
http://dx.doi.org/10.1016/j.automatica.2015.11.015
http://dx.doi.org/10.1109/TNNLS.2019.2943548
http://dx.doi.org/10.1109/TNNLS.2019.2943548
http://dx.doi.org/10.1109/TAC.2010.2052384
http://dx.doi.org/10.1109/TCNS.2014.2357513
http://dx.doi.org/10.1016/j.neucom.2015.12.043
http://dx.doi.org/10.1016/j.neucom.2015.12.043
http://dx.doi.org/10.1016/j.neucom.2015.12.043
http://dx.doi.org/10.1109/TAC.2020.2989281
http://dx.doi.org/10.1109/TCYB.2019.2920093
http://dx.doi.org/10.1109/JAS.2021.1004060
http://dx.doi.org/10.1109/TAC.2018.2800760
http://dx.doi.org/10.1109/TAC.2018.2800760
http://dx.doi.org/10.1109/TAC.2019.2916985
http://dx.doi.org/10.1109/TAC.2019.2916985
http://dx.doi.org/10.1109/TSMC.2017.2694323
http://dx.doi.org/10.1587/transfun.2019MAP0007
http://dx.doi.org/10.1587/transfun.2019MAP0007
http://dx.doi.org/10.1109/TCNS.2016.2585305
http://dx.doi.org/10.1109/TCNS.2016.2585305
http://dx.doi.org/10.1137/14096668X
http://dx.doi.org/10.1016/j.arcontrol.2019.05.006
http://dx.doi.org/10.1109/TAC.2008.2009515
http://dx.doi.org/10.1109/JAS.2021.1003904
http://dx.doi.org/10.1109/JAS.2021.1003904
http://dx.doi.org/10.1137/16M1084316
http://dx.doi.org/10.1016/j.arcontrol.2019.05.006
http://dx.doi.org/10.1109/TAC.2008.2009515
http://dx.doi.org/10.1109/JAS.2021.1003904
http://dx.doi.org/10.1109/JAS.2021.1003904
http://dx.doi.org/10.1137/16M1084316
http://dx.doi.org/10.1137/16M1084316
http://dx.doi.org/10.1109/TAC.2011.2160020
http://dx.doi.org/10.1109/TAC.2011.2160020
http://dx.doi.org/10.1109/TAC.2012.2184199
http://dx.doi.org/10.1109/TAC.2012.2184199
http://dx.doi.org/10.1016/j.automatica.2015.11.015
http://dx.doi.org/10.1109/TNNLS.2019.2943548
http://dx.doi.org/10.1109/TNNLS.2019.2943548
http://dx.doi.org/10.1109/TAC.2010.2052384
http://dx.doi.org/10.1109/TCNS.2014.2357513
http://dx.doi.org/10.1016/j.neucom.2015.12.043
http://dx.doi.org/10.1016/j.neucom.2015.12.043
http://dx.doi.org/10.1016/j.neucom.2015.12.043
http://dx.doi.org/10.1109/TAC.2020.2989281
http://dx.doi.org/10.1109/TCYB.2019.2920093
http://dx.doi.org/10.1109/JAS.2021.1004060
http://dx.doi.org/10.1109/TAC.2018.2800760
http://dx.doi.org/10.1109/TAC.2018.2800760
http://dx.doi.org/10.1109/TAC.2019.2916985
http://dx.doi.org/10.1109/TAC.2019.2916985
http://dx.doi.org/10.1109/TSMC.2017.2694323
http://dx.doi.org/10.1587/transfun.2019MAP0007
http://dx.doi.org/10.1587/transfun.2019MAP0007
http://dx.doi.org/10.1109/TCNS.2016.2585305
http://dx.doi.org/10.1109/TCNS.2016.2585305
http://dx.doi.org/10.1137/14096668X
http://dx.doi.org/10.1137/16M1084316
http://dx.doi.org/10.1109/TAC.2011.2160020
http://dx.doi.org/10.1109/TAC.2011.2160020
http://dx.doi.org/10.1109/TAC.2012.2184199
http://dx.doi.org/10.1109/TAC.2012.2184199
http://dx.doi.org/10.1016/j.automatica.2015.11.015
http://dx.doi.org/10.1109/TNNLS.2019.2943548
http://dx.doi.org/10.1109/TNNLS.2019.2943548
http://dx.doi.org/10.1109/TAC.2010.2052384
http://dx.doi.org/10.1109/TCNS.2014.2357513
http://dx.doi.org/10.1016/j.neucom.2015.12.043
http://dx.doi.org/10.1016/j.neucom.2015.12.043
http://dx.doi.org/10.1016/j.neucom.2015.12.043
http://dx.doi.org/10.1109/TAC.2020.2989281
http://dx.doi.org/10.1109/TCYB.2019.2920093
http://dx.doi.org/10.1109/JAS.2021.1004060
http://dx.doi.org/10.1109/TAC.2018.2800760
http://dx.doi.org/10.1109/TAC.2018.2800760
http://dx.doi.org/10.1109/TAC.2019.2916985
http://dx.doi.org/10.1109/TAC.2019.2916985
http://dx.doi.org/10.1109/TSMC.2017.2694323
http://dx.doi.org/10.1587/transfun.2019MAP0007
http://dx.doi.org/10.1587/transfun.2019MAP0007
http://dx.doi.org/10.1109/TCNS.2016.2585305
http://dx.doi.org/10.1109/TCNS.2016.2585305
http://dx.doi.org/10.1137/14096668X

