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   Dear Editor,
This  letter  is  concerned  with  human  parsing  based  on  part-wise

semantic  prediction.  Human  body  can  be  regarded  as  a  whole
structure  composed  of  different  semantic  parts,  and  the  mainstream
single  human  parser  uses  semantic  segmentation  pipeline  to  solve
this  problem.  However,  the  differences  between human parsing  and
semantic segmentation tasks bring some issues that are inevitable to
avoid.  In  this  paper,  we  propose  a  novel  method  called  part
decomposition and refinement network (PDRNet), which adopt part-
wise  mask  prediction  other  than  pixel-wise  semantic  prediction  to
tackle  human  parsing  task.  Specifically,  we  decompose  the  human
body  into  different  semantic  parts  and  design  a  decomposition
module  to  learn  the  central  position  of  each  part.  The  refinement
module  is  proposed  to  obtain  the  mask  of  each  human  part  by
learning  convolution  kernel  and  convolved  feature.  In  inference
stage, the predicted human part masks are combined into a complete
human  parsing  result.  Through  the  decomposition,  refinement  and
combination of  human parts,  PDRNet greatly reduces the confusion
between  the  target  human  and  the  background  human,  and  also
significantly  improves  the  semantic  consistency  of  human  part.
Extensive experiments show that PDRNet performs favorably against
state-of-the-art  methods  on  several  human  parsing  benchmarks,
including LIP, CIHP and Pascal-Person-Part.  

Introduction: The problem of assigning dense semantic labels to a
human  image,  formally  known  as  human  parsing,  is  of  great
importance  in  computer  vision  as  it  finds  many  applications,
including  clothing  retrieval,  virtual  reality,  human-computer  inter-
action  [1],  [2],  etc.  Generally  speaking,  the  vast  majority  of  the
existing  human  parsing  methods  follow  two  paradigms:  bottom-up
and top-down. The bottom-up [3], [4] treats human parsing as a fine-
grained semantic  segmentation task,  predicting the category of  each
pixel  and  grouping  it  into  corresponding  instances.  The  top-down
[5]−[10] locates each instance in the image plane, and then segments
each human part independently. Therefore, an accurate single human
parser  is  particularly  important  for  the  top-down  method.  The
mainstream single  human parsers  map the  human body to  the  same
size  feature  space  [5],  [7],  [11],  and  use  pixel-wise  semantic
segmentation pipeline to solve the problem. However, there are great
differences between human parsing and semantic segmentation tasks.
First of all, in the human parsing, all human bodies except the target
human are regarded as the background, while semantic segmentation
does not distinguish different human instances, but tends to treat the
target  human  and  the  background  human  equally  (background
confusion  errors).  Secondly,  each  human  part  is  an  instance  with

boundary,  and  we  need  to  assign  the  same  semantic  label  to  the
whole  part.  However,  semantic  segmentation  is  a  pixel-wise
classification, which can not guarantee that all pixels in the one part
can be predicted the same category (semantic inconsistency errors).

In this work, we are committed to solving the errors caused by the
differences  between  method  and  objective  in  human  parsing.  We
abandon the process of semantic segmentation, learn from the idea of
instance  segmentation  [12]−[14],  decompose  the  human  body  into
different semantic parts, segment each part mask independently, and
then combine them into a complete human structure. Specifically, we
propose a decomposition module to predict the centers and categories
of  human  parts  on  the  feature  map.  The  decomposition  module
encodes  the  position  information  of  human  parts  into  the  spatial
dimension,  and  encodes  the  category  information  into  the  channel
dimension. Therefore, the prior geometric context of the human body
is retained in the feature map, which effectively avoids the confusion
between  the  target  human  and  the  background  human.  In  order  to
obtain the mask of each part,  we propose a refinement module. The
refinement module consists of two branches, one is used to learn the
convolution  kernel  at  the  center  of  each  part,  the  other  is  used  to
learn the convolved feature. We use dynamic convolution to generate
the  mask  for  each  part,  which  converts  the  traditional  pixel-wise
semantic segmentation problem into a more concise binary part-wise
mask segmentation.  In  inference  stage,  we present  a  human parsing
probability  map combination  method based  on  the  predicted  human
part categories and masks. The predicted mask with the highest score
of  each  category  is  sampled  and  weighted  fusion  is  carried  out
according  to  the  quality  score  [11],  and  finally  combined  into  a
complete human parsing result.

As  shown  in Figs. 1(a)−1(c),  we  call  the  proposed  method  of
decomposition,  refinement  and  combination  of  human  body  as
PDRNet. Experiments show that, PDRNet has achieved state-of-the-
art  performances  on  four  benchmarks,  including  CIHP  [3],  Pascal-
Person-Part  [15]  and  LIP  [16].  Meanwhile,  we  also  verify  that
PDRNet  can  significantly  reduce  background  confusion  errors  and
semantic inconsistency errors through qualitative comparison.

Related work:
•  Human  parsing:  Human  parsing  has  attracted  a  lot  of  research

efforts  in  recent  years  [3],  [15],  [16].  Most  of  them  regard  it  as  a
special case of semantic segmentation, and improve the performance
by introducing attention mechanism [10], [17], auxiliary supervision
[5],  [15],  [18],  [19],  human  hierarchical  structure  [7],  [8],  [20]  or
quality estimation methods [9], [11]. Some earlier studies introduced
human structure prior knowledge by designing hand-crafted features
[21]  or  grammar  model  [22].  Attention  mechanism  [10]  is  then
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(a) Decomposition

(b) Refinement (c) Combination
 
Fig. 1. Illustration  of  proposed  PDRNet  for  human  parsing.  We  decompose
the  human  body  into  different  semantic  parts,  segment  each  part  mask
independently, and then combine them into a complete human structure.
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adopted to construct the geometric context of the human body, which
promotes the development of the community. In order to improve the
ability  of  semantic  segmentation  network  to  understand  human
structure,  some  researchers  uses  keypoints  [15]  and  edge  [5]
supervision  to  improve  the  model  representation.  Graph  transfer
learning [23],  graph networks  [7],  [8]  and semantic  neural  tree  [20]
are used to exploit the human representational capacity. However, it
is  difficult  to  eliminate  the  differences  between  the  semantic
segmentation method and the human parsing objective through these
efforts. Urgently need a new perspective to solve the human parsing
problem.  Guided  by  this  intuition,  we  try  to  decompose  the  human
body into parts, segment each part mask independently, and combine
them  into  a  complete  structure,  which  make  a  further  step  towards
the consistency of method and objective in human parsing.

•  Instance  segmentation:  Instance  segmentation  is  a  more
challenging  view  of  dense  pixel  prediction.  It  not  only  needs  to
predict  the  semantic  categories  at  pixel  level,  but  also  distinguish
different  instances  in  the  image  simultaneously.  According  to
whether  the  object  proposal  is  explicitly  adopted,  the  instance
segmentation  method  can  be  divided  into  proposal-based  [12]  and
proposal-free [13,] [14]. The first successful attempt is the proposal-
based  method,  the  milestone  work  is  Mask  R-CNN  [12],  which
learns  from  the  two-stage  object  detection  framework  by  detecting
the object box first and then segmenting the object mask in the box.
The  proposal-free  methods  attempt  a  more  direct  idea,  using  pixel
grouping, object contour and other strategies [24] to obtain the object
mask.  Some pioneering efforts  [13],  [14] segment the mask directly
without the box supervision, which has advantages in efficiency and
performance. Our work is inspired by this idea, which can be viewed
as a groundbreaking attempt to explore the method beyond semantic
segmentation pipeline in the area of human parsing.

Methodology:

O = F ⊙K F K
O ∈ RN × C × H × W

⊙

{pi} {ci} {mi}

P

•  Problem  definition:  Given  an  arbitrary  human  body  image,  the
standard  human  parser  [5],  [6],  [9]  will  adopt  the  semantic
segmentation pipeline and regard it  as a pixel-wise dense prediction
problem: ,  where  denotes  input  feature  map, 
denotes  convolution  kernel,  denotes  output
probability  map  (C is  the  number  of  parsing  categories),  is
convolution operator. Generally speaking, cross entropy loss function
is used to solve the problem. The human parsing is solved as a whole
structure,  and  different  parts  are  regarded  as  different  categories.
However,  there  are  great  differences  between  human  parsing  and
semantic  segmentation  tasks,  which  lead  to  common  background
confusion error and semantic inconsistency error. In order to reduce
these errors and improve the representation ability of human parser,
our work adopts a more concise binary part-wise mask segmentation
method. Inspired by some instance segmentation work [13], [14], we
use  decomposition  module  and  refinement  module  to  learn  the
position  (with category ) and mask information  of each
part  respectively.  Finally,  using  the  post-processing  method  to
combine learned masks of  each part  into a  complete  human parsing
probability map  in inference stage.

•  Decomposition module:  The decomposition module is  proposed
to locate and classify each human part. This is the first step in whole
process,  and  the  subsequent  steps  depend  on  the  output  of

(Gh,Gw)

D ∈ RN × C × Gh × Gw

{pi} i ∈ Dpos {ci} i ∈ Dpos

decomposition module. Referring to [13], the decomposition module
divides  the  input  human  body  into  a  uniform  grids,  denoted  as

.  As  shown  in Fig. 2(a),  if  the  center  of  a  part  falls  into  a
grid  cell,  that  grid  cell  is  responsible  for  predicting  the  semantic
category. The non-existent part of the human body (due to the angle
of  view  or  special  ornaments)  is  unnecessary  to  be  predicted.  This
ensures  that  the  decomposition  module  can  predict  the  position  and
category of each part existing in the human body, that is, decompose
the  human  body  into  different  parts.  The  output  of  decomposition
module is , and most of the grids correspond
to background category (negative samples).  Therefore,  we use focal
loss  [25]  to  classify  each  grid.  Through  the  decomposition  module,
we  get  the  position ,  and  category , 
information of each part that existing in the human body.

K
D

K ∈ RN × C × Gh × Gh

{pi} K
{Ki} ∈ RNpos × C × 1 × 1

F ∈ RN × C × H × W

{Ki} 1 × 1 F

•  Refinement  module:  For  an  input  human  image,  we  get  the
position of each part through the decomposition module. We need to
further  obtain  the  masks  on  this  basis.  Therefore,  we  propose  the
refinement  module  to  generate  a  unique  refinement  mask  for  each
part. The different number of parts in each human body leads to the
different number of positive samples predicted by the decomposition
module. Thus, a dynamic scheme is required to generate an uncertain
number  of  part  masks.  In  the  refinement  module,  we  adopt  the
dynamic convolution, while two different branches are used to learn
convolution kernel and convolved feature respectively. As shown in
Fig. 2(b),  the  output  feature  of  kernel  branch  has  the  same
dimension  with  the  output  of  the  decomposition  module ,  that  is

. According  to  the  position  information  of
human parts , we select the corresponding position features of 
and  concatenate  them  together  as . The
feature branch outputs the convolved feature ,
which has the same space dimension with the input human image. If
we  regard  as  the  convolution  kernel  and  as  the
convolved feature, then we have
 

{mi} = F ⊙{Ki} (1)
{mi}

{mi}

{mi}

where  is  the  learned  masks  of  each  human  part.  The  area  of
each part in the human body is limited, so most of the pixels in 
correspond to the background.We use dice loss to optimize each part
mask  in  the  refinement  module.  Thus,  through  the  refinement
module, we get the part masks  of the input human.

• Predicted masks sampling: In the decomposition module, in order
to  ensure  that  each human part  is  fully  trained,  we use  the  adaptive
center  range  based  on  the  part  size  when  defining  the  centers.
Therefore, a human part may be assigned to multiple grids, in other
words,  the  refinement  module  will  output  redundant  human  part
masks.  One  of  the  most  intuitive  ways  to  remove  the  redundant
predictions  is  to  use  non-maximum  suppression,  e.g.,  greedy-NMS,
soft-NMS [26], matrix-NMS [14]. But the human parsing task has its
particularity,  which  every  part  of  the  human  body  is  unique.  As
illustrated  in Fig. 2(c),  we  use  a  simpler  way  to  sample  the
appropriate  masks,  only  the  mask  with  the  highest  quality  score  is
sampled for each part
 

{m̂i} =max
s

({m(s)
i }), s ∈ {si} (2)

 

(a) Decomposition module (b) Refinement module

Predicted masks sampling

Quality-based fusion
Global and parts
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(c) Human parsing probability map combination
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Fig. 2. Illustration of proposed decomposition module, refinement module and human parsing probability map combination.
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{si}where  denotes  the  quality  scores  of  predicted  part  masks.
According to the [11], the quality score of each mask is calculated by
fusing the discrimination score of the decomposition module and the
pixel score of the mask probability map.

{m̂i}
Opart ∈ RN × C × H × W

•  Quality-based  human  parts  fusion:  In  order  to  obtain  consis-
tent results of human parsing, we need to combine  into the who-
le human probability map . We propose the
quality-based human parts fusion method
 

O(i)
part =

{
(1− m̂i)∗ si, i = 0
m̂i ∗ si, otherwise. (3)

i ∈ C
(1− m̂i) i = 0

Here, , C is  the  number  of  parsing  categories.  We  use
,  to  represent  the  probability  map  of  background

category.

Opart ∈ RN × C × H × W

O

•  Global  and  parts  ensemble:  The  combined  human  probability
map  contains  the  information  of  human
parts. We find the introduction of global human probability map can
slightly  improve  the  performance  of  human  parsing.  Therefore,  we
use  the  global  and  parts  ensemble  method  to  generate  the  final
probability map  by adjusting the proportion of each other through
hyper-parameter α
 

O = α∗Opart+ (1−α)∗Oglobal. (4)
OglobalHere,  denotes the global human probability map.

Experiments:

(Gh,Gw)
(Gh,Gw) (64,48)

• The  decomposition  and  refinement  modules:  In  order  to  verify
the effectiveness of  the two modules,  we pursue concise design.  As
shown in Table 1,  we  investigate  the  conv.  number  in  two modules
and grid number in the decomposition module. Table 1(a) shows the
conv.  number  in  decomposition  and  refinement  modules  has  slight
impact  on  the  performance,  which  proves  that  the  performance
improvement  of  PDRNet  does  not  come  from  the  larger  network
capacity.  Therefore,  in  order  to  keep  the  computational  efficiency,
we  choose  two  shared  convolutions  and  one  independent
convolution. Table 1(b) shows  the  grid  number  has  a
significant  impact.  Setting  to  can  get  the  best
performance, which can reach 57.97% mIoU.
 

Table 1.  The Impact of Conv. Number (Top), grid Number (Bottom) of
PDRNet on LIP val Set

Shared convs Indep. convs Pix Acc. Mean Acc. mIoU
1 1 88.38 68.66 57.52
2 1 88.53 69.01 57.97
4 1 88.44 68.89 57.78
4 2 88.54 68.94 57.95

(a) The Impact of Conv. Number in Two Modules
Grid num Pix Acc. Mean Acc. mIoU
(32, 24) 87.61 66.43 55.01
(64, 48) 88.53 69.01 57.97
(96, 72) 87.94 68.17 57.21

(b) The Impact of Grid number in the Decomposition Module
 
 

Oglobal Opart

•  Human  parsing  probability  map  combination: Table 2 shows
sampling  the  highest  score  mask  (denoted  as  Top-1)  can  achieve
higher  performance  than  the  NMS-based  sampling  [14].  We  argue
this is because each part of human body is unique, so there is no need
for complex duplicate removal method. The core of probability map
combination  is  to  fuse  the  sampled  part  masks  into  a  complete
probability map. As shown in Table 3, the quality-base fusion is 0.75
points  mIoU higher  than direct  fusion and 1.50 points  mIoU higher
than score-based fusion. By comparing direct fusion and quality-base
fusion, we find that it is necessary to weight the mask quality, where
some  low  quality  predictions  can  be  suppressed. Table 4 illustrates
the  influence  of  ensemble  factor α on  human  parsing  performance.
Note that, it  is not the best choice to use only the global probability
map  (α = 0.0) or the part probability map  (α = 1.0). It
can be observed that setting α = 0.75 achieves the best performance
with 88.53% pix Acc., 69.01% mean Acc. and 57.97% mIoU.

•  LIP  [16]:  We  compare  our  proposed  PDRNet  with  previous
methods on LIP val set in Table 5. PDRNet achieves state-of-the-art

512×384 ≈ 473×473with  similar  input  size  ( ),  which  yields
60.11% mIoU  with  HRNet-W48  backbone.  In  terms  of  pixAcc.,
mean Acc. and mIoU, PDRNet surpasses the best performing method
QANet [11] by 0.22, 0.02 and 0.50 points, respectively.

• CIHP [3]: In the upper part of Table 6, we compare our method
against  11  recent  methods  on  CIHP  val  PDRNet  achieves  the  best
results  in  all  metrics;  specifically,  65.1% mIoU,  63.5% APp and
57.5% APr.  Compare  with  previous  state-of-the-art  QANet  [11],
PDRNet yields 1.3 points mIoU and 1.7 points APp improvements.

•  PASCAL-person-part  [15]:  PASCAL-person-part  is  a  classic
multiple human parsing benchmark with only 7 semantic categories.
The  lower  part  of Table 6 summarizes  the  quantitative  comparison
results  with  9  competitors  on  PASCAL-person-part  test  set.  Our
PDRNet with HRNet-W48 backbone yields 73.3% mIoU, 63.9% APp

and 59.1% APr, which again demonstrates our superior performance.
Conclusions: Using  traditional  semantic  segmentation  pipeline  to

process  human  parsing  task  will  bring  unavoidable  semantic
inconsistency and background confusion errors. This work draws on
the idea of instance segmentation and proposes a new human parsing
method to addresses these issues. Firstly, a decomposition module is
designed to encode the human geometry prior and predict the center
position  of  each  part.  Then,  the  refinement  module  is  proposed  to
predict  the  part  masks.  In  inference  stage,  combining  the  predicted
human  part  masks  into  a  complete  human  parsing  probability  map.
We verify the superiority of our method on several benchmarks, and
further  prove  that  it  can  be  flexibly  combined  with  the  existing
human parsing frameworks.

Acknowledgments: This work was supported by the National Key
Research and Development Program of China (2021YFF0500900).

 

Table 2.  Performance Comparison of Different Kinds of Predicted Masks
Sampling on LIP val Set

Methods Pix Acc. Mean Acc. mIoU Post-proc time (ms)
Hard-NMS 87.48 65.92 54.59 10

Matrix NMS 88.21 68.48 57.40 3
Top-1 88.53 69.01 57.97 1

 

 

Table 3.  Performance Comparison of Different Kinds of Human Parts Fusion
on LIP val Set

Methods Pix Acc. Mean Acc. mIoU
Direct fusion 88.33 68.79 57.22

Score-based fusion 88.24 68.67 56.47
Quality-based fusion 88.53 69.01 57.97

 

 

Table 4.  Ablation Study of Global and Parts Ensemble Factor α on LIP val Set
Methods Pix Acc. Mean Acc. mIoU

Globle prob. only (α = 0.0) 88.10 68.63 56.89
Ensemble prob. (α = 0.25) 88.39 68.97 57.67
Ensemble prob. (α = 0.5) 88.46 68.95 57.88
Ensemble prob. (α = 0.75) 88.53 69.01 57.97
Part prob. only (α = 1.0) 88.31 68.42 57.37

 

 

Table 5.  Comparison of Pixel Accuracy, Mean Accuracy and mIoU on LIP
val Set

Methods Input size Pix Acc. Mean Acc. mIoU
Attention [29] – 83.43 54.39 42.92
MMAN [30] 256×256 85.24 57.60 46.93
JPPNet [16] 384×384 – – 51.37

CE2P [5] 473×473 87.37 63.20 53.10
BraidNet [28] 384×384 87.60 66.09 54.42
CorrPM [18] 384×384 – – 55.33

OCR [31] 473×473 – – 56.65
PCNet [10] 473×473 – – 57.03
CNIF [7] 473×473 88.03 68.80 57.74

DTCF [19] 473×473 88.61 68.89 57.82
HHP [8] 473×473 89.05 70.58 59.25

SCHP [32] 473×473 – – 59.36
QANet [11] 512×384 88.92 71.17 59.61

PDRNet (ours) 512×384 89.15 71.19 60.11
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Table 6.  Comparison With Previous Methods on Multiple Human Parsing on CIHP val and PASCAL-Person-Part Sets. Bold Numbers are State-of-the-Art on
Each Dataset, † Denotes Using Multi-Scale Test Augmentation

Datasets Methods Backbones Epochs mIoU APp APp
50 PCP50 APr APr

50

CIHP [3]

Bottom-up
PGN† [3] ResNet101 ~80 55.8 39.0 34.0 61.0 33.6 35.8

Graphonomy [23] Xception 100 58.6 – – – – –
CorrPM [18] ResNet101 150 60.2 – – – – –

One-stage Top-down
Parsing R-CNN [6] ResNet50 75 56.3 53.9 63.7 60.1 36.5 40.9

Unified [27] ResNet101 ~37 55.2 48.0 51.0 – 38.6 44.0
RP R-CNN [9] ResNet50 150 60.2 59.5 74.1 64.9 42.3 48.2

Two-stage Top-down
CE2P [5] ResNet101 150 59.5 – – – 42.8 48.7

BraidNet [28] ResNet101 150 60.6 – – – 43.6 49.9
SemaTree [20] ResNet101 200 60.9 – – – 44.0 49.3

PCNet [10] ResNet101 120 61.1 – – – – –
QANet [11] ResNet101 140 63.8 61.7 77.1 72.0 57.3 64.8

PDRNet (ours) ResNet101 140 65.1 63.5 81.0 74.6 57.5 64.9

PPP [15]

Bottom-up
PGN† [3] ResNet101 ~80 68.4 – – – 39.2 39.6

Graphonomy [23] Xception 100 71.1 – – – – –
MGHP [4] ResNet101 150 – – – – 55.9 59.0

One-stage Top-down
Parsing R-CNN [6] ResNet50 75 62.7 49.8 58.2 48.7 40.4 43.7

RP R-CNN [9] ResNet50 75 63.3 50.1 58.9 49.1 40.9 44.1
Two-stage Top-down

CNIF† [7] ResNet101 150 70.8 – – – – –
DTCF† [19] HRNet-W48 200 70.8 – – – – –

HHP† [8] ResNet101 150 73.1 – – – – –
QANet [11] ResNet101 140 69.5 60.1 74.6 62.9 54.0 62.6

PDRNet (ours) ResNet101 140 70.3 60.4 75.1 63.5 54.8 64.0
PDRNet (ours)† HRNet-W48 140 73.3 63.9 81.2 69.8 59.1 69.6
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	Introduction: The problem of assigning dense semantic labels to a human image, formally known as human parsing, is of great importance in computer vision as it finds many applications, including clothing retrieval, virtual reality, human-computer inter- action [1], [2], etc. Generally speaking, the vast majority of the existing human parsing methods follow two paradigms: bottom-up and top-down. The bottom-up [3], [4] treats human parsing as a fine-grained semantic segmentation task, predicting the category of each pixel and grouping it into corresponding instances. The top-down [5]&#8722;[10] locates each instance in the image plane, and then segments each human part independently. Therefore, an accurate single human parser is particularly important for the top-down method. The mainstream single human parsers map the human body to the same size feature space [5], [7], [11], and use pixel-wise semantic segmentation pipeline to solve the problem. However, there are great differences between human parsing and semantic segmentation tasks. First of all, in the human parsing, all human bodies except the target human are regarded as the background, while semantic segmentation does not distinguish different human instances, but tends to treat the target human and the background human equally (background confusion errors). Secondly, each human part is an instance with boundary, and we need to assign the same semantic label to the whole part. However, semantic segmentation is a pixel-wise classification, which can not guarantee that all pixels in the one part can be predicted the same category (semantic inconsistency errors).

