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To achieve a promising performance on relative pose estimation for RGB-D scans, a considerable overlap between two RGB-D
inputs is often required for most existing methods. However, in many practical applications for human scans, we often have to
estimate the relative poses under arbitrary overlaps, which is challenging for existing methods. To deal with this problem, this
paper presents a novel end-to-end and coarse-to-fine optimization method. Our method is self-supervision which firstly
combines implicit function reconstruction with differentiable render for RGB-D human input scans at arbitrary overlaps in
relative pose estimation. The insight is to take advantage of the underlying human geometry prior as much as possible. First of
all, for stable coarse poses, we utilize the implicit function reconstruction to dig out abundant hidden cues from unseen regions
in the initialization module. To further refine the poses, the differentiable render is leveraged to establish a self-supervision
mechanism in the optimization module, which is independent of standard pipelines for feature extracting and accurate
correspondence matching. More importantly, our proposed method is flexible to be extended to multiview input scans. The
results and evaluations demonstrate that our optimization module is robust for real-world noisy inputs, and our approach

outperforms considerably than standard pipelines in non-overlapping setups.

1. Introduction

Relative pose estimation between two RGB-D scans is a
fundamental problem in three-dimension (3D) vision and
computer graphics. For previous multiview human motion
capture [1] and human performance capture [2, 3] systems,
camera extrinsic parameters (or camera poses) are required
to be as accurate as possible to generate plausible results,
which limit their usage. An automatic but robust autocali-
bration method for multiview human performance capture
[4] is urgent. Examples include 3D human reconstruction
from sparse views without pose parameters [5], self-
calibration [6] for systems when there are disturbances to
camera setups [7], and enhancing the reconstruction perfor-
mance due to the inaccurate camera calibration [8].
Although there exist a lot of works focusing on relative
pose estimation [9-11], they either only focus on static scene

reconstruction or still require enough overlay between
neighbouring RGB-D observations, which cannot be used
in multiview human capture systems directly. In this paper,
we are interested in relative pose estimation for human input
scans, especially with nonoverlapping input scans. We pres-
ent a novel end-to-end method, totally discarding the three-
step paradigm [10] in the optimization module, handling the
RGB-D human input scans at an arbitrary level of overlap.

Inspired from the intuition that human can estimate
accurately the relative pose of two input scans, even non-
overlapping, according to the underlying geometry prior.
We hypothesize that the insight is to use the human prior
as much as possible, especially the geometry knowledge.
Therefore, this paper utilizes the human reconstruction
model to enrich the underlying geometry cues of invisible
regions. Taken performance, efficiency, and generalization
capacity into consideration, we adopt the state-of-the-art
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human reconstruction model RGB-D pixel-aligned implicit
function (PIFu) [2] to obtain the detail-preserving human
geometry. More importantly, we observe that multiview 3D
human reconstruction is tightly related to external pose param-
eters, more accurate pose contributes to better reconstruction,
and vice versa. It implies that we can implicitly optimize the pose
parameters by supervising the human reconstruction process,
free of feature extracting and matching like standard pipelines.
To dig out multilevel semantic cues of human geometry prior,
differentiable render [12] is used to establish a self-supervision
mechanism. Thus, in the loop, we iteratively alternate between
human reconstruction and relative pose estimation.

We observe that the above self-supervision optimization
module is sensitive to initial result; thus, a good start is
essential for faster convergence and better performance. To
make our method more robust, the initialization module is
added to serve the following optimization module for a
stable coarse estimation. Taking inspiration from scan
completion [11], firstly, we use 3D human reconstruction
to complete the unseen regions and then sample point
clouds with abundant geometry prior from human comple-
tion; finally, the off-the-shelf standard methods [9, 10] are
used to get the coarse estimation. Based on the stable initial-
ization, our optimization module can be more robust.

Furthermore, our coarse-to-fine framework can be easily
extended to the scope of multiview inputs, owing to our spe-
cial optimization mechanism via multiview implicit function
reconstruction model [2]. For multiview inputs, our pro-
posed framework can firstly optimize pairwise via the above
2-view relative pose estimation model, and then we can use
multiview implicit function model and differentiable render
to establish more semantic constraints, and based on the
previous coarse results, we can align hierarchically the whole
views to refine the pose parameters iteratively, while the
most existing standard methods [9-11] can only optimize
pairwise, which are error-prone for multiview extension [13].

Our contributions can be summarized as follows:

(i) The first end-to-end self-supervision relative pose
estimation method for RGB-D human input scans
at arbitrary overlaps, which combines the implicit
function reconstruction model and differentiable
render

(i) Our proposed optimization module is robust, free of
feature extraction, and correspondence matching
and able to recovery good camera poses even using
real-world noisy inputs. Our method also outperforms
state-of-the-art standard optimization methods con-
siderably, especially in small overlapping settings

(iii) Our method is flexible and can be easily extended to

multiview input scans

2. Related Work

2.1. Relative Pose Estimation via Traditional Optimization.
Traditional relative pose estimation approaches generally fall
into two categories—global optimization and local optimiza-
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tion. Global optimization methods [7, 14] usually follow a
three-step procedure [10]: extracting features, establishing
correspondences of the features, and fitting a rigid transform
to a subset of consistent feature correspondences. Local opti-
mization methods [15] often focus on local pose refinement,
relying on a good initialization. A popular method is geo-
metric alignment [16], which minimizes pointwise distances
between the input pairs. However, considerable overlapping
regions between input scans are all required. Our approach
allows input scans at any overlap and provides a stable initial
result by our initialization module.

2.2. Learning-Based Relative Pose Estimation. Early works
[17, 18] usually replace the modules of standard pipelines
such as feature extracting or correspondence matching with
deep learning networks. These methods still require massive
overlaps between the input scans. Recent works [19, 20]
design an end-to-end network to directly regress the relative
pose. The problem of their discontinuous rotation represen-
tation such as quaternions or Euler angles is put forward in
[17]. The method in [21] introduces a six-dimension (6D)
continues rotation representation to alleviate the discontinu-
ous issues. To generate probabilistic estimates, multiple rota-
tion regressors are introduced by [22]. However, these data-
driven approaches usually require large amounts of data to
have a good generalization for real data. In this paper, our
proposed approach is end-to-end, self-supervised, and effec-
tive for real data.

2.3. The Extreme Pose Estimation. Recently, several works
addressed the extreme relative pose estimation between
two input RGB-D scans, Caspi and Irani [23] focuses on
image sequences and search for consistent temporal behav-
iour, supposing that two cameras are rigidly attached and
move jointly, Yang et al. [11, 24] perform scan completion
and then match the completed scans, essentially following
the three-step paradigm [10]. Our initialization module is
inspired from the scan completion, but our work is much
different, one for that our work is well-designed for human
input scans while they mainly focus on indoor scenes, not
directly applied to our human input settings. Besides, our
proposed optimization module discards the standard feature
extracting and matching procedures and can be easily
extended to multiview input settings, fully exploring the
underlying human prior from the RGB-D input.

2.4. 3D Human Mesh Reconstruction via Implicit Function
Representation. Recently, human reconstruction via implicit
function shape representation [25, 26] has become a trend,
which turns the reconstruction process more like classifica-
tion task [27-29]. These methods [25, 26, 30, 31] learn a
continuous implicit function representing shape using neu-
ral networks, to determine the query points inside or outside
the surface. Compared with the voxel, point, and mesh rep-
resentations for geometry, the implicit function representa-
tion is free of a fixed topology and not limited by the
output resolution. PIFuHD [30] can produce very compel-
ling and detailed results but struggles for complex poses,
IPNet [31] focuses on 3D reconstruction from sparse and
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dense point clouds and occupancy grids to produce global
structure while retaining fine-scale detail, and recent work
Function4D [2] achieves state-of-the-art results for 3D human
reconstruction with RGB-D input scans, producing higher
quality results and in real time. In this paper, we utilize [2]
to obtain the detailed human geometry prior from a few
RGB-D views, considering the performance and efficiency.

2.5. Differentiable Render. Differentiable render [12, 32-34]
is a novel field which empowers the gradients of 3D objects
to be calculated and propagated through images, which
attracts increasing attention in academia and industry. The
methods of differentiable render can be grouped into four
categories, according to the underlying data representation:
mesh, voxels, point clouds, and neural implicit functions.
OpenDR [34] performs traditional rasterization in the
forward pass and computes the approximate gradients in
the backward pass. Recently, PyTorch3D [12] introduces a
modular renderer by redesigning and exposing intermedi-
ates computed during rasterization. In this work, we use
the available library PyTorch3D [12], considering its signif-
icant speed and memory improvements and convenience.

3. Approach

Given a pair of human RGB-D scans S, and S, with the cam-
era intrinsic parameters as the input, the goal is to output the
accurate rigid transformation T,,. To explore the hidden
cues in the challenging nonoverlapping settings, we firstly
exploit RGB-D PIFu [2] to recover the underlying human
geometry prior from a sparse view and then propose a
coarse-to-fine strategy for a robust optimization. As illus-
trated in Figure 1, our architecture consists of two modules;
one is the initialization module producing a stable and fair
good coarse pose; the other is the optimization module,
refining the pose iteratively. Besides, we can easily extend
our proposed method to multiview input scans.

3.1. Human Reconstruction with Implicit Function. Implicit
function f is a spatially aligned and memory-efficient 3D
shape representation, which consists of multilayer percep-
trons [2, 30]. Instead of outputting the 3D volume, it learns
a continuous function which determines the 3D voxel in
space inside or outside the surface and then uses Marching
Cube [35] to infer the surface based on the output Signed
Distance Function (SDF) field. Recently, RGB-D PIFu pro-
posed by [2] introduces extra depth observation to improve
the reconstruction performance and accelerate the inference
with filtering some exterior voxel using depth value. The net-
work consists of an implicit function f and a fully convolu-
tional encoder F. Following the RGB-D PIFu proposed by
[2], the human surface can be defined as a level set of:

f(E(I1(9)), 9., T(q))=s:s€R,

(1)

T (q) = trunc(q . - D(I1(q))),
where f is a continuous implicit function represented by
multilayer perceptrons. For a query point g, I1(-) is the per-
spective projection function, F(-) is the feature extracted by

encoder networks, D(-) is a bilinear function sampling depth
values on the depth image, the Probabilistic Signed Distance
Function (PSDF) value of qis introduced by g, — D(I1(q))
to fully utilize the depth observation, and T (-)is used to
truncate PSDF value to [-0;, 0,], eliminating the ambiguities
of using global depth values. The sign of s represents
whether the point is inside or outside the surface.

The RGB-D PIFu [2] meets the requirements of good
generalization as discussed in [36], using view-centric coor-
dinate systems, extracting geometry-aware feature maps,
and exploiting multiview aggregation strategy for fusion.
As demonstrated in Figures 2 and 3, the model shows the
good generalization in real data collected by Kinect, which
is trained only using 300 high-fidelity data from [2]. We
observe that the reconstruction of visible parts is generally
detailed and lifelike, while the unseen part completion is a
little oversmooth but still human-like according to the learn-
ing prior from large data, which still empowers us abundant
hidden cues. Considering the efficiency, compelling perfor-
mance, and good generalization in real data, we adopt the
RGB-D PIFu [2] to dig out the underlying geometry prior,
which can produce a detail-preserving complete surface in
real time.

3.2. Initialization Module. A good initial result can accelerate
the convergence and contribute to better performance. As in
Figure 1, the black arrows represent the flow of the initializa-
tion module which serves as a coarse relative pose estima-
tion. The challenge is how to ensure a fair good result even
in nonoverlapping input settings where almost all the stan-
dard pipelines [7, 9] cannot work well due to lack of enough
correspondence. Enlightened by scan completion [11],
human geometry prior through implicit function recon-
struction is introduced to provide the hidden cues of the
invisible region. Given the RGB-D scan S; and camera
intrinsic parameters K;, for single-view input, the world
coordinate can be assumed identical to the camera coordi-
nate; thus, the completed human mesh Ml1 can be recon-
structed with single-view RGB-D PIFu without the relative
pose. And then, using point clouds sampled from the mesh
M}, the initial relative pose can be estimated with the off-
the-shelf standard method easily. In this paper, we leverage
a popular registration method which combines the global
registration [14] with local registration [15, 16]. Compared
to the point clouds derived from depth images, the human
completion mesh M; provides detail-preserving surface in
visible observation and much richer hidden cues of human
geometry prior in unseen parts. In addition, our initializa-
tion process is also efficient owing to the real-time property
of the RGB-D PIFu [2].

3.3. Optimization Module. This module is served as a relative
pose refinement. For multiview human reconstruction, add-
ing a new view but with erroneous pose can be suicide,
which may lead to artifacts, distortion, or even collapsed
results. Fortunately, we can just grasp this property and
establish a self-constraint end-to-end optimization mecha-
nism via differentiable render. The insight for the proposed
optimization process is that the inferred models (including
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FIGURE 1: Methods pipeline. SV is the abbreviation of single-view, and SV model means our single-view human reconstruction model;
similarly, MV means multiview and MV model means our multiview reconstruction model. The proposed framework combines the
initialization module and optimization module. The black lines represent the initialization flow, and the red lines are the optimization
flow. Given the RGB-D input scans, the initialization module produces a coarse initial pose; then, the optimization module refines the
relative pose iteratively.

F1GURE 2: We qualitatively show the robustness of our optimization module. We add different small random Gauss noise to the groundtruth
pose. The first column is the 2-view RGB-D PIFu reconstruction with original pose (with noise), the second column is the reconstruction
after our optimization module, and the last column is the human reconstruction with groundtruth pose.

single-view inferred models from each view and also the  the single-view inferred models, the relative pose must not
multi-view inferred model) should be consistent with each be accurate. Moreover, the multiview inferred model should
other. If the multiview inferred model is quite different from  also match the real RGB-D observations from different
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Ori Pairwise Opt GT
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FIGURE 3: We show the performance of our multi-view extension. The first two rows show the 3-view input scans while the last two rows
with 4-view input scans. We still add different small disturbances to the groundtruth poses. The first column is the reconstruction with
original pose, the second column is the reconstruction with only pairwise optimization, the third column is the human reconstruction
with our proposed optimization method, and the last column with the groundtruth pose.

views, which means that the multi-view inferred model
should not violate the two-dimension (2D) semantic con-
straints from the real observations. Specifically, the differen-
tiable render can be firstly used to render the human mesh
M} from the input perspective to get the groundtruth
semantic label such as mask 7; and normal image 7;,, for
that the lifelike rendering results could be ensured from
the visible perspective. Note that additional supervisions
can also be added by rendering from novel views if the ren-
dering results are enough realistic.

Given the initial relative pose parameters T, = [R, t], the
human mesh M? can be generated by our 2-view RGB-D
PIFu. Similarly, the predicted semantic label such as mask
m; and normal image 7; can be rendered via differentiable
render. Then, the loss terms can be proposed based on the
following principles and be back propagated to update the
relative pose parameters iteratively.

For loss terms, instead of penalizing the relative pose
directly (which is also impossible), we implicitly supervise
the multiview human reconstruction process. Specifically,
we compute (R, t) by solving

n}zi}mleD(R’ t) + a,Lge (R, 1) + a3Loy, (R), (2)

where g; is the weight coefficient for each energy term. From

Equation (2), our loss is composed of three parts, the 2D
semantic loss L,y (e), the SDF field loss L (), and the
orthogonal constraint L (e).

The first term L, () is a 2D semantic supervision to
keep the 2D semantic consistency. We mainly use mask
and normal as 2D semantic priors to make sure that the ren-
dered images (from the multiview RGBD-PIFu result)
should be consistent with the input images. Thus, our 2D
semantic loss can be described as Ly = byl g + b2liormal
We empirically set the weight coefficient b, =b, =1. The
normal loss [, ... is a L2 norm loss, described as
||n; — 7i,]| ,», enhancing the normal consistency. The mask loss
penalizes the small overlap of the two mask images,
described as [|mdt — ||, the superscript dist represent-
ing distance transformation. Instead of calculating mean
square error (MSE) for original mask images directly, we
firstly using distance transform and then compute the
MSE, which is more robust by experience.

The SDF field loss L () is a 3D supervision, ensuring
that the multiview reconstruction mesh is human-like. It
can be described as |sdf* —sdf'||,, the superscript repre-
senting the view numbers, sdf' representing the predicted
SDF of the single-view RGB-D PIFu. We observe that only
supervised by the sparse view 2D projection is not enough,
it is probably to be trapped into local minima that satisfy
each perspective’s constraint but looking like deformed and



weird. To solve the problem, we introduce the SDF field loss
to make the consistency between the multiview SDF field
and each single-view SDF field, to avoid constraining SDF
filed into an abnormal field.

The last constraint L, (s) is an orthogonal constraint
which is used to keep the orthogonality of rotation matrix
R, described as ||RRT - I||,, where I is identity matrix.

3.4. Multiview Extension. The above model is aimed at esti-
mating the relative pose of a pair of images, while the goal
of multiview extension is to output the relative pose of each
view, given multi-view RGB-D input scans of the same
person. However, most existing relative pose estimation
approaches [11, 14, 24] are not suitable for multiview input,
for that they mainly focus on pairwise input, which can only
optimize pairwise for multi-view setting. As [13] has
observed, only pairwise registration is error-prone, leading
to odometry drift due to sensor noise and false pairwise
alignments. Some multiway registrations [13] align multiple
pieces of geometry in a global space via pose graph
optimization [37], they combine local optimization such as
point-to-plane ICP [9] with global optimization such as
Levenberg-Marquardt algorithm [38], yet they still rely on
large overlapping region to match considerable and accurate
correspondences.

Our proposed approach can be flexibly extended to mul-
tiview setups owing to the good generalization of our multi-
view implicit function human reconstruction model RGB-D
PIFu. For multiview settings, the n-view optimization can be
based on the results of n—1 views, just like the pyramid
structure; thus, we can optimize hierarchically in a coarse-
to-fine strategy. As shown in Figure 4, the relative pose of
the three views is agnostic, assuming the view, as the world
coordinate system; we firstly optimize pairwisely, view,,
view,;, and view,;, note that the initial pose of view,; can
be referred after view,, and view,; optimizations. Then, we
align globally via 3-view pose optimization module to refine
the pose. The architecture of 3-view pose optimization is
analogous to 2-view optimization as Figure 1; using 3-view
RGB-D PIFu and differentiable render to establish self-
supervision mechanism, the loss term can be described as
the following equation:

n
f%itn Z ayLop (R, 1) + apLige (R, t) + a3l (R).  (3)
A

In practice, we can skip some middle-level optimization
in practice, because of the diminishing marginal utility [39];
the more top-level optimization, the less effect it improves.

4. Results and Discussion

In this section, we present an experimental evaluation of the
proposed approach. We firstly describe our evaluation data-
set and evaluation metrics. Then, we compare our method
with several baseline techniques, assessing the performance
quantitively on different overlapping RGB-D input pairs.
Finally, we present an ablation study to quantitively examine
the impact of our initialization module and qualitatively
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demonstrate the robustness of our proposed optimization
module.

4.1. Dataset. We perform experimental evaluation on two
types of data. One is the synthesized data, rendering 200
high-quality scans from 60 views with rotation and random
shifts. Note that to keep consistent with the real data, for the
colour image, we use the PRT-based render as in [25]; for
the depth image, we first render the groundtruth depth maps
and then add the TOF sensor noise on top of them following
[2]. Finally, we synthesize RGB-D data with resolution
512 x 512. The other is real data collected by multiview
Kinects, which includes large poses, various clothes, and dif-
ferent people. We firstly segment the human mask provided
by Kinect. Then, we align the colour image and depth image
with the pose parameters of Kinect depth camera, getting the
final real RGB-D data with resolution 640 x 576.

For a more comprehensive and detailed analysis, we clas-
sify all the data into four categories according to the overlap
rate: overlap rate 0-5%, overlap rate 10%-30%, overlap rate
40%-70%, and overlap rate over 80%. Then, we select about
400 characteristic data pairs for each category as our final eval-
uation data, besides each category is mixed by half the real data
and half the synthetic data. Note that for the RGB-D PIFu, we
train it using 500 high-quality scans following [2].

4.2. Evaluation Metrics. We evaluate the rotation matrix R
and translation part t of the relative pose T = (R, t), respec-
tively. We follow the standard protocol of reporting the rota-
tion angle error arcos((tr(R*RT)-1)/2) and translation
error ||t — t*||,, let (R*, t*) be the groundtruth relative pose
and (R, t) be the predicted pose.

4.3. Quantitative Evaluation. We consider four baseline
approaches: Super4PCS [7], Greg [10], ICP [9], and combine
Greg with ICP. Super4PCS is a widely used global scan
matching method between two 3D point clouds. Greg is
another state-of-the-art global registration, combining
cutting-edge features and reweighted least squares for rigid
pose registration. ICP (iterative closet point), a local optimi-
zation algorithm, has been a mainstay of geometric registra-
tion in both research and industry. In this paper, we use
point-to-plane ICP which has a faster convergence. We also
combine global registration with local optimization as a base-
line; the former provides an initial pose, and the latter refines
the pose, just as our coarse-to-fine strategy.

Table 1 provides the quantitative results of our approach
and baseline methods. We show the mean error for rotation
and translation components for overlapping rate (0—5%,
10% —30%, 40%—-70%, and >80%) scan pairs, respectively.
Overall, we observe that the less overlap rate, the greater
advantage of our method. Our approach outperforms base-
line approaches considerably in small-overlapping and
almost overlapping settings, while performing slightly better
in large-overlapping settings. In the four baselines,
combining Greg with ICP is much better than others, espe-
cially in the significant overlap scenes, while in small-
overlapping settings, all the baselines perform badly, making
no difference.
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FIGURE 4: Multiview optimization. Opt is the abbreviation of optimization, 2-view pose Opt in picture means our 2-view relative pose
optimization, whose structure is as described in Figure 1; similarly, multiview pose Opt means our multiview relative pose optimization.
We optimize the pose parameters hierarchically, just as the pyramid structure. We firstly optimize pairwise to get a coarse pose and then
hierarchically align the whole views based on the coarse results via our proposed multiview optimization module.

TaBLE 1: The relative pose estimation evaluation on our dataset. We divide all the data into four categories according to the overlap
rate: 0-5%, 10%-30%, 40%-70%, and over 80%, and report the mean error of rotation angle (Rot. (°)) and translation (Trans. (m)),

respectively.

Overlap (0-5%)

Overlap (10-30%)

Overlap (40-70%) Overlap (>80%)

Rot. Trans. Rot. Trans. Rot. Trans. Rot. Trans.
Super4PCs [7] 126.08 1.715 103.95 1.468 38.99 0.574 4.46 0.084
Greg [10] 124.41 1.679 92.50 1.538 64.47 1.109 18.44 0.325
ICP [9] 165.97 2.252 122.02 1.943 67.86 1.208 27.75 0.540
Greg+ICP 126.72 1.664 103.88 1.461 35.10 0.508 1.27 0.0262
Ours-initial 7.15 0.138 6.54 0.130 5.90 0.106 1.29 0.0259
Ours 6.16 0.127 5.88 0.119 4 .60 0.084 1.15 0.0209

In small overlap (overlapping rate 10%-30%) or almost
no overlap (overlapping rate 0-5%), all the baselines perform
very badly, with over 120 rotation errors and over 1.5m
translation errors. These methods rely on accurate corre-
spondence in the overlap regions; thus, they cannot handle
the small-overlapping or nonoverlapping settings. Even so,
our approach performs much better, with mean errors in
rotation/translation 6.16/0.127 m for almost no overlap and
5.88/0.119m for small overlap. It fully demonstrates the
effectiveness of our proposed approach for nonoverlapping
settings, thanks to the coarse-to-fine optimization strategy.

In middle overlap (overlapping rate 40%-70%), although
the Greg with ICP is much better than other baselines, with
rotation/translation errors 35.10/0.508 m, our approach
achieves much better results, with corresponding errors
4.60/0.084 m.

In significant overlap (overlapping rate over 80%), there is
no significant difference between all the methods. All the base-
lines perform fairly good, especially, the Greg with ICP with
small rotation/translation errors 1.27/0.0262 m. It further shows
that the standard baselines require input scans possessing con-
siderable overlapping regions for superior performance. How-
ever, our approach is still competitive, performing slightly
better with mean rotation/translation errors 1.15/0.0209 m.

In this experiment, all the four baselines rely highly on
the large overlap of input scans, not able to handle the
extreme pose setting, while our approach performs stable
and good in all settings.

4.4. Ablation Study. We conduct two experiments to evaluate
the effectiveness of our proposed module. Firstly, we evalu-
ate quantitatively our initialization module. From Table 1,



we find that our initialization module performs very stably.
Even in the almost nonoverlapping settings, it can generally
provide fair good initial results with small mean rotation/trans-
lation errors 7.15/0.138 m. In this module, we use RGB-D PIFu
to reconstruct the full geometry, digging out the abundant hid-
den cues of the unseen regions. Therefore, our proposed initial-
ization module can be free of overlap of the inputs.

Secondly, we evaluate qualitatively the robustness of our
optimization module. This module serves as a refinement,
conditioned on a not much bad pose. Thus, during the
experiment, we add an arbitrary small Gauss random noise
to the groundtruth pose parameter as a coarse initial pose.
For a more intuitive distinction in the results, we qualita-
tively demonstrate the reconstruction performance, consid-
ering that the reconstruction procedure will amplify the
impact of small deviation. Figure 2 shows the performance
of different small noises. We can see that our proposed
optimization can generally recovery a fair perfect human
mesh in different small disturbances, which fully proves
the robustness of our model.

Our approach can be easily extended to multiview input
settings. As demonstrated in Figure 3, our proposed
methods perform better than only pairwise optimization,
closely to the reference reconstruction.

5. Conclusions

This paper proposes an end-to-end approach which consists
of an initialization module and an optimization module, to
estimate the relative pose between the RGB-D human input
scans. We do not limit the input scans to have large overlap.
Our initialization module can handle nonoverlapping settings
effectively by incorporating the learned 3D human shape
prior. Our optimization module refines our pose parameters
by implicitly supervising the human reconstruction with
multilevel constraints via implicit function reconstruction
and differentiable render. The experiments demonstrate our
optimization module is robust to small disturbances. Besides,
our method can easily extend the scope to multiview input
scans. Through evaluation on different overlap data, our
method considerably outperforms the state-of-the-art base-
lines, especially for nonoverlapping scans. We believe the pro-
posed method will stimulate the wide spread of multiview
human reconstruction systems by eliminating the sophisti-
cated camera pose calibration process.

Data Availability

We collect about 500 human models from Twindom dataset for
training RGB-D PIFu. You can purchase the Twindom dataset
from the webpage: https://web.twindom.com/. We provide part
of our evaluation data, you can download from the hyperlink:
https://drive.google.com/file/d/1SB3eTvbcG2b6CJbpF84jm_
pApNMCTyvf/view?usp=sharing.
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