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   Dear editor,

This letter is concerned with the control of cyber-physical systems
(CPSs) in the presence of malicious false data injection (FDI) attacks
on  actuators.  The  FDI  attacks  on  actuators  may  result  in  faults  of
actuators or even the instability of CPSs. To tackle this problem, an
unknown  input  observer  (UIO)  is  proposed  to  estimate  the  system
states  and  attack  signals.  For  the  aim  of  suppressing  the  impact  of
FDI attacks, a discrete-time sliding mode control (DSMC) algorithm
is correspondingly put forward, where its reaching law is constructed
based on the n-th order difference of the estimation of attack signals.
Finally,  two  simulation  instances  are  presented  to  show  the  effec-
tiveness of the proposed method.

Introduction: Cyber-physical  system  (CPS)  plays  a  more  and
more  pivotal  role  in  the  era  of  Industry  4.0  and  attracts  increasing
attention from academy and industry  profiting  by the  advantages  of
networks  such  as  low cost,  less  wiring  and convenient  maintenance
[1]–[3]. However, the introduction of communication networks breaks
the  closeness  of  conventional  physical  systems,  and  thus  results  in
the threat of cyber attacks [4]–[6]. Among various cyber attacks, FDI
attack is a typical and threatening one, whose working principle is to
break  the  integrity  and  availability  of  data  by  injecting  erroneous
signals [7]. Therefore, it is of great significance to research effective
defense strategies for CPSs.

In  order  to  maintain  the  security  and  improve  the  robustness  of
CPSs under cyber attacks, the concept and methods of fault tolerant
control (FTC) are proposed. According to different working princip-
les,  FTC  is  classified  into  two  types,  i.e.,  active  ones  and  passive
ones  [8].  Active  FTC  utilizes  attack-detection  method  to  identify
attacks or faults, and then appropriately manipulate the control input
to compensate for the corresponding negative effect [9]. On the other
hand, passive FTC normally ensures the stability of a control system
by  considering  and  addressing  the  worst  case.  In  contrast  with
passive  FTC,  the  active  FTC  input  contains  the  estimating
information of attacks or faults, which makes the control system less
conservative.  Hence,  the  investigation  of  active  FTC  has  aroused
keen interest from researchers and engineers.

As a robust  and effective nonlinear control  strategy,  sliding mode
control  (SMC)  is  recognized  as  one  of  the  most  competent  tools  in
dealing  with  uncertain  systems  owing  to  its  robustness  or  even
insensitivity  to  perturbations.  Hence,  SMC  has  been  introduced  for
the  purposed of  ensuring the  security  of  CPSs [10].  Specifically,  Li
et al. proposed an adaptive SMC law with a discontinuous input term
to defense actuator attacks [11].  An SMC method is put forward by

[12] to ensure that CPSs are stochastic finite-time bounded when subj-
ected  to  random  injection  attacks.  Note  that  the  aforementioned
studies are under the same assumption, i.e., the system states can be
directly  measured.  Nevertheless,  this  strict  requirement  is  normally
difficult to be satisfied in reality. Consequently, observer-based SMC
has drawn more and more attention. For instance, an observer-based
event-triggered  SMC  method  is  developed  for  nonlinear  networked
control  systems  subjected  to  cyber  attacks  [13].  In  [14],  a  novel
technique based on neural network is presented to estimate the attack
signals  for  attenuating  the  negative  effect,  and  an  adaptive  SMC
method is designed to guarantee the system’s security.

Motivated  by  the  aforementioned  research,  this  letter  studies  the
control  of  CPSs  under  FDI  attacks.  An  unknown  input  observer
(UIO)  is  designed  to  jointly  estimate  the  system  states  and  attack
signals, and a DSMC law is proposed to attenuate the impact of FDI
attacks  and maintain  the  stability  of  the  control  system.  Finally,  the
effectiveness  of  the  proposed  DSMC  law  is  verified  from  two
simulation examples.

The main contributions of this letter are summarized as follows:
1) For a system with unknown states, an UIO is put forward such

that  the  system  states  and  FDI  attack  signals  can  be  accurately
estimated.

2) A DSMC algorithm is accordingly designed by introducing the
high-order  terms  with  respect  to  the  estimation  of  attack  signals,
which  further  reduces  the  width  of  the  quasi-sliding  mode  domain
(QSMD).

Rn Rn×m n×m

In

Notations:  and  denote  the n-dimensional  and 
dimensional  Euclidean  spaces,  respectively;  the  superscript T
represents  the  transpose  operation;  denotes  an n-dimensional
identity matrix.

Problem formulation: Consider a linear discrete-time CPS where
the  actuator  is  subjected  to  FDI  attacks.  The  system’s  expression  is
shown as follows:
 {

x(k+1) = Ax (k)+B [u (k)+a (k)]

y (k) =Cx (k)
(1)

x ∈ Rnx u ∈ Rl

y ∈ Rny a ∈ Rl

(A,B)
(A,C)

where  is the system state;  denotes the control input;
 is the measurement signal;  represents the FDI attack

signal; A, B and C are constant matrices of appropriate dimensions. T
and k denote the sampling period and time step, respectively. For this
system,  we  assume that  the  pair  is  controllable,  and  the  pair

 is observable.
A  robust  sliding  mode  controller  can  be  designed  such  that  the

system  is  capable  of  maintaining  stable  and  effective  after  being
attacked,  where  the  corresponding  sliding  surface s is  preliminarily
defined as
 

s (k) =Gx (k) (2)
G ∈ Rl×nx GBwhere  and  is nonsingular.

Problem 1: Design a suitable UIO and a DSMC law to ensure that
when  the  system  is  suffering  from  FDI  attacks,  the  system
trajectories  can  converge  to  the  sliding  surface,  and  subsequently
converge to the origin along the sliding surface.

Control  design: In  this  section,  an  UIO  is  designed  to  estimate
unknown  FDI  attack  signals,  and  a  sliding  mode  controller  is
correspondingly  designed  to  guarantee  the  stability  of  the  control
system.

x (k) x̄1 (k)
x̄2 (k) Φ = [M B] Λ =

[CB N] N ∈ Rny×(ny−l) M ∈ Rnx×(nx−l)

Λ
Λ−1 = [Λ1 Λ2]T Λ1 ∈ Rl×ny Λ2 ∈ R(ny−l)×ny

Φ−1 Λ−1

Initially, the state  can be decoupled into a known input 
and  an  unknown  input .  For  this  aim,  and 

 are construct, where  and  are
matrices chosen to satisfy that Φ and  are nonsingular [15]. Hence,
we  have  with  and .
Multiplying  and  on  both  sides  of  the  state  and  the  mea-
surement equation in (1) yields 
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x̄(k+1) = Āx̄ (k)+ B̄ [u(k)+a(k )]

y (k) = C̄ x̄ (k)
(3)

 {
Λ1y (k) = Λ1CMx̄1 (k)+ x̄2 (k)

Λ2y (k) = Λ2CMx̄1 (k)
(4)

x =Φx̄ = Φ[x̄1 x̄2]T Ā = Φ−1AΦ =
[

Ā11 Ā12
Ā21 Ā22

]
B̄ =

Φ−1B = [0 Il]T C̄ =CΦ = [CM CB]

where , , 

, . Combining  (3)  and  (4)
yields
 x̄1(k+1) = Ãx̄1 (k)+Ey (k)

ȳ (k) = C̃ x̄1 (k)
(5)

Ã = Ā11− Ā12Λ1CM E = Ā12Λ1 ȳ (k) = Λ2y (k)
C̃ = Λ2CM

(Ã,C̃)

x̄1 (k) ˆ̄x1 ˆ̄x1→ x̄1
t→∞

where , , ,  and
.  A  Luenberger  observer  can  be  designed  while  the

system matrices  is observable, In addition, the observability of
this system has been examined and affirmed in [16]. According to the
concept  of  UIO  proposed  in  [17],  a  Luenberger  observer  is  constr-
ucted  to  estimate  with ,  which  signifies  that  as

. The observer is shown as follows:
  ˆ̄x1(k+1) = (Ã−LC̃) ˆ̄x1 (k)+ (LΛ2+E)y (k)

ˆ̄x2(k+1) = Λ1y(k+1)−Λ1CM ˆ̄x1(k+1)
(6)

L ∈ R(nx−l)×(ny−l)

x̂ (k) = Φ ˆ̄x (k)
a (k)

where . Then, the estimated state can be obtained as
.  Thus,  by  substituting  (6)  into  (3),  we  achieve  the

estimation of the FDI attack signal  as
 

â (k) = Λ1y (k+1)−Λ1CM ˆ̄x1 (k+1)− Ā21 ˆ̄x1 (k)

− Ā22Λ1y (k)+ Ā22Λ1CM ˆ̄x1 (k)−u (k) . (7)
Rearranging (7), we can get a simplified equation as

 

â (k) = K1y (k+1)+K2 ˆ̄x1 (k)+K3y (k)+K4u (k) (8)
K2 = Λ1CMLΛ2CM − Λ1CMĀ11+Λ1CMĀ12Λ1CM−

Ā21+ Ā22Λ1CM K3 = −Λ1CMLΛ2 − Λ1CMĀ12Λ1− Ā22Λ1
K1 = Λ1 K4 = −Il x̂ (k)

â (k)

where 
, ,

, . The estimated state  and the estimated FDI
attack signal  will  be utilized in the compensating procedure of
the subsequent SMC design.

For  the  SMC  design,  the  first  step  is  to  construct  an  appropriate
sliding  surface,  which  has  been  accomplished  and  embodied  in  (2).
Not  only  a  suitable  sliding  variable  is  required,  but  also  a  reaching
law is  of  great  importance.  Herein,  a  reaching  law based  on  [18]  is
adopted in our case, which is with the following expression:
 

s (k+1) = (1−qT ) s (k)−λsign [s (k)]+∇na (k) (9)
∇a (k) =CBâ (k) ∇na (k) = ∇n−1a (k)−∇n−1 f (k−1)

[s(k )] ≜
[
signs1

(
k), . . . ,signsl(k)]T

q > 0 0 < 1−qT < 1 λ > 0 n > 0

where ; ;
sign ; q is  chosen  to  satisfy

 and ;  and  are  control  parameters
to be selected.

a (k)
According to [19], we have the following lemma for the FDI attack

signal :
a (k) = O (T ) ,a (k)−a (k−1) = O(T 2) a (k)−

2a (k−1)+a (k−2) = O(T 3)
Lemma  1: ,  and 

, T is the sampling time.
∇a (k) = O (T )

∇2a (k) = O(T 2) ∇na (k) = O (T n)

∇a (k)

From  Lemma  1  it  can  be  further  concluded  that ;
; .  Therefore, the upper bound of

the disturbance term in (9) can be decreased by augmenting the order
of .  Subsequent  analysis  will  further  prove  that  the  width  of
QSMD can get reduced.

u (k)
Combining  (1),  (2)  and  the  reaching  law  (9),  a  DSMC  law  is

obtained, and the corresponding control input  can be expressed as
 

u (k) = − (GB)−1
[
GAx (k)− (1−qT ) s (k)

+λsign (s(k ))+
∑n−1

i=1
∇ia(k−1)

]
. (10)

∇a (k)Remark  1:  As  the  order  of  increases,  the  width  of  QSMD
will  be  shorten.  Nevertheless,  the  constraint  requirement  for  unkn-

own  signals  will  also  be  higher.  It  can  be  seen  that  the  proposed
DSMC  law’s  working  principle  is  based  on  the  statistical  charact-
eristics of unknown signals.

s (k)

Up  to  now,  we  have  designed  a  DSMC  law  for  the  CPS  under
unknown FDI attacks. However, the stability of the control system is
required  to  be  proved.  Specifically,  in  our  case,  we  need  to  subst-
antiate that the switch function  from any initial state can reach
the QSMD and subsequently remain in the QSMD.

Theorem  1:  For  the  discrete-time  CPS  as  shown  in  (1)  with  the
following assumption:
 

ξ =max∇na (k) ≤ λ (11)
O (T n)
Ω∆

the  system  trajectories  will  converge  to  an  QSMD  by  the
proposed DSMC law, where the expression of  is shown as below:
 

Ω∆ = {si (k) | |si (k)| < λ+ ξ} . (12)
si (k) > 0 si (k) < 0Proof:  Two  cases  of  and  are  discussed  here,

respectively.
si (k) > 0For the first case , from (9) we can obtain

 

si (k+1) = (1−qT ) si (k)−λ+∇nai (k)

< si (k)−λ+∇nai (k) < si (k) . (13)
si (k) > 0 si (k)

si (k∗) > 0 si (k∗+1) < 0
si (k∗+1) Ω∆

si (k∗+1)− (−λ− ξ) > 0

As  shown  in  (13),  when ,  the  sliding  variable  is
monotonically  decreasing.  Hence,  there  exists  a  situation  where

,  and .  It  is  of  necessity  to  investigate
whether  will  exceed  in  this  case,  i.e.,  whether

. The deduction is shown as follows:
 

si
(
k∗+1

)− (−λ− ξ) = (1−qT ) si
(
k∗
)−λ+∇nai

(
k∗
)
+λ+ ξ

= (1−qT ) si
(
k∗
)
+∇nai

(
k∗
)
+ ξ

> (1−qT ) si
(
k∗
)
> 0. (14)

si (k) > 0 si (k)
Ω∆

It  can be seen that when ,  the sliding variable  will
converge into .

si (k) < 0    For the second case , we can prove in the same way. ■
s (k)Though it has been verified that the switch function  from any

initial  state  will  finally  converge  into  the  QSMD,  it  is  of  great
necessity to prove that the trajectories will stay in the QSMD and not
escape from it.

s (k)
Ω∆

Theorem 2: For the system (1) with the assumption (11) and under
the  DSMC  law  (10),  when  the  switch  function  enters  QSMD

, it will always stay in it.
s (k)

0 ≤ s (k) ≤ λ+ ξ −λ− ξ ≤ s (k) ≤ 0
Proof:  When  enters  the  QSMD,  there  exist  two  situations,

namely,  and .  Hence,  we
discuss this issue in two cases.

0 ≤ s (k) ≤ λ+ ξFor the first case , it can be derived that
 

si (k+1) = (1−qT ) si (k)−λ+∇nai (k)

≥ −λ+∇nai (k)

≥ − (λ+ ξ) (15)
and
 

si (k+1) = (1−qT ) si (k)−λ+∇nai (k)

≤ λ+ ξ− (λ−∇nai (k)
)

≤ λ+ ξ. (16)
−λ− ξ ≤ si (k) ≤ 0For  the  second  case ,  the  proof  can  be  comp-

leted by a similar procedure.

s (k) Ω∆ Ω∆

Consequently,  we  achieve  the  conclusion  that  when  the  sliding
variable  enters the QSMD , it stays inside  and is unable
to escape from it. ■

To  this  end,  we  have  presented  the  selection  of  the  control
parameters of the DSMC.

λ = 0.2

1) Selection of λ: The parameter λ determines the width of QSMD
and the capacity of the system to resist attacks. Increasing λ enhances
the  attack-resistance  ability  but  at  the  cost  of  bringing  more
chattering. Considering this tradeoff, we set .

2) Selection of q: The parameter q determines the convergence rate
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q = 5

of the system. A larger q leads to a faster convergence rate but at the
cost  of  augmenting the risk of  instability.  To achieve a balance,  the
parameter q is set as .

n = 5

3) Selection of n:  The parameter n denotes the order of the attack
signal.  From  Lemma  1,  it  can  be  seen  that  a  larger n leads  to  a
narrower  QSMD.  However,  increasing n also  means  more  strict
conditions to be satisfied. Taking this tradeoff into consideration, we
set .

A =


1 0.0991 0.0136 0.0004
0 0.9818 0.2789 0.0136
0 −0.0023 1.1598 0.1053
0 −0.0474 3.2764 1.1598

 B =


0.0091
0.1822
0.0232
0.4732


C =

 1 0 0 0
0 0 1 0
0 0 0 1


x (0) = [0.98 0 0.2 0]T T = 0.1

a (k)

Simulation results: A fourth-order inverted pendulum system [20]
is  adopted  as  the  controlled  object  whose  dynamic  model  is  as  (1),
where  the  system matrix,  input  matrix  and  measurement  matrix  are

set as , 

and ,  respectively.  The  initial  state  and the

sampling  period  are  set  as  and  s.
Two simulations are carried out, where various FDI attack signals are
adopted  to  test  the  effectiveness  and  robustness  of  the  UIO-based
SMC law. In Case 1, the FDI attack signal  is set as
 

a (k) = −2cos(kπT ) , k < 50
a (k) = 2, 50 ≤ k < 125
a (k) = 5sin(kπT ) , 125 ≤ k < 200.

(17)

Another relatively complicated FDI attack signal a(k) in Case 2 is
designed as
 

a (k) = sin(kπT ), k < 50

a (k) = sin(kπT )+ e
1− 1

[(k−50)T ]2 , 50 ≤ k < 125

a (k) = sin(kπT )+ e
1− 1

[(k−50)T ]2

−e
1− 1

[(k−125)T ]2 , 125 ≤ k < 200.

(18)

k = 125

0.2

0.17

By implementing the proposed algorithm, the simulation results are
obtained and shown in Figs. 1–4. Specifically, the estimation perfor-
mance  of  the  proposed  UIO  is  shown  in  the  upper  parts  of Figs. 1
and 3, which turns out to be satisfactory. Under different attacks, the
estimated  FDI  attack  signals  are  able  to  track  the  actual  ones
precisely.  As  shown  in Fig. 2,  when  the  attack  signal  changes,
namely, when , the sliding variable deviates from the QSMD
for  a  pretty  short  time  but  then  immediately  converges  back  to  the
QSMD and stays in it. The width of the QSMD is approximately .
From Fig. 4 we  can  see  that  the  proposed  DSMC  law  is  able  to
guarantee the convergence within the QSMD, where the width of the
QSMD  is  approximately .  The  lower  parts  of Figs. 1 and 3
reveal  that  the  system trajectories  under  the  action  of  the  presented
method  converge  to  zero  in  a  pretty  short  time  and  maintain  stable
thereafter.

Conclusions: This  letter  investigates  the  control  of  CPSs  under
FDI  attacks.  An  UIO  is  designed  to  estimate  the  system  states  and

attack  signals,  and  a  DSMC  algorithm  is  accordingly  developed  to
attenuate the impact of FDI attacks, where the stability of the control
system  is  mathematically  substantiated  in  detail.  The  simulation
results evidently demonstrate the effectiveness and superiority of the
presented  UIO-based  DSMC  method.  Note  that  our  study  in  this
letter  is  concerned  with  a  linear  CPS  model.  However,  most  of  the
CPSs in reality are nonlinear ones. Hence, our future work is to study
nonlinear  CPSs  and  put  forward  more  robust  and  effective  control
strategies.
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Fig. 1. Estimation of FDI attack signal and system states in Case 1.
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Fig. 2. Sliding mode dynamics in Case 1.
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Fig. 3. Estimation of FDI attack signal and system states in Case 2.
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