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Abstract
The recording process of observation is influenced bymultiple factors, such as viewpoint, illumination, and state of the object-
of-interest etc.Thus, the image observation of the same object may vary a lot under different conditions. This leads to severe
intra-class variance which greatly challenges the discrimination ability of the vision model. However, the current prevailing
softmax loss for visual recognition only pursues perfect inter-class separation in the feature space. Without considering the
intra-class compactness, the learned model easily collapses when it encounters the instances that deviate a lot from their
class centroid. To resist the intra-class variance, we start by organizing the input instances as a graph. From this viewpoint,
we find that the normalized cut on the graph is a favorable surrogate metric of the intra-class variance within the training
batch. Inspired by the equivalence between the normalized cut and random walk, we propose a feature aggregation scheme
using transition probabilities as guidance. By imposing supervision on the aggregated features, we can constrain the transition
probabilities to form a graph partition consistent with the given labels. Thus, the normalized cut as well as intra-class variance
can be well suppressed. To validate the effectiveness of this idea, we instantiate it in spatial, temporal, and spatial-temporal
scenarios. Experimental results on corresponding benchmarks demonstrate that the proposed feature aggregation leads to
significant improvement in performance. Our method is on par with, or even better than current state-of-the-arts in both tasks.

Keywords Feature aggregation · Deep learning · Intra-class variance · Person re-identification · Video object detection

Communicated by Jifeng Dai.

B Zhaoxiang Zhang
zhaoxiang.zhang@ia.ac.cn

Chuanchen Luo
luochuanchen2017@ia.ac.cn

Haiping Wu
haipingwoo@gmail.com

Yuntao Chen
chenyuntao08@gmail.com

Naiyan Wang
winsty@gmail.com

Chunfeng Song
chunfeng.song@ia.ac.cn

1 Center for Research on Intelligent Perception and Computing
(CRIPAC), National Laboratory of Pattern Recognition
(NLPR), Institute of Automation, Chinese Academy of
Sciences (CASIA), Beijing 100190, China

2 University of Chinese Academy of Sciences (UCAS), Beijing
100190, China

1 Introduction

With the surge of deep learning techniques and large scale
dataset, recent years have witnessed rapid progress in a vari-
ety of computer vision tasks. Rather thanmanually designing
features based on the domain expertise, deep neural networks
learn appearance representation adaptively from raw data.
The superior capacity of DNNs facilitates the parsing of
complex patterns and enables the deployment in the wild.
However, most of the previous deep recognition models are
vulnerable to the dramatic variations in image observations
of the object-of-interest, which is also known as the intra-
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class variance. For instance, the fast motion of the object may
lead to a hazy observation that is hardly distinguishable. The
objects captured under severe occlusion or deformation may
look quite different from their regular observations. In some
extreme cases, such intra-class variance may even exceed the
variance across different classes. This would toughly chal-
lenge the discrimination ability of the model.

As a prevailing scheme for visual recognition, Softmax
loss1 has demonstrated its effectiveness in different scenar-
ios. Nevertheless, it only seeks to separate instances in the
embedding space according to their categories and overlooks
the impact of intra-class variance mentioned above. Due to
the lack of ability to resist intra-class variance, the instances
belonging to the same class may disperse in the embedding
space. Some of them deviate a lot from their class centroid
and reside close to the decision boundary, which incurs a risk
of confusion between adjacent class clusters.

Recently, a series of metric-learning-based loss functions
(Hadsell et al. 2006; Schroff et al. 2015; Sohn 2016; Oh
Song et al. 2016; Movshovitzattias et al. 2017) are pro-
posed to suppress the impact of the intra-class variance. They
impose explicit constraints on pairwise similarities, either
relative or absolute, to enforce intra-class compactness and
inter-class separation simultaneously. However, such loss
functions only involve a fraction of samples (e.g. a pair or
a triplet) while optimizing the embedding of each instance.
Without considering the information from the rest instances,
the optimization is prone to get trapped in inferior local min-
ima.

To handle the intra-class variance issue in a more effec-
tive way, we start by formulating the training batch as a
densely-connected graph. From this point of view, the intra-
class variance can be measured by the normalized cut of the
graph which indicates the risk of confusion across different
class subgraphs. As proven by Meila and Shi (2001), there
is an equivalence between normalized cut and random walk.
Inspired by this observation, we propose a feature aggrega-
tion scheme using transition probabilities as the guidance.
The aggregated features are then fed-forward to subsequent
modules for the computation of the objective function. Dur-
ing the optimization, the gradient flows from aggregated
features to transition probabilities. Transition probabilities
are updated so that the similarity graph form a partition in
agreement with given labels. In this way, we can suppress
the normalized cut as well as intra-class variance.

To investigate the effectiveness of our approach, we
instantiate it in three tasks, i.e. , video object detection,
image-based person re-identification, video-based person re-
identification. The three tasks are distinct in the dimension
of feature aggregation. In video object detection, the views

1 Here, Softmax loss refers to the combination of Softmax activation
function and cross-entropy loss.

of the object are recorded in different frames of the video
sequence. As for image-based person re-identification, the
observations of the person are captured at different loca-
tions of the monitored area. While in video-based person
re-identification, the observation at a location is given in the
form of a video clip. The promising experimental results in
these tasks strongly validate the effectiveness of our method
in temporal, spatial, and spatial-temporal scenarios.

In summary, our contributions are as follow:

– Weanalyze the intra-class variance inducedby the change
in observation conditions and highlight its adverse effect
on recognition performance.

– We propose a feature aggregation scheme to relieve such
an issue and instantiate it in person re-identification and
video object detection.

– We evaluate the proposed approach on corresponding
benchmarks of the two tasks and witness a significant
improvement over baseline. By incorporating feature
aggregation into the model, our method achieves com-
petitive performance against the current state-of-the-arts
in both tasks.

2 RelatedWork

In this section, we briefly review several works that are
closely related to our instantiations in person re-identification
and video object detection.

2.1 Person Re-identification

Person re-identification has made great progress with the
advent of deep neural networks and large scale datasets.
Recent efforts on deep learning based person ReID can be
roughly categorized into two directions. One is to customize
the network architecture for person ReID. Besides common
techniques in CNN such as multi-scale feature aggregation
(Qian et al. 2017) or attention modules (Li et al. 2018b;
Wang et al. 2018a), tailor-made architectures (Sun et al. 2018;
Suh et al. 2018; Sarfraz et al. 2018; Wang et al. 2018f, c;
Fu et al. 2019b) for person ReID are also devised. Sun et
al. (2018) split the feature map into several horizontal parts
and imposed supervision on them directly. Suh et al. (2018)
employed a sub-network to learn body part feature and fused
it with appearance feature via a bilinear-pooling layer. These
methods explicitly consider the structure of human body to
alleviate the impact of occlusion or inaccurate detections,
thus improve the performance.

The other direction concentrates on developing discrimi-
native loss functions. There are two dominant streams in this
direction. One is to introduce the classic metric learning into
deep learning, such as contrastive loss (Hadsell et al. 2006)
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and triplet loss (Schroff et al. 2015). The performances of
these methods are highly dependent on the similarity struc-
ture built in training. Several works make improvement by
incorporating more informative samples (Sohn 2016; Oh
Song et al. 2016; Movshovitzattias et al. 2017). Another
stream improves on classification loss. Center loss (Wen et al.
2016) regularizes the distance between data points and their
corresponding class center. Large-margin softmax (Liu et al.
2016b) and its variants (Liu et al. 2017;Wang et al. 2018b,d)
enforce various types of margin on the vanilla softmax cross
entropy loss. They all have demonstrated effectiveness in face
recognition and person ReID. The two most related works
to ours are Shen et al. (2018a, b). They both applied simi-
larity transformation on the graph to achieve better results.
However, there are obvious discrepancies in terms of the
definition of the graph. For each image in the probe set,
they construct one graph with probe-to-gallery similarities
as nodes and gallery-to-gallery similarities as edges. While
in our approach, each node directly corresponds to the fea-
ture of a sample and each edge is defined as the similarity of
its endpoints. Consequently, in each mini-batch, they need to
construct several subgraphs, while we treat the whole mini-
batch as one single graphwhich ismuch conceptually simpler
and faster.

Re-ranking is a post-processing technique to refine the
ranking of retrieval results. In essence, re-ranking methods
aim at enhancing the original similarity metric by the infor-
mation of local neighbors. Early works (Jegou et al. 2007;
Qin et al. 2011) tried to explore k-reciprocal nearest neigh-
bors for general image retrieval. Recently, Zhong et al. (2017)
introduced re-ranking technique into ReID task. They com-
bined the Jaccard distance of k-reciprocal encodings and the
Euclidean distance of original features in post-processing.
Along this line, Sarfraz et al. (2018) aggregated distances
between expanded neighbors of image pairs to reinforce the
original pairwise distance. Moreover, to take advantage of
the diversity within a single feature, Yu et al. (2017) further
fused distances between different sub-features.

2.2 Video Object Detection

For object detection in videos, the main challenge lies in
how to utilize the rich information of videos (e.g. temporal
continuity) to improve the accuracy as well as the speed upon
still image detectors.

Several previous works devised various post-processing
techniques applied to the results of still image detectors
by leveraging temporal information: Kang et al. (2016,
2017) proposed to suppress false positive detections via
multi-context suppression (MCS) and propagate predicted
bounding boxes across frames using themotion calculated by
optical flow. Then a temporal convolution neural network is
trained to rescore the tubelets generated usingvisual tracking.

Feichtenhofer et al. (2017) performed single-frame object
detection and object movements regression across frames
(tracking) in a multi-task fashion. Then it links the detections
across frames to object tubelets using the predicted move-
ments, and re-weights detection scores in tubelets. Han et
al. (2016) proposed Seq-NMS to form high score linkages
using bounding box IoU across frames and then rescore the
boxes associated with each linkage to the average or maxi-
mum scores of the linkage. Thesemethods perform box-level
post-processing upon still image detections, which could be
sub-optimal since they are not optimized jointly. In contrast,
our method manages to leverage video-level information
at proposal-level by end-to-end optimization without post-
processing steps.

Another line of work (Kang et al. 2017) focuses on uti-
lizing optical flow to extract motion information to facilitate
object detection. However, such pre-computed optical flow
is neither efficient nor task related. Deep Feature Flow (DFF)
(Zhu et al. 2017b) is thefirstwork that adopts in-networkfine-
tuned optical flow computation. It utilizes the optical flow
generated by FlowNet (Dosovitskiy et al. 2015) to propagate
and align the features of selected keyframes to nearby non-
keyframes, thus reducing redundant calculation and speeding
up the system. FGFA (Zhu et al. 2017a) is built on DFF (Zhu
et al. 2017b). However, its objective is to improve the accu-
racy by aligning and aggregating features from keyframes
using optical flow. Based on DFF and FGFA, MANet (Wang
et al. 2018e) adds an instance-level feature calibration and
aggregationmodule besides the pixel-level one in FGFA, and
then it combines these two levels through a motion pattern
reasoning module. Furthermore, Zhu et al. (2018) and Chen
et al. (2018b) design more advanced feature propagation and
keyframe selection mechanisms to improve the accuracy as
well as the speed.

Using optical flow to calibrate features across frames
could be error-prone since object location, appearance and
pose could change dramatically, where optical flow estima-
tion becomes unreliable. Unlike these methods, our method
does not intend to align features across frames by tem-
poral information. We aggregate features on the proposal
level, which makes our method more robust and supe-
rior.

Tripathi et al. (2016) trained a recurrent neural net-
work to refine its initial detection results. Lu et al. (2017)
used association LSTM to address the object association
between consecutive frames. STMN (Xiao and Lee 2018)
used a Spatial-Temporal Memory module as the recurrent
operation to pass the information through a video. Unlike
Xiao and Lee (2018), our method does not need to pass
information using memory modules in temporal order. We
form clusters and aggregate features in a multi-shot view
to capture the rich information of videos instead. Also, our
clustering and feature aggregation are performedon instance-
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level features, where redundant pixel-level calculation is
unnecessary. Moreover, it focuses more on subjects of inter-
est.

Recently, Wang and Gupta (2018) have applied GCN
for video classification task. They built a space–time graph
with a similar affinity measurement to us. In their work,
they took the edges of a graph as a general relation in
space–time and mainly focus on modeling the high order
interaction of objects in a video. However, in our work, we
design the feature aggregation module to refine the features
of a reference proposal by the relationship between them,
which leads to a different motivation and optimization objec-
tive.

2.3 Intra-class Variance Reduction

The recording of observations is influenced by multiple fac-
tors, e.g. camera viewpoint, surrounding illumination, and
the pose of the observed. Even for the same object, the
observations captured under different conditions may dif-
fer significantly. This phenomenon is also known as the
intra-class variance. It greatly challenges the robustness and
discrimination ability of the recognition system. It is a con-
sensus that the performance of the vision model degrades
as intra-class variance exaggerates. Many works have been
proposed to deal with such an issue from different aspects.
At the data level, the most effective solution is to employ
strong augmentation according to the characteristics of the
application. By exaggerating the variations of image obser-
vations, this practice forces the model to adapt to excessive
intra-class variance. DeVries and Taylor (2017) and Zhong
et al. (2020) exaggerated the corruption of input images by
randomly erasing a region. Zhang et al. (2017) and Yun
et al. (2019) extended the augmentation beyond individual
samples and diversify the data variations by performing the
mixture between image pairs. Cubuk et al. (2019, 2020)
proposed to automatically search a optimal combination of
augmentation. As for the loss level, practitioners favor the
concept of large margin and introduced it into a series of
modern loss functions. Such a practice imposes amargin con-
straint between positive responses and negative responses.
By optimizing towards this objective, the learned features
could be more discriminative. The most representative meth-
ods of this stream are metric-learning-based loss (Hadsell et
al. 2006; Schroff et al. 2015) and large-margin softmax loss
(Liu et al. 2016b, 2017; Wang et al. 2018b,d). Unlike the
two directions mentioned above, our work deals with intra-
class variance at the feature level.We propose an aggregation
scheme to leverage dense correspondences between samples.
We reveal the rationale from the perspective of the graph and
guarantee the features of better intra-class compactness.

2.4 Extensions to Conference Versions

This paper is a systematic extension of our preliminaryworks
(Wu et al. 2019; Luo et al. 2019a) published on ICCV 2019.
The main differences between this work and our conference
versions are as follows:

(1)UnifiedFormulationWedelve into the commonground
of our previous works and unify them under a feature aggre-
gation formulation. From this perspective, Wu et al. (2019)
and Luo et al. (2019a) can be deemed as the instantiation of
feature aggregation in the spatial and temporal dimensions,
respectively. (2) Deeper Analysis Rather than focusing on
task-specific cases as in previous works, we reveal the insight
of our method from a unified intra-class variance reduction
viewpoint. We analyze the adverse effect of intra-class vari-
ance on visual recognition and discuss the shortcomings of
existing solutions. To mitigate such an issue, we propose
to take into account informative pairwise relations during
model optimization. (3) New Application We further deploy
to video-based person re-identification. Experimental results
show that our method achieves state-of-the-art performance
on correspondingbenchmarksMARS (Zheng et al. 2016) and
DukeMTMC-VideoReID (Wu et al. 2018). This validates the
effectiveness of our feature aggregation scheme in the spatial-
temporal dimension. Above all, the successful application in
three distinct scenarios demonstrates the versatility of our
method.

3 Method

3.1 Intra-class Variance Issue

Thanks to the powerful capacity of deep neural networks,
current vision models have the ability to deal with more
complex scenarios than ever before. Unfortunately, these
deep-learning-based models are still prone to collapse in
some cases that are easy for we human beings. As illustrated
in Fig. 1, a detection model fails to detect the object-of-
interest in some frames.Let’s figure outwhat happens in these
frames. Compared with the instances present in the success-
ful frames, the instances recorded in those failed frames are in
a state that deviates a lot from their regular state. To be more
specific, the appearance of the jumping squirrel in the first
sequence suffer a severe degradation caused by the motion
blur. The pose of cat in the second sequence changes signifi-
cantly. The blur induced by the camera de-focus increases the
difficulty of recognition. In the third sequence, the car is par-
tially occluded by the board. The presence of these unusual
views of the object leads to severe intra-class variance. In
some extreme cases, it even may exceed the variance across
different classes, which greatly challenges the discrimina-
tion ability of vision models. To investigate the impact of
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Fig. 1 The failure cases of a detection model. Motion blur, camera
defocus, partial occlusion and object pose variation lead to dramatic
discrepancy in appearance presented in the image. Such factors incurs
severe intra-class variance which challenges the discrimination ability
of the model

(a) (b)

Fig. 2 Illustration of embedding space. The instances denoted by dif-
ferent shapes belong to different classes. a The embedding space of a
model without the resistance to the intra-class variance. Data points are
well separated by a decision plane. Notice that several outliers tend to
confuse the decision. bThe embedding space of amodel that is robust to
the intra-class variance. Data points gather together compactly accord-
ing to their category

this phenomenon, we illustrate a typical case of embedding
spacewithout the resistance to intra-class variance.As shown
in Fig. 2a, the instances from different classes are well sepa-
rated by the decision plane while the instances belonging to
the same class disperse extensively within their class region.
Note that some instances deviate a lot from their class cen-
troid and reside near the interface between different classes.
They show a higher similarity with instances from other
classes which confuses the model prediction. We attribute
this issue to the inherent limitation of current prevailing
softmax classification loss. It only considers the inter-class
separation and disregards the intra-class compactness. In
terms of the case shown in Fig. 2a, the value of softmax
loss has reached a very low level. There is no constraint to
penalize the intra-class dispersion in the embedding space.
Therefore, the model trained using original softmax loss lack
the resistance to intra-class variance inevitably.

3.2 Proposed Approach

Recently, many works resort to metric-learning-based loss
functions to realize intra-class compactness and inter-class

distinctness illustrated in Fig. 2b. Compared with softmax
loss, these loss functions impose explicit constraints on the
pairwise similarity. For instance, triplet loss, a representative
variant, optimizes relative similarities by encouraging the
difference between positive similarity and negative similar-
ity. Metric-learning-based loss functions have demonstrated
their effectiveness in many scenarios, especially in image
retrieval. However, it has been reported that these loss func-
tions suffer from severe convergence and scalability issues,
since they only consider the instances in a small tuple (e.g. a
pair or a triplet) during each optimization step. To better
investigate the crux,we start by organizing thewhole training
batch as a densely-connected graph G(X ,W ), where each
vertex corresponds to a data point xi and each edge indi-
cates the similarity between its endpointswi j = sim

(
xi , x j

)
.

From the perspective of graph, current metric-learning-based
loss functions sample local cliques on the graph and con-
fine the optimization within these separate cliques, just as
shown in Fig. 5. Without considering the global information
of the graph, the updating direction derived from the con-
straint of different cliques may conflict with each other. To
overcome this issue, we propose to take the whole similarity
graph into account during optimizing the embedding of each
instance. Intuitively, graph convolution networks (GCN) is
a good candidate to process such graph data. However, it is
explained away by the formulation of message passing and
does not concern the resistance to intra-class variance. In the
following, we elaborate on our method from the perspective
of intra-class variance reduction.

To some extent, the intra-class variance can be reflected
by the risk of confusion across classes. According to the
graph formulation mentioned above, vertexes belonging to
the same class should form a subgraph with strong internal
connections. Suppose A is one of such subgraphs. We can
measure the risk of misclassifying vertexes in A using the
transition probability PĀA from the subgraph A to the sub-
graph Ā = X − A. Formally, the transition probability PĀA
is derived from the stochastic matrix T:

PĀA =
∑

i∈Ā, j∈A πi ti j
∑

i∈Ā πi
, (1)

where πi = ∑
k W jk/

∑
j,k W jk denotes the stationary dis-

tribution of the graph. It represents the connection strength
between a vertex and the rest vertices in a graph and obeys
Tπ = π . Stochastic matrix T can be obtained by normaliz-
ing each row of the similaritymatrixW to summation 1 using
softmax. As proved byMeila and Shi (2001), the normalized
cut amounts to the transition probability across different par-
titions on the graph:

NCut(A, Ā) = PAĀ + PĀA. (2)
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Fig. 3 Illustration of optimizing intra-class variance via Ncut. From
the perspective of the graph, Ncut amounts to the transition probabil-
ity across different partitions. By suppressing such a criterion, we can
achieve intra-class compactness in the learned feature space. The width
of arrows indicates the transition probability between its endpoints

Considering the close connection between normalized cut
and intra-class variance, we seek to suppress the impact of
intra-class variance by minimizing the normalized cut of
the graph as illustrated in Fig. 3. In the field of machine
learning, minimum cut algorithm is a classic practice to
solve this minimization problem. However, it is incompat-
ible with our case in the optimization objective. Under the
setup of minimum cut, the stochastic matrix T is fixed, since
the features from which it is derived are not learnable. Its
goal is to find the optimal partition A, Ā w.r.t. Ncut met-
ric, i.e. argminANCut

(
A, Ā;T)

. While in our supervised
deep learning, the optimal partition is given as the train-
ing target. The stochastic matrix T derived from learnable
instance features becomes the variable to be optimized. The
objective becomes to tune the stochastic matrix T so that
the Ncut metric of the given partition is minimal, i.e. ,
argminTNCut

(
A, Ā;T)

.
But how to integrate the optimization of stochastic matrix

T into neural networks? In this paper, we resort to the random
walk to achieve the goal considering its desirable properties:
Firstly, the random walk has a close connection to the Ncut.
Meila and Shi (2001) has proven the equivalence between the
two concepts from the perspective of eigenvectors and eigen-
values. More intuitively, when we have partitioned the graph
subject to a small Ncut criterion, the random walk tends to
hover within one of the subgraphs once enters it. Secondly,
the random walk only involves several basic operators. It is
fully differentiable and can be integrated into neural networks
easily. Besides, unlike minimum cut algorithm, the random
walk is not tailored for solving the partition problem. It can
be adapted to optimize node features or pairwise similari-
ties by manipulating the learnability of its input. Given these
desirable properties, we perform feature aggregation across
individual samples following the insight of the randomwalk.
Specially, the features are aggregated according the normal-
ized similarities ti j between them:

x̄i =
N∑

j=1

ti jx j . (3)

The aggregated features are then fed-forward to subsequent
modules for loss function computation. During the opti-
mization, the gradient w.r.t. the aggregated features would
propagate to the stochastic matrix T . It would be updated so
that the similarity graph it defines forms a partition in agree-
ment with the given label. In this way, we can reduce the
normalized cut metric of the graph and suppress the intra-
class variance effectively.

3.3 Instantiation in the Temporal Dimension

To validate the effectiveness of feature aggregation in the
temporal dimension, we explore to integrate the proposed
scheme into a model for video object detection. Under the
setup of video object detection, the objects are captured in
the form of bounding-box sequences. For each frame f , let
X f = {x f

1 , x f
2 , . . .} denotes the proposals generated by the

Region Proposal Network (RPN) of Faster-RCNN. The final
instance set for aggregation is the union of proposals from
multiple frames ,i.e. , X = ⋃

f ∈Ω X f . Wherein, Ω denotes
the indexes of the frames selected for the aggregation. In
terms of the design choice of the aggregation set Ω , previ-
ous methods (Wang et al. 2018e; Zhu et al. 2017a) sample
frames within a temporal window. However, the observation
corruption induced by fast object motion could last in time.
In this case, the aforementioned methods fail to contact with
instance observations of high quality beyond the temporal
window. Besides, the frames are highly redundant in a short
time window, which consequently weakens the advantage of
feature aggregation. Tomitigate this issue, we propose to uni-
formly sample framesΩ along thewhole video sequence. By
aggregating features across more diverse instances beyond
the temporalwindow, themodel can resist long-lasting obser-
vation corruption. As for the similarity metric, we employ
generalized cosine similarity to indicate the intensity of the
edge:

wi j = φ(xi )Tψ(x j ), (4)

where φ(·) and ψ(·) denote independent fully-connected
layers. Given the proposal features and pairwise similarity
metric, we conduct feature aggregation as defined in Eq. (3).
After the aggregation, the enhanced proposal features are fur-
ther fed into the detection header network for classification
and bounding box regression. Figure 4 shows how the pro-
posed aggregation module works in video object detection.

3.4 Instantiation in the Spatial Dimension

Under the setup person re-identification, the input images
record the observation of persons at different locations across
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Fig. 4 The overall architecture of the proposed model in video object
detection. We first extract proposals from different frames of the video
and compute pairwise semantic similarities. Then, the proposal features
are aggregated based on their similarities to enhance the discrimination
ability

Fig. 5 The illustration of data sampling in triplet loss. From a graph
viewpoint, metric-learning-based loss functions sample local cliques
from the whole graph and only involve the samples in the clique into
the optimization. Different color denotes different classes

surveillance cameras. It is a proper case for demonstrat-
ing the effectiveness of feature aggregation in the spatial
dimension. Different from video object detection where a
video sequence captures multiple shots of the same object,
person re-identification operates on individual images. A
mini-batch of images compose the instance set X to be pro-
cessed. If the mini-batch is sampled in a totally uniform way,
it can not guarantee that each person has enough views for
aggregation. To fully liberate the potential of our method in
intra-class variance reduction, it is necessary to satisfy the
assumption that the input data obey the underlying cluster
structure. In other words, there must be sufficient images
for each identity in the training batch. Thus, we adopt the
sampling strategy proposed by Hermans et al. (2017) which
is ubiquitous in deep metric learning. Specifically, a mini-
batch in training contains P identities and each identity
has K images. As for pairwise similarity metric, we find
native cosine similarity fits the person re-identification task
well:

Fig. 6 The overall architecture of the proposed model in image-based
person re-identification. We adopt the output of backbone networks as
image embedding. Feature aggregation is performed on the embeddings
of the data batch. Subsequently, a classifier is imposed on the resultant
features.We also combine themodel with an extra classification branch.
Parameters are shared between the two classifiers

wi j = x̂Ti x̂ j

σ
, (5)

where x̂i and x̂ j denote the l2-normalized feature of i-th and
j-th feature. σ is a scaling factor which controls the smooth-
ness of similarity distribution. Subsequently, we transform
features across instances in the mini-batch as defined in
Eq. (3). The transformed features are then fed into the identity
classifier for feature learning.

To further push the performance ahead, we combine
an extra vanilla classification branch as in many existing
methods. The two branches share the same classifier for
supervision. Only by this means can we guarantee that the
feature distribution is aligned before and after the aggrega-
tion. The overall architecture of the proposed neural networks
is displayed in Fig. 6.

Note that the proposed feature aggregation is only applied
in the training process. It would be discarded during infer-
ence, since it is impractical to ensure the mini-batch com-
position when deployed in real scenarios. To remedy this
deficiency, we further extend the proposed training scheme
to the offline post-processing stage. Given a probe image,
images in the gallery are ranked according to the cosine sim-
ilarity with it. Then, we collect features of top-n entries and
perform the feature aggregation on them. Finally, the top-
n rank list is recomputed based on the similarity derived
from aggregated features. Since n is much smaller than the
size of the gallery and the features are extracted in advance,
the refinement process introduces negligible overhead. The
extension is based on the assumption that there underlies a
cluster structure in the neighborhood of the probe images.
This is exactly the case when the feature extractor has been
properly trained on the training data. As expressed in the

123



International Journal of Computer Vision (2022) 130:800–819 807

Fig. 7 The overall architecture of the proposed model in video-based
person re-identification. We conduct aggregation across the features
of all video frames. Subsequently, an identity classifier is imposed on
the resultant features. Besides, we attach an extra classifier to the mean
features of video clips. Parameters are shared between the two classifiers

mathematical formulation Eq. (3), the embedding of each
data point will be blurred by the others according to the
similarities between them. Each data point will be moved
towards the high-density area (i.e. cluster center) which has
more short paths to it. This process is equivalent to con-
duct a clustering operation on local neighbors of the probe
image (Carreira-Perpiñán 2006). It can make the cluster
structure more compact and relieve the ambiguous issue in
retrieval. In addition, as the evaluation protocol implies, the
top ranking list has a larger impact on the final performance.
So we only refine the top-n ranking list to balance effi-
ciency and performance gain. Compared with k-reciprocal
re-ranking which is operated on the whole test set, the
proposed re-ranking is much more efficient. Experiments
show that this simple operation leads to prominent improve-
ment.

3.5 Instantiation in the Spatial-Temporal Dimension

To further validate the effectiveness of the proposed fea-
ture aggregation in the spatial-temporal dimension, we take a
step ahead to apply it in the video-based person re-identific-
ation task. As shown in Fig. 7, the overall architecture of
the model is very similar to that in image-based person
re-identification. The main difference is that the aggrega-
tion is conducted across features of all video frames in
this setup. The auxiliary classifier is imposed on the mean
feature of each video clip, while the main classifier is
attached on the aggregated feature of each image. As for
the mini-batch organization, we sample K video clips of
length L for each of P persons, which ensures that the
aggregation has access to the observations across space and
time.

4 Experiments

4.1 Experiments on Temporal Aggregation

In this section, we first introduce the datasets and evaluation
metrics used for VID in Sect. 4.1.1, then followed by the
implementation details of our method in Sect. 4.1.2. We next
justify the design choice of our feature aggregation module
in Sect. 4.1.3 by ablation studies. We also investigate the
effects of existing post-processing techniques on ourmethod.
Finally, we compare our method with other state-of-the-art
methods.

4.1.1 Dataset and Evaluation Protocol

ImageNet VID (Russakovsky et al. 2015) is a widely used
benchmark for video object detection. It consists of 30 object
categories in total. The training set and the validation set con-
tain 3862 and 555 sequences, respectively. The frames are
captured at the rate of 25 or 30 fps in general. We train our
model with a mixture of ImageNet VID and DET datasets
with the split provided in FGFA (Zhu et al. 2017a).We report
the mAP@IoU=0.5 and motion-specific mAP on the valida-
tion set of imageNet VID dataset. ImageNet VID dataset
falls short in the density and diversity of objects. There-
fore, we also evaluate the proposed aggregation on the EPIC
KITCHENS dataset (Damen et al. 2018).

EPIC KITCHENS (Damen et al. 2018) is a large scale
egocentric dataset, capturing daily activities happened in
the kitchens. In EPIC KITCHENS dataset, each frame con-
tains avg/max 1.7/9 objects, which is far more complex and
challenging. The video object detection task consists of 32
different kitchens with 454,255 object bounding boxes span-
ning290classes. 272video sequences captured in 28kitchens
are used for training. 106 sequences collected in the same 28
kitchens (S1) and 54 sequences collected in other 4 unseen
kitchens (S2) are used for evaluation. Videos are annotated
in 1s interval.

4.1.2 Implementation Details

Feature Network We use ResNet-101 (He et al. 2016) as the
backbone network for ablation studies.ResNeXt-101-32×4d
(Xie et al. 2017) is also used for the final results. The total
stride of conv5 block is changed from 32 to 16 with dilated
convolutions.

Detection Network RPN is applied on the output of conv4.
Anchors of 3 scales and 3 aspect ratios are used. Then Fast
R-CNN is applied on the output of conv5. We apply two fully
connected (FC) layers upon the RoI pooled features followed
by classification and bounding box regression.
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Table 1 Detection results on the ImageNet VID validation set

Component (a) (b) (c)

Semantics aggregation � �
Sequence-level info �
mAP (%) 73.62 75.26↑1.64 80.25↑6.63
mAP (%) (slow) 82.12 83.59↑1.47 86.91↑4.79
mAP (%) (medium) 70.96 72.88↑1.92 78.94↑7.98
mAP (%) (fast) 51.53 51.43↓0.10 61.38↑9.85
For sequence-level methods, 21 frames are used when testing. No post-
processing techniques are used. The absolute gains compared with the
baseline are shown in the subscript
Bold denotes the best performance among the reported methods or vari-
ants

Feature Aggregation ModuleWe insert two feature aggre-
gation modules into our network. Each one is inserted after
one fully-connected layer in Faster R-CNN.

Training and Testing Details The backbone networks are
initialized with ImageNet pre-trained weights. For the exper-
iments on ImageNet VID dataset, a total of 220k iterations
of SGD training is performed with a total batch size of 4 on
4 GPUs. The initial learning rate is 2.5×10−4 and is divided
by 10 at the 110k and the 165k iterations. In the training
stage, one training frame is sampled along with two random
frames from the same video (identical frames for the DET
dataset). During inference, K frames from the same video
are sampled along with the inference frame. In both training
and inference, the images are resized to a shorter side of 600
pixels.

As For the experiments on EPIC KITCHENS, we adopt
mostly the same network setting as on ImageNetVIDdataset.
No data augmentation except random horizontal flip is used.
A total of 600k iterations of SGD training is performed on 4
GPUs. The initial learning rate is 2.5 × 10−4 and is divided
by 10 at the 300k iterations. We sample frames within a
± 10s window for the feature aggregation for both training
and inference.

4.1.3 Ablation Study

In this subsection, we study the impact of each design choice
and parameter settings on ImageNet VID dataset.

Effectiveness of Feature Aggregation Table 1 compares
our proposed methods with the single-frame baseline. Col-
umn (a) shows the results of our single-frame baseline. It
uses ResNet-101 as the backbone and achieves a reasonable
mAP of 73.62 as in Zhu et al. (2017a). Column (b) performs
semantics aggregation (SA) within a single frame, a degen-
erated variant of our aggregation scheme. More specifically,
only proposals obtained from the same frame are consid-
ered as possible semantic neighbors for aggregation. This
leads to a gain of 1.64 mAP compared with the baseline.

When multiple objects with the same semantics or multi-
ple proposals corresponding to the same object appear in
the same frame, the semantically aggregated proposal fea-
tures are hence enhanced with contextual information like
in Hu et al. (2018) and Chen et al. (2018c), thus leading to
the performance improvement. Note that for objects under
fast motion, the mAP (fast) receives no improvement over
baseline. This indicates that appearance degradation induced
by fast motion could not be remedied by the contextual or
object interaction information. Column (c) is the proposed
method. It utilizes the feature aggregation to enhance pro-
posal features by sampling semantic neighbors from the full
video sequence. It gives an mAP of 80.25, a large 6.63 mAP
improvement compared with the baseline method. Note that
it enhances themotion-specific performance in fast motion to
61.38 mAP, which is a huge improvement of 9.95 mAP com-
pared with the baseline. Compared with column (b) and (c),
it is easy to see that our method directly harvests high-quality
features from aggregating sequence level features other than
high order interaction information on the graph.

Semantics Aggregation in Sequence Level As discussed
earlier, good features for aggregation in VID should be more
diverse in terms of appearance and poses. This observation
motivates the use of semantic neighbors instead of temporal
neighbors. Thus, taking a step further, we sample semantic
neighbors uniformly from the full video sequence regard-
less of the temporal orders (shuffled test setting). This is
feasible since our method does not rely on any temporal
information (e.g. optical flow), and also no feature align-
ment operation across frames is performed. Our method
is exempt from possible inaccurate predictions of temporal
information (e.g. optical flow estimation (Zhu et al. 2017a),
bounding box shifting prediction (Feichtenhofer et al. 2017)
and feature alignment process (Zhu et al. 2017b; Wang et al.
2018e), which is important when the motion is large. In fact,
performance drops have been shown in optical flow based
method (Wang et al. 2018e) as the number of frames increase
when exceeding a certain threshold (12 frames inWang et al.
(2018e)). Our method, on the contrary, shows its power of
performing feature aggregation in the whole video sequence
level in Fig. 8c. As we have seen, using only 5 frames in
shuffled test already achieves the same level of performance
as 21 frames in strided testing. And using 21 frames along
with shuffled testing gives an mAP of 80.25. This introduces
an improvement of 0.89 mAP against to the strong result
of 79.36 mAP where a sampling stride of 10 and in total
21 frames are used. This gain comes from sampling more
diverse features in semantic neighbors rather than tempo-
ral neighbors, which further shows the effectiveness of the
proposed feature aggregation scheme for capturing the full
sequence level information. This is the default test setting in
the following experiments.
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(a) (b) (c)

Fig. 8 Ablation analyses of different test settings. a The effect of different number of frames on sequential test performance. b The effect of
different sampling stride on sequential test performance. c The effect of different number of frames on shuffled test performance

Data Augmentation Existing VID datasets usually suffer
from lacking of semantic diversity. Frames in a video are high
similar to each other and thus lead to potential overfitting.
Thus we adopt data augmentation to alleviate this problem.
Photometric distortion, random expand and random crop as
in Liu et al. (2016a) are used besides the original randomflip-
ping operation. This gives us an improvement of 2.44 mAP,
leading to 82.69 mAP when using ResNet-101 backbone.

Video-LevelPost-processingTechniquesOneadvantage of
our method is that it does not rely on post-processing meth-
ods (e.g Seq-NMS) to incorporate the full-sequence level
information. Nearly all the state-of-the-art video detection
systems (Zhu et al. 2017a; Wang et al. 2018e; Feichten-
hofer et al. 2017; Chen et al. 2018b; Xiao and Lee 2018)
adopted post-processing methods which gives huge gains in
performance. To illustrate that our method has already cap-
tured the full-sequence level information, we further apply
the Seq-NMS post-processing upon our method. Table 2
shows the results of howSeq-NMS affects ourmethodswhen
using different backbone networks. As easily seen, adding
Seq-NMS only has a minor impact on the results. In particu-
lar, adding Seq-NMS to ResNet-101/ResNext-101 backbone
network yields 0.21/0.57 mAP drop. Referring to Table 5,
post processing methods have introduced large performance
improvement upon existing state-of-the-art methods: 2.1
mAP for FGFA (Zhu et al. 2017a) and 2.2 mAP for MANet
(Wang et al. 2018e) with Seq-NMS and 4 mAP for D (& T
loss) (Feichtenhofer et al. 2017) with tubelet rescore. In con-
trast, almost no gain from Seq-NMS upon our method with
ResNet-101 as backbone network shows that our method
has already largely captured the full-video level information
through our aggregationmodulewithout any post-processing
techniques. Moreover, different from post-processing meth-
ods like Seq-NMS which involves two separate stages, our
method could be trained end-to-end with sequence level
information. As the backbone feature network becomes
stronger, our method could even better utilize such sequence
level information, thus shows a better result than that with

Table 2 Effects of post-processing on our method

Methods ResNet-101 ResNeXt-101

Seq-NMS � �
mAP (%) 82.69 82.48↓0.21 84.30 83.73↓0.57
The absolute gains compared with the method without Seq-NMS are
shown in the subscript

Table 3 Effects of the number of proposals for each frame

# Proposal 64 128 256

mAP (%) 78.64 80.23 80.46

Seq-NMS, in which the separate post-processing steps might
lead to sub-optimal results.

Number of Proposals As elaborated in Sect. 3.3, we per-
form feature aggregation at the proposal level in video object
detection. The number of proposals affects the construction
of the graph on which our feature aggregation operates. To
investigate the sensitivity of our method to this quantity, we
vary the number of proposals for each frame and evaluate the
model trained in these cases. As shown in Table 3, the mAP
improves by 1.82% when the number of proposals increases
from 64 to 256. This indicates that our method benefits from
more proposals.

Impact of Sampling Strategy Frame sampling strategy
matters for video detection. As previous works (Xiao and
Lee 2018; Zhu et al. 2017a) pointed out, using more frames
in feature aggregation during testing yields better results. We
examine the influence of the number of frames used and sam-
pling strides when testing our method. Specifically, by using
a sampling stride of S, one frame in every S frames is used for
testing instead of consecutive frames. First, we use sampling
stride one and vary the number of frames used in aggrega-
tion. As seen in Fig. 8a, withmore frames used for testing, the
performance increases consistently. We then fix the number
of frames for aggregation to 21 and examine the impact of
sampling stride. Figure 8b shows the performance with dif-
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Table 4 Effect of similarity
metric used in feature
aggregation

Sampling metric mAP (%)

Para. Sim. 80.46

Cos. Sim. 80.29

Cos. Sim.: cosine similarity.
Para. Sim.: parametric general-
ized similarity

ferent sampling strides. Increasing the sampling stride from
1 to 10 further improves the performance from 77.02 to 79.36
mAP (a gain of 2.34 mAP). Notice that the sampling stride
demonstrates a larger influence on the performance than the
number of testing frames in general, which coincides with
our assumption that our sequence level method could benefit
more from sample diversity.

Impact of Similarity Metric In video object detection,
we maintain the feature aggregation module in both train-
ing and test. Thus, we bypass the train-test inconsistency
issue encountered in person re-identification. In this case, the
feature aggregation is relatively robust to the design choice
of similarity metric. To examine its impact, we replace the
original design with the cosine similarity and conduct exper-
iments on the ImageNet VID dataset. As shown in Table 4,
the performance degrades very slightly (0.17%mAP), which
validates our argument.

4.1.4 Comparison with State-of-the-Art Methods

Table 5 summarizes the performance of our methods and
other state-of-the-art methods on the ImageNet VID valida-
tion set. Our method achieves the best performance among
various testing settings.

With no video-level post-processing techniques, com-
pared with FGFA (Zhu et al. 2017a) (76.3 mAP) andMANet
(Wang et al. 2018e) (78.1mAP) which are both built on flow-
based feature aggregation, our method is remarkably better
(80.25 mAP), outperforming these two methods by 3.95 and
2.15 mAP, respectively. It also outperforms D (& T loss)
(Feichtenhofer et al. 2017) by a large margin of 4.45 mAP.

The middle part of Table 5 shows the comparison with
methods that utilize sequence-level post-processing tech-
niques. FGFA*,MANet* and STMN*+ (Xiao and Lee 2018)
use Seq-NMS, while D&T* (Feichtenhofer et al. 2017), ST-
Lattice* (Chen et al. 2018b) utilize tubelet rescoring. Our
method, by using Seq-NMS as the post-processing method,
achieves 80.54 mAP, which is slightly better than the previ-
ous state-of-the-art method STMN*+.

Furthermore, by plugging in the stornger ResNeXt-101,
ourmethod achieves performance of 83.11mAPwithout any
post-processing techniques (e.g Seq-NMS), which surpasses
the D&T with the same backbone and tubulet rescoring by
a large margin (1.15 mAP). Our method benefits from the

stronger representation power introduced by better backbone
networks. When equipped with training data augmentation,
our methods show a significant gain of 2.44/1.19 mAP
for ResNet-101/ResNeXt-101. This indicates the proposed
aggregation scheme can benefit from the diversity of pro-
posal features during aggregation. These results reveal the
potential of our proposed method.

Here we present some preliminary results on the EPIC
KITCHENS dataset. As shown in Table 6, the proposed
aggregation method improves over Faster R-CNN baseline
by 1.4/2.94 mAP for Seen/Unseen splits. Although the train-
ing scheme and the hyper parameter selection are far from
optimal, our method still achieves promising results. This
shows that it is applicable to more complex video detection
tasks. Figure 9 shows some results of our method.

4.2 Experiments on Spatial Aggregation

4.2.1 Dataset and Evaluation Protocol

To validate the effectiveness of the proposed method, we
conduct extensive experiments on four benchmarks for
image-based person re-ID i.e. , Market-1501 (Zheng et al.
2015), DukeMTMC-reID (Zheng et al. 2017b; Ristani et al.
2016), CUHK03 (Li et al. 2014), MSMT17 (Wei et al. 2018).
In terms of CUHK03, we use manual annotations and follow
the protocol proposed in Zhong et al. (2017).

Market-1501 contains 12,936 images of 751 identities
for training and 19,732 images of 750 identities for testing.
All images are recorded by 6 different cameras on campus.
Furthermore, 500kdistractors are introduced to evaluate scal-
ability and robustness of ReID model.

DukeMTMC-reID contains 36,411 images of 1404 identi-
ties in total. Concretely, 16,522 images of 702 identities are
used for training while 19,889 images of the other 702 iden-
tities are used for testing. They are collected from 8 cameras
with manually cropped bounding box annotations.

CUHK03 contains 14,097 images of 1467 identitieswhich
are captured by two different cameras. We use manual anno-
tations and follow the protocol proposed in Zhong et al.
(2017). The new protocol splits the whole dataset into 767
and 700 identities for training and testing respectively.

MSMT17 contains up to 126,441 bounding boxes of 4101
identities. Wherein, the training set incorporates 32,621
images of 1041 identities and test set contains remaining
3060 identities. They are captured from a 15-camera network
with different weather conditions.

Given the probe images, gallery images are sorted accord-
ing to the cosine similarity with it. On the basis of generated
ranking list, Cumulated Matching Characteristics (CMC) at
rank-1, rank-5 and mean average precision (mAP) are calcu-
lated to evaluate the performance of the model.
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Table 5 Performance
comparison with state-of-the-art
systems on the ImageNet VID
validation set

Methods Backbone mAP (%)

FGFA (Zhu et al. 2017a) ResNet-101 76.3

D (& T loss) (Feichtenhofer et al. 2017) 75.8

MANet (Wang et al. 2018e) 78.1

Ours 80.25

FGFA* (Zhu et al. 2017a) ResNet-101 78.4

MANet* (Wang et al. 2018e) 80.3

ST-Lattice* (Chen et al. 2018b) 79.6

D&T* (Feichtenhofer et al. 2017) 79.8

STMN*+ (Xiao and Lee 2018) 80.5

Ours* 80.54

Ours� 82.69

D&T* (Feichtenhofer et al. 2017) ResNeXt-101 81.6

D&T* (Feichtenhofer et al. 2017) Inception-v4 82.1

Ours ResNeXt-101 83.11

Ours� ResNeXt-101 84.30

*Indicates use of video-level post-processing methods (e.g Seq-NMS, tubelet rescoring)
+Indicates use of model emsembling
�Indicates using data augmentation
Bold denotes the best performance among the reported methods or variants

Table 6 Performance
comparison on EPIC
KITCHENS test set

Methods mAP@.05 mAP@.5 mAP@.75

S1

EPIC (Damen et al. 2018) 45.99 34.18 8.49

Faster R-CNN 53.12 36.57 9.97

Ours 54.67 37.97 9.81

S2

EPIC (Damen et al. 2018) 44.95 32.01 7.87

Faster R-CNN 48.91 31.86 7.36

Ours 50.25 34.80 8.10

S1 and S2 indicate Seen and Unseen splits
Bold denotes the best performance among the reported methods or variants

Fig. 9 Visual results of our method on EPIC KITCHENS
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Table 7 Ablation studies on Market-1501, DukeMTMC-reID, CUHK03(labeled) and MSMT17 dataset

Variants Market-1501 DukeMTMC CUHK03 MSMT17
mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1

Classification branch only (baseline) 77.3 91.2 63.9 82.0 40.6 44.9 37.3 66.7

AG branch only 79.6 91.6 70.4 85.4 60.2 66.3 44.7 71.9

Triplet + Classification 80.0 92.2 68.2 83.7 60.2 65.6 27.6 59.0

AG + Classification 82.7 93.4 73.2 86.9 62.4 68.2 47.6 73.6

AG + Classification + LBR 87.5 94.1 79.6 90.0 71.7 74.3 58.3 79.0

AG + Classification + k-reciprocal 90.6 93.5 83.3 88.3 68.7 71.7 60.8 76.1

AG denotes feature aggregation. LBR denotes the proposed local blurring re-ranking method

4.2.2 Implementation Details

We adopt ResNet-50 (He et al. 2016) pre-trained on Ima-
geNet (Deng et al. 2009) as our backbone network. We use
the output of global average pooling layer of ResNet as the
embedding vector. In order to preserve more fine-grained
information, the downsampling of the last stage of ResNet
is discarded which leads to a total stride of 16. The hyper-
parameter σ in Eq. (5) is set to 0.02 for MSMT17 and 0.1 for
the remaining three datasets. As for the classifier, we follow
a bottleneck design which has been proven effective bymany
works (Sun et al. 2018). Specifically, a fully-connected layer
is applied to reduce the dimension of the feature from 2048
to 512 which is followed by Batch Normalization (Ioffe and
Szegedy 2015) and PReLU (He et al. 2015). The output is
then l2-normalized and fed into the loss function. To push
the performance ahead, we adopt AM-Softmax (Wang et al.
2018b) loss for the final classification. In all experiments,
the margin and the scaling parameter of AM-Softmax are set
to 0.3 and 15, respectively. In terms of data pre-processing,
input images are resized into 256× 128. Random horizontal
flipping and random erasing (Zhong et al. 2020) are utilized
as data augmentation. In training, each mini-batch contains
16 persons and each person has 8 images which results in a
batch size of 128. Stochastic Gradient Descent (SGD) with
the momentum of 0.9 is applied for optimization. We train
140 epochs in total. The learning rate warms up from 0.001
to 0.1 linearly in the first 20 epochs. It is decayed to 0.01 and
0.001 at 80th and 100th epoch, respectively.

As for local blurring re-ranking, we refine the top-50 rank-
ing list for each probe image on Market-1501, DukeMTMC-
reID and CUHK03. While for MSMT17, top-150 ranking
list is refined. For the other two video-based re-ID datasets,
we conduct refinement on top-15 ranking list.

4.2.3 Ablation Study

Effectiveness of Feature Aggregation As shown in the first
two rows of Table 7, consistent improvements are achieved
on all four benchmarks. The improvement on Market-1501

Fig. 10 Visualization of the affinity matrix. We randomly sample 6
identities fromDukeMTMC-reID and take all images belonging to them
for visualization. For clarification, samples are arranged according to
their identities. It can be seen that the proposed feature aggregation
significantly suppresses the similarities among different identities

is relatively marginal. There are many persons with few
images on Market-1501, e.g. 161 persons have no more than
8 images. In such condition, the balanced samplingwould re-
sample frequently from the same images,whichmay limit the
improvement. For convenience, we employ the same training
setting for all datasets which makes the baseline overfit on
CUHK03.While our approach is immune to overfitting. This
results in significant improvement on CUHK03. In addition,
we visualize the affinity matrix between images of 6 differ-
ent identities with and without feature aggregation module.
It can be easily observed in Fig. 10 that the affinity between
different identities is obviously suppressed. Thus, the fea-
tures extracted by our method are more discriminative for
person ReID. It it noteworthy that the proposed aggregation
scheme introduces negligible training overhead and no extra
parameters. In our setting, it only leads to 0.0336 GFLOPs
computation, while the overhead of the backbone network is
4.08 GFLOPs. The relative cost is less than 1%.

Effectiveness of Extension to Re-ranking We also evalu-
ate our method with and without the proposed re-ranking
extended from the aggregation scheme. As reported in rows
4–5 of Table 7, local blurring re-ranking could further
improve the performance significantly. To further clarify its
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Table 8 The elapsed time of re-ranking methods

Method Market (s) DukeMTMC (s) MSMT17 (s)

k-reciprocal 209 152 11,009

LBR (Ours) 41 24 423

effectiveness, we make a comparison with the k-reciprocal
encoding (Zhong et al. 2017) method. As shown in the last
two rows in Table 7, the proposed post-processing surpasses
k-reciprocal encoding on all benchmarks in terms of Rank-1
accuracy which is the most considerable metric in the real
scenario. As for mAP, our post-processing method demon-
strates advantages only on the CUHK03 dataset. Note that
k-reciprocal encoding takes massive resource to search for
k-reciprocal nearest-neighbors of all items in the gallery.
Suppose the gallery size is N , the computational complex-
ity of k-reciprocal re-ranking is O(N 2 log N ), while that of
LBR is O(N log N ). The gap of efficiency becomes signifi-
cant when the gallery gets larger. This is also validated by the
elapsed time on the three largest dataset reported in Table 8.
Taking all these components together, the performance of
our method improves dramatically. A qualitative illustration
of the retrieval is represented in Fig. 11. It is clear that the
ranking result improves when components are added sequen-
tially.AndLocal blurring re-ranking effectively corrects false
matches.

Influence of Batch Size In person re-identification, the fea-
ture aggregation is performed across images within a mini
batch. Theoretically, this practice can benefit from a larger
batch size since each sample has access to more informa-
tion. To verify this hypothesis, we vary the batch size by
changing the value of K and evaluate the performance of the
model in these cases. We conduct experiments on MSMT17
and DukeMTMC-reID. The results are shown in Fig. 12.
As shown in the figure, the performance of our method
improves steadily as K increases, while the vanilla baseline
model degrades significantly. This phenomenon confirms our
hypothesis. It indicates that the proposed aggregation scheme
canmake good use of holistic information to facilitate feature
learning.

Feature Aggregation in Training and Test There is a
training-test inconsistency inperson re-identification. Specif-
ically, we can not deliberately sample candidates for aggre-
gation at the test stage as we do during training. Thus, we
devise a post-processing technique termed LBR to approx-
imate the feature aggregation in testing. To investigate the
respective effect of feature aggregation in training and test-
ing, we deploy it at either of the two stages and evaluate
the model performance. For better clarity, we summarize
the experimental results on DukeMTMC-reID in Table 9.
As shown in the table, feature aggregation leads to promis-

Fig. 11 A retrieval example on DukeMTMC-reID. a is the result of the
model with classification branch only. b is generated by the proposed
model (i.e. Feature Aggregation + classification). c is the refined result
based on (b) our re-ranking extension

(a) (b)

Fig. 12 The trend of performance as K (#images per identity) varies

Table 9 Performance of model on the DukeMTMC-reID dataset when
the feature aggregation is involved in training or testing

Methods Train Test mAP R-1

Baseline 63.9 82.0

Baseline + LBR � 70.8↑ 6.9 86.8↑ 4.8

Proposed � 73.2↑ 9.3 86.9↑ 4.9

Proposed + LBR � � 79.6↑15.7 90.0↑ 8.0

ing improvement whether deployed in training or testing.
Deploying it only at the test stage leads to slightly lower
improvement than deploying it only in training. We achieve
the best performance when simultaneously employing it at
the two stages. These results confirm the effectiveness of
feature aggregation in training and testing.

Impact of Sampling Strategy In video object detection, the
observations of an object-of-interest naturally form a video
sequence as the model input. However, in image-based per-
son re-identification, the networks accept individual images
as input. Thus, we have to deliberately sample enough obser-
vations for each input object in a training iteration.Otherwise,
samples cannot aggregate sufficient relevant information
within a mini-batch. More seriously, noisy information from
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Table 10 Effect of sampling strategy for feature aggregation

Sampling strategy DukeMTMC MSMT17
mAP R-1 mAP R-1

Original 73.2 86.9 47.6 73.6

Random 54.0 74.0 23.0 49.1

Table 11 Effect of similarity metric used in feature aggregation

Similarity metric DukeMTMC MSMT17
mAP R-1 mAP R-1

Cos. Sim. 73.2 86.9 47.6 73.6

Para. Sim. 64.0 82.2 37.7 65.7

Cos. Sim.: cosine similarity. Para. Sim.: parametric generalized simi-
larity

unrelated samplesmay overwhelm the optimization direction
and collapse the re-ID model. To validate our hypothesis, we
employ uniform sampling to train our feature aggregation
model. As shown in Table 10, the uniform sampling degrades
the performance significantly, which is in coincidence with
the discussion above. Besides, Fig. 12 illustrates a similar
phenomenon with VID that the model benefits from more
diverse samples.

Impact of Similarity Metric As mentioned in previous
chapters, we cannot preserve the aggregation module due to
the training-test inconsistency. For this reason, we propose to
limit the capacity of the aggregation module such that more
discrimination ability can be encoded into the feature extrac-
tor. Given these analyses, we employ the non-parametric
cosine similarity instead of the parametric similarity met-
ric used in the VID task. The experimental results on
DukeMTMC-reID andMSMT17 also confirm our argument.
As shown in Table 11, when we substitute cosine similarity
with the parametric similarity, the model performance even
degrades to the level lower than baseline. This indicates that
the aggregation module captures excessive identity-aware
information and thus weakens the feature extractor beneath
it.

Influence of Temperature σ Temperature σ modulates the
sharpness of the softmax distribution. It is critical to the final
performanceof the feature aggregationmodel.We investigate
its impact on the model performance on DukeMTMC-reID
andMSMT17. As shown in Fig. 13, the optimal performance
is achieved around 0.1 and 0.02 on the two datasets, respec-
tively. The setting of the temperature σ matters in the feature
aggregation module for person re-identification.

4.2.4 Comparison with State-of-the-Art Methods

Theproposedmethod is comparedwith state-of-the-artmeth-
ods in this section. KR and LBR in the tables below denote

(a) (b)

Fig. 13 Impact of temperature σ

k-reciprocal re-ranking and the proposed local blurring re-
ranking, respectively.

Results onMarket-1501 datasetAs shown in Table 13, our
method achieves the best rank-1 accuracy among competi-
tors, while mAP is slightly lower than SGGNN (Shen et al.
2018b). It must be highlighted that both SGGNN (Shen et al.
2018b) and GSRW (Shen et al. 2018a) undergo customized
post-processing. After the refinement of LBR, our method
outperforms them significantly. We further perform a com-
parison on the dataset with 500k distractors. The results are
summarized in Table 12. As reported in the table, our method
is robust to distractors. When disturbed by 100k distractors,
the mAP/rank-1 accuracy of our method only decreases by
4.9%/2.5%. Note that the rank-1 accuracy is still over 90%
in this case. While for the other four competitors, the degra-
dations are much larger than ours. The performance gaps are
even more significant when increasing the distractor size.
Note that our method can still maintain over 90% rank-1
accuracy when disturbed by 100k distractors. This strongly
demonstrates the robustness of our method.

Results on DukeMTMC-reID dataset The results on
DukeMTMC-reID dataset are presented in Table 14. It can
be seen that our method outperforms other state-of-the-arts
significantly. Specifically, our approach gains 0.3% and 1.1%
improvement overCAMA(Yang et al. 2019) in terms ofmAP
and rank-1 accuracy, respectively. After the refinement, our
method even promotes rank-1 accuracy up to 90.0%.

Results onCUHK03datasetWeonly conduct experiments
on the manually labeled subset of CUHK03 under the new
protocol (Zhong et al. 2017). The results are reported in
Table 15. It can be observed that our method achieves the
best performance among compared methods. It outperforms
DaRe (Wang et al. 2018g) by 0.8% and 2.1% in terms of
mAP and rank-1 accuracy, respectively.

Results on MSMT17 Dataset Since MSMT17 is released
very recently, there is few works report their performance on
it. As shown in Table 16, our method outperforms these base-
lines dramatically. Specifically, it exceeds AlignedReID++
by 3.9% and 3.8% in terms of mAP and rank-1 accuracy,
respectively. This verifies the scalability and the robustness
of our method when applied in large scale scenarios.
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Table 12 Comparison with state-of-the-art methods on the Market-1501+500k dataset

Methods Distractor size
0 100k 200k 500k
mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1

Zheng et al. (2017a) 59.9 79.5 52.3↓7.6 73.8↓5.7 49.1↓10.8 71.5↓8.0 45.2↓14.7 68.3↓11.2
APR (Lin et al. 2017) 62.8 84.0 56.5↓6.3 79.9↓4.1 53.6↓ 9.2 78.2↓5.8 49.8↓13.0 75.4↓ 8.6

TriNet (Hermans et al. 2017) 69.1 84.9 61.9↓7.2 79.7↓5.2 58.7↓10.4 77.9↓7.0 53.6↓15.5 74.7↓10.2
Part-aligned (Suh et al. 2018) 79.6 91.7 74.2↓5.4 88.3↓3.4 71.5↓ 8.1 86.6↓5.1 67.2↓12.4 84.1↓ 7.6

Proposed 82.7 93.4 77.8↓4.9 90.9↓2.5 75.5↓ 7.2 89.3↓4.1 71.9↓10.8 87.1↓ 6.3

Table 13 Comparison with state-of-the-art methods on the Market-
1501 dataset

Methods Market-1501
mAP R-1 R-5

GLAD (Wei et al. 2017) 73.9 89.9 –

MLFN (Chang et al. 2018) 74.3 90.0 –

HA-CNN (Li et al. 2018b) 75.7 91.2 –

DuATM (Si et al. 2018) 76.6 91.4 97.1

Part-aligned (Suh et al. 2018) 79.6 91.7 96.9

PCB (Sun et al. 2018) 77.4 92.3 97.2

AlignedReID++ (Luo et al. 2019b) 77.6 91.0 –

GSRW (Shen et al. 2018a) 82.5 92.7 96.9

SGGNN (Shen et al. 2018b) 82.8 92.3 96.1

Mancs (Wang et al. 2018a) 82.3 93.1 –

DMML (Chen et al. 2019) 81.0 92.4 97.3

Proposed 82.7 93.4 97.4

Proposed(+LBR) 87.5 94.1 97.5

Bold denotes the best performance among the reported methods or vari-
ants

4.3 Experiments on Spatial-Temporal Aggregation

4.3.1 Dataset and Evaluation Protocol

To further investigate the effectiveness of the proposed
method in spatial-temporal dimension, we conduct exten-
sive experiments on two benchmarks for video-based person
re-ID i.e. Mars (Zheng et al. 2016) and DukeMTMC-
VideoReID (Wu et al. 2018). Analogous to the evaluation
in image-based person re-ID, we report CMC accuracy and
mAP on the two datasets.

MARS is one of the most prevalent datasets for video-
based person re-identification. Its training set includes 8298
tracklets of 625 identities, while the test set contains 12,180
tracklets of 636 identities. The images are captured under the
same camera network as Market-1501.

DukeMTMC-VideoReID is a subset of the DukeMTMC
tracking dataset (Ristani et al. 2016) adapted for video-based
person re-identification. It contains 2196 tracklets of 702
identities for training, 2636 tracklets of 702 identities for

Table 14 Comparison with state-of-the-art methods on the DukeMT
MC-reID dataset

Methods DukeMTMC
mAP R-1 R-5

PSE (Sarfraz et al. 2018) 62.0 79.8 89.7

HA-CNN (Li et al. 2018b) 63.8 80.5 –

MLFN (Chang et al. 2018) 62.8 81.0 –

DuATM (Si et al. 2018) 64.6 81.8 90.2

GSRW (Shen et al. 2018a) 66.4 80.7 88.5

AlignedReID++ (Luo et al. 2019b) 68.0 80.7 –

SGGNN (Shen et al. 2018b) 68.2 81.1 88.4

PCB+RPP (Sun et al. 2018) 69.2 83.3 –

Part-aligned (Suh et al. 2018) 69.3 84.4 92.2

Mancs (Wang et al. 2018a) 71.8 84.9 –

DMML (Chen et al. 2019) 70.2 84.3 92.6

CAMA (Yang et al. 2019) 72.9 85.8 93.1

Proposed 73.2 86.9 93.9

Proposed(+KR) 83.3 88.3 92.0

Proposed(+LBR) 79.6 90.0 94.0

Bold denotes the best performance among the reported methods or vari-
ants

Table 15 Comparison with state-of-the-art methods on the CUHK03
dataset

Methods CUHK03
mAP R-1 R-5

SVDNet (Sun et al. 2017) 37.8 40.9 –

DPFL (Chen et al. 2017) 40.5 43.0 –

HA-CNN (Li et al. 2018b) 41.0 44.4 –

MLFN (Chang et al. 2018) 49.2 54.7 –

DaRe (Wang et al. 2018g) 61.6 66.1 –

Proposed 62.4 68.2 84.4

Proposed(+ KR) 68.7 71.7 85.5

Proposed(+ LBR) 71.7 74.3 85.6

We adhere to newly proposed evaluation protocol (Zhong et al. 2017)
and report results on manually labeled version of CUHK03
Bold denotes the best performance among the reported methods or vari-
ants
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Table 16 Comparison with state-of-the-art methods on the MSMT17
dataset

Methods MSMT17
mAP R-1 R-5

GoogleNet (Wei et al. 2018) 23.0 47.6 65.0

PDC (Wei et al. 2018) 29.7 58.0 73.6

GLAD (Wei et al. 2018) 34.0 61.4 76.8

AlignedReID++ (Luo et al. 2019b) 43.7 69.8 –

Proposed 47.6 73.6 85.6

Proposed(+ KR) 60.8 76.1 84.5

Proposed(+ LBR) 58.3 79.0 85.8

Bold denotes the best performance among the reported methods or vari-
ants

testing. Besides, the gallery set has 408 identities as distrac-
tors.

4.3.2 Implementation Details

Except for some specific modification for the video scenario,
the configuration of the experiment is consistent with that of
image-based person re-ID. In terms of batch organization,
we sample 16 persons to compose a mini-batch. Each person
is supplied with 4 tracklets of length 4. Due to the growth
of the batch size, we quadruple the learning rate to ensure
desired convergence of the model. The aggregation is con-
ducted across all images in the batch, while the auxiliary
classifier is imposed on the mean features of video clips.

4.3.3 Comparison with State-of-the-Art Methods

We compare the proposed method on MARS and
DukeMTMC-VideoReID with state-of-the-art methods in
this section.

Results on MARS dataset As shown in Table 17, our
method achieves favorable performance against current com-
petitors. To be more specific, the proposed method outper-
formsVRSTCby 2.1% and 0.5% in terms ofmAP and rank-1
accuracy, respectively. The promising performance on the
video-base reID benchmark proves the universality of our
method. In fact, due to the multi-shot nature of the video per-
son reID, the reID model can benefit more from the feature
aggregation.

Results on DukeMTMC-VideoReID dataset As shown in
Table 18, the performance of our model is on par with other
leading methods without the aid of any complex temporal
processing module (e.g. non-local and 3D convolution). To
be specific, the rank-1 and rank-5 accuracy is slightly worse
than the strongest competitor, while our method outperforms
STE-NVAN (Liu et al. 2019) by 1.8% in terms of mAP met-
ric.

Table 17 Comparison with state-of-the-art methods on the MARS
dataset

Methods MARS
mAP R-1 R-5

DuATM (Si et al. 2018) 67.7 81.2 90.9

DRSA (Li et al. 2018a) 65.8 82.3 –

TKP (Gu et al. 2019) 73.3 84.0 93.7

M3D (Li et al. 2019b) 74.1 84.4 93.8

Snippet (Chen et al. 2018a) 76.1 86.3 94.7

STA (Fu et al. 2019a) 80.8 86.3 95.7

AttDriven (Zhao et al. 2019) 78.2 87.0 95.4

GLTR (Li et al. 2019a) 78.5 87.0 95.8

VRSTC (Hou et al. 2019) 82.3 88.5 96.5

Proposed 85.4 90.4 96.8

Bold denotes the best performance among the reported methods or vari-
ants

4.4 Discussion

In the above subsections, we have investigated the appli-
cation of the proposed methods in video object detection,
image-based, and video-based person re-identification. The
three tasks are distinct in the span dimension of observa-
tions. By adapting our aggregation scheme to these cases,
we can enhance the resistance of the model to the dramatic
variance along the specific dimensions. In terms of video
object detection, objects-of-interest are recorded in the form
of video sequences. We instantiate the aggregation scheme
in the temporal dimension and take advantage of observa-
tions across the whole sequence. In this way, we can prevent
the detector from collapse caused by severe appearance
corruption at certain frames. As for image-based person re-
identification, persons are captured at the different locations
of the monitored area. By integrating spatial feature aggre-
gation into the re-ID model, we can facilitate the learning
of features that are robust to the changes of scene conditions
(e.g. viewpoint, illumination, and background). Furthermore,
video-based person re-identification is characterized by pro-
cessing image observations across both space and time. We
thus take a step forward to simultaneously employ spatial and
temporal aggregation. Extensive experiments on correspond-
ing datasets show consistent improvement in all three cases,
which demonstrates the versatility of our method. Since the
idea of feature aggregation is task-agnostic, we believe that
our method also has great potential in other applications such
as image classification and semantic segmentation. All we
need to do is adapt the form of input data and similarity met-
ric according to the characteristics of the target task.
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Table 18 Comparison with
state-of-the-art methods on the
DukeMTMC-VideoReID
dataset

Methods DukeMTMC-VideoReID
mAP R-1 R-5

STA (Fu et al. 2019a) 94.9 96.2 99.3

GLTR (Li et al. 2019a) 93.7 96.3 99.3

VRSTC (Hou et al. 2019) 93.5 95.0 99.1

COSAM (Subramaniam et al. 2019) 94.1 95.4 99.3

STE-NVAN (Liu et al. 2019) 95.4 95.2 –

Proposed 97.2 95.7 98.8

Bold denotes the best performance among the reported methods or variants

5 Conclusion

In this paper, we focus on the issue of intra-class variance
in computer vision tasks. The content of image observa-
tion is determined by multiple factors. The object observed
under different conditions may differ a lot in appear-
ance. In some extreme cases, the discrepancy between the
instances of the same object may surpass that across differ-
ent objects. Unfortunately, the models based on the softmax
loss scheme only pursue inter-class separation and lack the
ability to resist intra-class variance. As a prevailing solution,
metric-learning-based loss enforce intra-class compactness
by imposing explicit constraints on pairwise similarities.
However, the models based on this kind of loss function
suffer from the convergence issue, since they confine the
optimization within small tuples. To tackle the intra-class
variance issue more effectively, we propose to formulate the
input instances as a densely connected graph. From the per-
spective of the graph, we reveal a close connection between
intra-class variance and the normalized cut. Inspired by the
equivalence between the normalized cut and random walk,
we perform a feature aggregation using transition probabili-
ties as the guidance. In thisway, the aggregate features absorb
the information from all other instances. By conducting opti-
mization on the aggregated features, transition probabilities
would be updated to fit the graph partition indicated by given
labels. In this case, the normalized cut and intra-class vari-
ance can be well suppressed. The successful instantiation on
person re-identification and video object detection demon-
strate the effectiveness of our approach.

Acknowledgements This work was supported in part by the Major
Project for New Generation of AI (No. 2018AAA0100400), the
National Natural Science Foundation of China (No. 61836014, No.
U21B2042,No. 61773375,No. 62006231,No. 62072457), theNational
Youth Talent Support Program.

References

Carreira-Perpiñán, M. Á. (2006). Fast nonparametric clustering with
gaussian blurring mean-shift. In ICML.

Chang, X., Hospedales, T. M., & Xiang, T. (2018). Multi-level factori-
sation net for person re-identification. In CVPR.

Chen, D., Li, H., Xiao, T., Yi, S., &Wang, X. (2018a). Video person re-
identification with competitive snippet-similarity aggregation and
co-attentive snippet embedding. In CVPR.

Chen, G., Zhang, T., Lu, J., & Zhou, J. (2019). Deep meta metric learn-
ing. In ICCV.

Chen, K., Wang, J., Yang, S., Zhang, X., Xiong, Y., Loy, C. C., & Lin,
D. (2018b). Optimizing video object detection via a scale-time
lattice. In CVPR.

Chen, Y., Zhu, X., & Gong, S. (2017). Person re-identification by deep
learning multi-scale representations. In ICCV.

Chen, Z., Huang, S., & Tao, D. (2018c). Context refinement for object
detection. In ECCV.

Cubuk, E. D., Zoph, B., Mane, D., Vasudevan, V., & Le, Q. V. (2019).
Autoaugment: Learning augmentation strategies from data. In
CVPR.

Cubuk, E. D., Zoph, B., Shlens, J., & Le, Q. V. (2020). Randaugment:
Practical automated data augmentation with a reduced search
space. In CVPRW.

Damen, D., Doughty, H., Maria Farinella, G., Fidler, S., Furnari, A.,
Kazakos, E., Moltisanti, D., Munro, J., Perrett, T., Price, W.,
et al. (2018). Scaling egocentric vision: The epic-kitchens dataset.
In Proceedings of the European conference on computer vision
(ECCV) (pp. 720–736).

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., & Fei-Fei, L. (2009).
ImageNet: A large-scale hierarchical image database. In CVPR.

DeVries, T. & Taylor, G. W. (2017). Improved regularization of convo-
lutional neural networks with cutout. arXiv:1708.04552.

Dosovitskiy, A., Fischer, P., Ilg, E., Hausser, P., Hazirbas, C., Golkov,
V., Van Der Smagt, P., Cremers, D., & Brox, T. (2015). FlowNet:
Learning optical flow with convolutional networks. In CVPR.

Feichtenhofer, C., Pinz, A., & Zisserman, A. (2017). Detect to track and
track to detect. In ICCV.

Fu, Y., Wang, X., Wei, Y., & Huang, T. (2019a). Sta: Spatial-temporal
attention for large-scale video-based person re-identification. In
AAAI.

Fu, Y., Wei, Y., Zhou, Y., Shi, H., Huang, G., Wang, X., Yao, Z., &
Huang, T. (2019b). Horizontal pyramid matching for person re-
identification. In AAAI.

Gu, X., Ma, B., Chang, H., Shan, S., & Chen, X. (2019). Tem-
poral knowledge propagation for image-to-video person re-
identification. In ICCV.

Hadsell, R., Chopra, S., & LeCun, Y. (2006). Dimensionality reduction
by learning an invariant mapping. In CVPR.

Han, W., Khorrami, P., Paine, T. L., Ramachandran, P., Babaeizadeh,
M., Shi, H., Li, J., Yan, S., & Huang, T. S. (2016). Seq-NMS for
video object detection. arXiv:1602.08465.

He,K., Zhang,X., Ren, S.,&Sun, J. (2015).Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification.
In ICCV.

123

http://arxiv.org/abs/1708.04552
http://arxiv.org/abs/1602.08465


818 International Journal of Computer Vision (2022) 130:800–819

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for
image recognition. In CVPR.

Hermans, A., Beyer, L., & Leibe, B. (2017). In defense of the triplet
loss for person re-identification. arXiv:1703.07737.

Hou, R., Ma, B., Chang, H., Gu, X., Shan, S., & Chen, X. (2019).
VRSTC: Occlusion-free video person re-identification. In CVPR.

Hu, H., Gu, J., Zhang, Z., Dai, J., & Wei, Y. (2018). Relation networks
for object detection. In CVPR.

Ioffe, S. & Szegedy, C. (2015). Batch normalization: Accelerating deep
network training by reducing internal covariate shift. In ICML.

Jegou, H., Harzallah, H., & Schmid, C. (2007). A contextual dissimi-
larity measure for accurate and efficient image search. In CVPR.

Kang, K., Li, H., Yan, J., Zeng, X., Yang, B., Xiao, T., Zhang, C.,
Wang, Z.,Wang, R.,Wang, X., et al. (2017). T-CNN: Tubelets with
convolutional neural networks for object detection from videos. In
TCSVT.

Kang, K., Ouyang, W., Li, H., & Wang, X. (2016). Object detection
from video tubelets with convolutional neural networks. In CVPR.

Li, J., Wang, J., Tian, Q., Gao, W., & Zhang, S. (2019a). Global-
local temporal representations for video person re-identification.
In ICCV.

Li, J., Zhang, S., & Huang, T. (2019b). Multi-scale 3d convolution
network for video based person re-identification. In AAAI.

Li, S., Bak, S., Carr, P., & Wang, X. (2018a). Diversity regularized
spatiotemporal attention for video-based person re-identification.
In CVPR.

Li, W., Zhao, R., Xiao, T., & Wang, X. (2014). DeepReID: Deep filter
pairing neural network for person re-identification. In ICCV.

Li, W., Zhu, X., & Gong, S. (2018b). Harmonious attention network for
person re-identification. In CVPR.

Lin, Y., Zheng, L., Zheng, Z., Wu, Y., & Yang, Y. (2017). Improv-
ing person re-identification by attribute and identity learning.
arXiv:1703.07220.

Liu, C.-T., Wu, C.-W., Wang, Y.-C. F., & Chien, S.-Y. (2019). Spatially
and temporally efficient non-local attention network for video-
based person re-identification. In BMVC.

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., &
Berg, A. C. (2016a). SSD: Single shotmultibox detector. InECCV.

Liu,W.,Wen, Y., Yu, Z., Li, M., Raj, B., & Song, L. (2017). Sphereface:
Deep hypersphere embedding for face recognition. In CVPR.

Liu, W., Wen, Y., Yu, Z., & Yang, M. (2016b). Large-margin softmax
loss for convolutional neural networks. In ICML.

Lu, Y., Lu, C., & Tang, C.-K. (2017). Online video object detection
using association LSTM. In ICCV.

Luo, C., Chen, Y., Wang, N., & Zhang, Z. (2019a). Spectral feature
transformation for person re-identification. In ICCV.

Luo, H., Jiang, W., Zhang, X., Fan, X., Qian, J., & Zhang, C. (2019b).
Alignedreid++: Dynamically matching local information for per-
son re-identification. Pattern Recognition, 94, 53–61.

Meila, M. & Shi, J. (2001). A random walks view of spectral segmen-
tation. In AISTATS.

Movshovitzattias, Y., Toshev, A., Leung, T. K., Ioffe, S., & Singh, S.
(2017). No fuss distance metric learning using proxies. In ICCV.

Oh Song, H., Xiang, Y., Jegelka, S., & Savarese, S. (2016). Deep metric
learning via lifted structured feature embedding. In CVPR.

Qian, X., Fu, Y., Jiang, Y.-G., Xiang, T., & Xue, X. (2017). Multi-scale
deep learning architectures for person re-identification. In ICCV.

Qin, D., Gammeter, S., Bossard, L., Quack, T., & Van Gool, L. (2011).
Hello neighbor: Accurate object retrieval with k-reciprocal nearest
neighbors. In CVPR.

Ristani, E., Solera, F., Zou, R., Cucchiara, R., & Tomasi, C. (2016).
Performancemeasures and a data set formulti-target,multi-camera
tracking. In ECCV workshop.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S.,
Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A. C.,

& Fei-Fei, L. (2015). ImageNet large scale visual recognition chal-
lenge. In IJCV.

Sarfraz, M. S., Schumann, A., Eberle, A., & Stiefelhagen, R. (2018).
A pose-sensitive embedding for person re-identification with
expanded cross neighborhood re-ranking. In CVPR.

Schroff, F., Kalenichenko, D., & Philbin, J. (2015). FaceNet: A unified
embedding for face recognition and clustering. In CVPR.

Shen, Y., Li, H., Xiao, T., Yi, S., Chen, D., & Wang, X. (2018a).
Deep group-shuffling random walk for person re-identification.
In CVPR.

Shen, Y., Li, H., Yi, S., Chen, D., & Wang, X. (2018b). Person re-
identification with deep similarity-guided graph neural network.
In ECCV.

Si, J., Zhang, H., Li, C.-G., Kuen, J., Kong, X., Kot, A. C., & Wang, G.
(2018). Dual attentionmatching network for context-aware feature
sequence based person re-identification. In CVPR.

Sohn, K. (2016). Improved deep metric learning with multi-class n-pair
loss objective. In NeurIPS.

Subramaniam, A., Nambiar, A., & Mittal, A. (2019). Co-
segmentation inspired attention networks for video-based person
re-identification. In ICCV.

Suh, Y., Wang, J., Tang, S., Mei, T., & Lee, K. M. (2018). Part-aligned
bilinear representations for person re-identification. In ECCV.

Sun,Y., Zheng,L.,Deng,W.,&Wang, S. (2017). SVDNet for pedestrian
retrieval. In ICCV.

Sun, Y., Zheng, L., Yang, Y., Tian, Q., & Wang, S. (2018). Beyond part
models: Person retrieval with refined part pooling (and a strong
convolutional baseline). In ECCV.

Tripathi, S., Lipton, Z. C., Belongie, S., & Nguyen, T. (2016). Context
matters: Refining object detection in video with recurrent neural
networks. arXiv:1607.04648.

Wang, C., Zhang, Q., Huang, C., Liu, W., &Wang, X. (2018a). Mancs:
A multi-task attentional network with curriculum sampling for
person re-identification. In ECCV.

Wang, F., Cheng, J., Liu, W., & Liu, H. (2018b). Additive margin soft-
max for face verification. IEEE Signal Processing Letters, 25(7),
926–930.

Wang, G., Yuan, Y., Chen, X., Li, J., & Zhou, X. (2018c). Learning
discriminative features with multiple granularities for person re-
identification. In ACM MM.

Wang, H., Wang, Y., Zhou, Z., Ji, X., Gong, D., Zhou, J., Li, Z., &
Liu, W. (2018d). CosFace: Large margin cosine loss for deep face
recognition. In CVPR.

Wang, S., Zhou, Y., Yan, J., & Deng, Z. (2018e). Fully motion-aware
network for video object detection. In ECCV.

Wang, X. & Gupta, A. (2018). Videos as space-time region graphs. In
ECCV.

Wang,Y., Chen, Z.,Wu, F.,&Wang,G. (2018f). Person re-identification
with cascaded pairwise convolutions. In CVPR.

Wang, Y., Wang, L., You, Y., Zou, X., Chen, V., Li, S., Huang, G., Har-
iharan, B., & Weinberger, K. Q. (2018g). Resource aware person
re-identification across multiple resolutions. In CVPR.

Wei, L., Zhang, S., Gao, W., & Tian, Q. (2018). Person transfer GAN
to bridge domain gap for person re-identification. In CVPR.

Wei, L., Zhang, S., Yao,H.,Gao,W.,&Tian,Q. (2017).GLAD:Global–
local-alignment descriptor for pedestrian retrieval. In ACM MM.

Wen, Y., Zhang, K., Li, Z., & Qiao, Y. (2016). A discriminative feature
learning approach for deep face recognition. In ECCV.

Wu, H., Chen, Y.,Wang, N., &Zhang, Z. (2019). Sequence level seman-
tics aggregation for video object detection. In ICCV.

Wu, Y., Lin, Y., Dong, X., Yan, Y., Ouyang, W., & Yang, Y. (2018).
Exploit the unknown gradually: One-shot video-based person re-
identification by stepwise learning. In CVPR.

Xiao, F. & Lee, Y. J. (2018). Video object detection with an aligned
spatial-temporal memory. In ECCV.

123

http://arxiv.org/abs/1703.07737
http://arxiv.org/abs/1703.07220
http://arxiv.org/abs/1607.04648


International Journal of Computer Vision (2022) 130:800–819 819

Xie, S., Girshick, R., Dollár, P., Tu, Z., & He, K. (2017). Aggregated
residual transformations for deep neural networks. In CVPR.

Yang, W., Huang, H., Zhang, Z., Chen, X., Huang, K., & Zhang, S.
(2019). Towards rich feature discovery with class activation maps
augmentation for person re-identification. In CVPR.

Yu,R., Zhou, Z., Bai, S.,&Bai,X. (2017).Divide and fuse:A re-ranking
approach for person re-identification. In BMVC.

Yun, S., Han, D., Oh, S. J., Chun, S., Choe, J., &Yoo,Y. (2019). Cutmix:
Regularization strategy to train strong classifiers with localizable
features. In ICCV.

Zhang, H., Cisse, M., Dauphin, Y. N., & Lopez-Paz, D. (2017). mixup:
Beyond empirical risk minimization. arXiv:1710.09412.

Zhao, Y., Shen, X., Jin, Z., Lu, H., & Hua, X. (2019). Attribute-driven
feature disentangling and temporal aggregation for video person
re-identification. In CVPR.

Zheng, L., Bie, Z., Sun, Y., Wang, J., Su, C., Wang, S., & Tian, Q.
(2016). MARS: A video benchmark for large-scale person re-
identification. In ECCV.

Zheng, L., Shen, L., Tian, L., Wang, S., Wang, J., & Tian, Q. (2015).
Scalable person re-identification: A benchmark. In ICCV.

Zheng, Z., Zheng, L., & Yang, Y. (2017a). A discriminatively learned
CNN embedding for person reidentification. ACM Transactions
on Multimedia Computing, Communications, and Applications,
14(1), 13.

Zheng, Z., Zheng, L., &Yang, Y. (2017b). Unlabeled samples generated
by GAN improve the person re-identification baseline in vitro. In
ICCV.

Zhong, Z., Zheng, L., Cao, D., & Li, S. (2017). Re-ranking person
re-identification with k-reciprocal encoding. In CVPR.

Zhong, Z., Zheng, L., Kang, G., Li, S., & Yang, Y. (2020). Random
erasing data augmentation. In AAAI.

Zhu, X., Dai, J., Yuan, L., &Wei, Y. (2018). Towards high performance
video object detection. In CVPR.

Zhu, X.,Wang,Y., Dai, J., Yuan, L., &Yichen,W. (2017a). Flow-guided
feature aggregation for video object detection. In ICCV.

Zhu, X., Xiong, Y., Dai, J., Yuan, L., & Wei, Y. (2017b). Deep feature
flow for video recognition. In CVPR.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://arxiv.org/abs/1710.09412

	From Individual to Whole: Reducing Intra-class Variance by Feature Aggregation
	Abstract
	1 Introduction
	2 Related Work
	2.1 Person Re-identification
	2.2 Video Object Detection
	2.3 Intra-class Variance Reduction
	2.4 Extensions to Conference Versions

	3 Method
	3.1 Intra-class Variance Issue
	3.2 Proposed Approach
	3.3 Instantiation in the Temporal Dimension
	3.4 Instantiation in the Spatial Dimension
	3.5 Instantiation in the Spatial-Temporal Dimension

	4 Experiments
	4.1 Experiments on Temporal Aggregation
	4.1.1 Dataset and Evaluation Protocol
	4.1.2 Implementation Details
	4.1.3 Ablation Study
	4.1.4 Comparison with State-of-the-Art Methods

	4.2 Experiments on Spatial Aggregation
	4.2.1 Dataset and Evaluation Protocol
	4.2.2 Implementation Details
	4.2.3 Ablation Study
	4.2.4 Comparison with State-of-the-Art Methods

	4.3 Experiments on Spatial-Temporal Aggregation
	4.3.1 Dataset and Evaluation Protocol
	4.3.2 Implementation Details
	4.3.3 Comparison with State-of-the-Art Methods

	4.4 Discussion

	5 Conclusion
	Acknowledgements
	References




