
A Probabilistic Spectral Graph Matching Algorithm for
Robust Correspondence between Lunar Surface Images∗

Xu Yang1, Chuan-Kai Liu2, Zhi-Yong Liu1, Hong Qiao1, Bao-Feng Wang2, and Zi-Dong Wang3
1State Key Laboratory of Management

and Control for Complex Systems,
Institute of Automation,

Chinese Academy of Sciences
{xu.yang, zhiyong.liu, hong.qiao}@ia.ac.cn

2Beijing Aerospace Flight
Control Center

ckliu2005@126.com
hnwbf@163.com

3School of Information Science
and Technology,

Donghua University
zidong.wang@brunel.ac.uk

Abstract— The correspondence between key points is an
important problem in lunar surface image processing, and
further lays the foundation for the navigation of a rover and
the terrain reconstruction of the lunar surface. However, the
problem is still challenging due to the existence of large scale and
rotation transformations, reflected view of the same scenery, and
different illumination conditions between acquired images as the
lunar rover moves forward. Traditional appearance matching
algorithms, like SIFT, often fail in handling the above situations.
By utilizing the structural cues between points, in this paper
we propose a probabilistic spectral graph matching method
to tackle the point correspondence problem in lunar surface
images acquired by Yutu lunar rover which has been recently
transmitted to the moon by China’s Chang’e-3 lunar probe.
Compared with traditional methods, the proposed method has
three advantages. First, the incorporation of the structural
information makes the matching more robust with respect to
geometric transformations and illumination changes. Second,
the assignment between points is interpreted in a probabilistic
manner, and thus the best assignments can be easily figured out
by ranking the probabilities. Third, the optimization problem
can be efficiently approximately solved by spectral decompo-
sition. Simulations on real lunar surface images witness the
effectiveness of the proposed method.

Index Terms— graph matching, lunar surface image, spectral
graph theory, point correspondence

I. INTRODUCTION

Key point correspondence finds applications in many lu-
nar surface image processing problems, such as scenery
recognition, lunar surface reconstruction. And it also plays
an important role in some lunar rover operations, such as
self-location, rover navigation. In the past four decades,
various types of approaches have been proposed to tackle
the point correspondence problems, including approaches
for scenery matching. However, there are rare approaches
dedicated for the correspondence of lunar surface images
or images acquired on other celestial bodies. Due to some
specific characters of these images, the correspondence is
still a challenging problem. Taking China’s first lunar rover
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Yutu for instance, which forms part of Chang’e 3 mission
to the moon, the cameras which it is equipped can shoot
forward and backward alternately by pan-tilt rotation. As the
rover moves on, two images acquired in these two situations
may include the same lunar surface scenery. Matching these
two images usually suffers from large scale and rotation
transformations, reflected view, and different illumination
conditions. How to get a robust correspondence between key
points in the two images is an important problem to be settled.

Though traditional appearance matching algorithms, like
SIFT [17], have been widely used in various correspondence
problems [21], they often fail in matching the lunar surface
images. One important reason is that the appearance descrip-
tors around the same point may vary significantly in the two
lunar surface images. These algorithms only take into account
the appearance similarity, but ignore other useful information
in the image, like the structural relations between points.

In this paper, by incorporating structural information we
propose a probabilistic spectral graph matching method to
tackle the point correspondence problem in lunar surface im-
ages acquired by Yutu lunar rover. Specifically, graph vertices
are utilized to represent the points detected in the images, and
graph edges are utilized to indicate the adjacency between
points, with structural relation measures, like distances, ori-
entations as their weights. The point correspondence between
images is then formulated as a graph matching problem,
and effectively optimized by the proposed graph matching
algorithm. Note traditional appearance matching could also
be incorporated in the pairwise matching by treating point
descriptor as the vertex label.

Generally, compared with traditional algorithms, the pro-
posed method has three advantages. First, the incorporation of
the structural information makes the matching more robust
with respect to geometric transformations and illumination
changes. Second, the assignment between points is inter-
preted in a probabilistic manner, and thus the best assign-
ments can be easily figured out by ranking the probabilities.
Third, the optimization problem can be efficiently approxi-
mately solved by spectral decomposition. We compare the
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proposed method with the state-of-the-art algorithms and
validate its effectiveness on real lunar surface images.

II. PREVIOUS WORKS

Establishing correspondence between points has long be a
fundamental problem in computer vision, and a large number
of approaches have been proposed to tackle the problem in
the past forty years. These approaches can be divided into
three categories according the information types, which are
respectively appearance information, pairwise information,
and high-order information. And the latter two types are
structural information.

Appearance matching, which explores the appearance sim-
ilarity between points, has been widely used in the correspon-
dence problem. Typical methods include SIFT [17], shape
context [1], and bag-of-words [13]. These methods typically
form an appearance descriptor around every point and con-
struct the correspondence by minimizing the dissimilarity be-
tween these descriptors. Such a problem could also be treated
as a bi-partite graph matching problem which is equivalent
to minimizing a unary term, and can be efficiently solved
by linear programming techniques, such as the Hungarian
algorithm, and the interior point method.

Graph matching which incorporates pairwise constraints
demands to preserve the edge-to-edge similarity. Taking
distance constraints for instance, if two points are close
in one image, then their corresponding points in the other
image should also be kept close. Pairwise graph matching
is usually divided into exact graph matching and inexact
graph matching. The exact graph matching generally works
on small scale correspondence problems or specific graph
types like trees, and demands strict structure preservation
between edges. By contrast, the inexact graph matching can
tolerate certain differences between corresponding edges, and
is more popular in computer vision. However, the inex-
act graph matching is still an NP-hard problem, and the
approximate methods are necessary to make the problem
tractable. The famous graduated assignment [8] is one of
the earliest approximate graph matching algorithms, which
is still considered as state-of-the-art due to its excellent
performance and extensibility. This method first relaxes the
discrete domain to its convex hull, and then gradually projects
the continuous solution to be a discrete one by adjusting a
deterministic annealing parameter. Similar idea appears in
the recently proposed path following algorithms [23], [16],
[25], also known as the convex-concave-relaxation-procedure
(CCRP) which, by constructing the convex and concave
relaxations of the original objective function, guarantees that
a final discrete solution could be obtained. The graduated
non-convexity and concavity procedure (GNCCP) [15], [22]
further simplifies CCRP by the implicit construction of the
convex and concave relaxations. The spectral decomposition
based algorithms form another important group of approx-

imate methods. Umeyama’s algorithm [20] is regarded as
the first spectral graph matching algorithm. The method
proposed in [11] formulates the objective fundtion based on
an affinity matrix, and seeks its rank one approximation by
spectral decomposition. Based on [11], many methods [5],
[4], [12], [7] have been further proposed with considerable
improvements. The method proposed in this paper is also
a generalization of [11], which interprets the assignment in
a probabilistic manner. The spectral methods also involve
relaxing the discrete domain to be a continuous one, but there
exist no effective ways to project the continuous solution back
to be a discrete one.

Recently, a few high-order graph matching algorithms [18],
[6], [3], [10], [24] have been proposed to incorporate high-
order structural information, which preserve the similarity
between triplets beyond pairwise constraints. These methods
typically extend the pairwise spectral decomposition algo-
rithm [11] and seek the rank one approximation of an affinity
tensor. Though these methods improve the matching accuracy
to some extent, the costs are great time and storage expenses.

III. PROBLEM FORMULATION

Supposing a point set G = {gi}Mi=1 has been abstracted
from every lunar surface image, a labeled weighted graph
G = {V,E, L,W} can be used to represent the point sets,
where V = {1, 2, · · · ,M}, E ∈ V × V , L = R

M×dl , W =
R

‖E‖0×dw denote the sets of vertices, edges, vertex labels,
and edge weights respectively, and dl, and dw are respectively
the dimensions of each vertex label, and each edge weight.
A vertex i ∈ V is used to represent the point gi, and an edge
{i, j} ∈ E is to denote the adjacency between vertices i and
j. The appearance descriptor li ∈ R

1×dl around the point
gi can be assigned as a label to vertex i. For instance, by
utilizing a 128-dimensional SIFT histogram abstracted from
the patches round each key point as the appearance descriptor,
there is dl = 128. The pairwise descriptor wij ∈ R

1×dw

between points i and j is assigned as a weight to edge {i, j}.
For instance, by utilizing distances and orientations between
points as relation descriptors, there is dw = 2. Hereafter by
the term graph we mean such a labeled weighted graph.

Given two graphs G1 = {V 1, E1, L1,W 1} of size M
and G2 = {V 2, E2, L2,W 2} of size N , where without loss
of generality it is assumed M ≤ N , the associated graph
A, also known as the modular product of graphs, will be
constructed below. Each assignment (i, a), where i ∈ V 1,
a ∈ V 2, is treated as a vertex of the A. The vertices (i, a)
and (j, b) are considered to be adjacent, if {i, j} and {a, b}
are respectively adjacent, where adjacent means an edge
exists between the two vertices. The similarity measure l(i,a)
between li and la is assigned as a label to vertex (i, a). And
the consistency measure w(i,a)(j,b) between edges {i, j} and
{a, b} is assigned as a weight to edge {(i, a), (j, b)}. Note
such the definition of associated graph is a little different
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from its traditional definition, which further considers (i, a)
and (j, b) to be adjacent, if neither of {i, j} and {a, b} is
adjacent. By contrast, in our definition, it is not considered to
be adjacent, or say, the weight of edge {(i, a), (j, b)} is zero.
The advantage of such definition is sparsity, which results in
more efficient computation and storage saving, as shown in
section V.

The explorations and studies of graphs are usually through
the manipulations of the matrices naturally associated with
the graphs. Weighted adjacency matrix is one most common
type of matrix associated with the weighted graph, which
records the adjacency relations and the weights in the graph.
In previous works [11], [25], [7], the adjacency matrix for the
associated graph is often called affinity matrix A. Since the
dimension of l(i,a) is always 1, it is located in the diagonal
of A. Particularly, A can be defined by

Aij = A[(a−1)M+i][(b−1)M+j]

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
(1− α) l(i,a), if i = j, a = b,

α w(i,a)(j,b), if i �= j, a �= b, and {i, j},
{a, b} are both adjacent

0 otherwise

(1)

where α is used to balance the appearance similarity and
pairwise consistency.

The problem to be solved is to find the assignments
between V 1 and V 2, which can be represented by an as-
signment matrix X ∈ {0, 1}M×N . Xia = 1 means vertex
i in G1 is assigned to a in G2. If the one-to-one mapping
constraints are further considered as follows,

M∑
i=1

Xia ≤ 1,
N∑

a=1

Xia = 1,Xia = {0, 1} (2)

X becomes a partial permutation matrix.
Based on the above notations and definitions, the objective

function is given by

x = argmax xTAx, (3)
s.t. (IN ⊗ 1T

M )x ≤ 1N , (1T
N ⊗ IM )x = 1M ,

x ∈ {0, 1}MN ,

where x is the column replica of X, and ⊗ is the Kronecker
product between matrices. The constraints in (3) are the one-
to-one mapping constraints, the same with (2). Actually (3)
is a weighted sum of the corresponding vertex similarity
measures and corresponding edge consistency measures after
a permutation. However, solving (3) is an NP-hard problem,
where some approximations are necessary, as will be shown
in the next section.

IV. PROBABILISTIC SPECTRAL GRAPH MATCHING

An intuitive scheme to approximately solve the opti-
mization problem (3), which is an NP-hard combinatorial

optimization problem, is first to relax the discrete domain to
be continuous, and then to project the continuous solution
back to be a discrete one [19]. A representative algorithm of
such scheme is proposed in [11]. [11] abandons all mapping
constraints in (3), and adds the constraints that

xTx = 1. (4)

The objective is then transformed to be Rayleigh quotient as

x = argmax
xTAx

xTx
. (5)

It is well known that (5) can be solved by finding the principal
eigenvalue λ1 and its corresponding eigenvector xλ1 . That is
xλ1 is the solution of (5). An effective and efficient method to
obtain λ1 and xλ1 is the power method [9]. Since the vertex
similarity measure l(i,a) and edged consistency w(i,a)(j,b),
which forms A, are usually symmetric and nonnegative,
based on Peron-Frobenius theorem, we have λ1 and xλ1 both
exist and xλ1 is nonnegative. Finally, the continuous solution
of (5) is projected to be a discrete vectorized assignment
matrix based on the mapping constraints.

[11] actually solves the rank-one approximation problem
of A. The major drawback of [11] is that the mapping
constraints are totally ignored in the optimization process,
making the continuous solution less distinctive over certain
vertices. To tackle the problem, next a spectral method is
proposed, which incorporates the mapping constraints in each
iteration by introducing the probabilistic interpretation of the
assignments.

Before proceeding to the method, A is preprocessed as
follows,

Ā = AD−1, (6)

where D is the diagonal degree matrix defined by

Dii =

{∑MN
i=1 Aij if i = j,

0 if i �= j.
. (7)

By such a column stochastic processing, each term Ā(i,a)(j,b)

represents the belief of vertex (i, a) from the perspective of
(j, b), i.e. the conditional probability P ((i, a)|(j, b)). On the
other hand, the preprocessing can be explained following
the way in [5], which is to make the affinity measure
more balanced. In [5], a doubly stochastic processing is
adopted, and significant improvement in matching accuracy
is observed.

Accordingly, each assignment is interpreted in a proba-
bilistic manner, which is realized by setting

xT1 = 1, 0 ≤ xi ≤ 1. (8)

Thus each item in x represents a probability P (i, a) of the
corresponding assignment. If applying Ā to x as

xt+1 = Axt, (9)
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then the probability for each assignment is updated by

P t+1(i, a) =
∑
(j,b)

= P t((i, a)|(j, b))P t((j, b)). (10)

If iterating (9) until the convergence of x, the stable distri-
bution over all the assignments will be obtained. However,
the mapping constraints in (2) are still not considered in the
above scheme. Since in (2)

∑
i

∑
j Xij = M is always a

constant, beyond (8) the relaxed continuous domain is then

(IN ⊗ 1T
M )x ≤ 1N

M
, (1T

N ⊗ IM )x =
1M

M
, 0 ≤ xi ≤ 1. (11)

Note xT1 = 1 is implicitly realized in (11). Thus after each
update in (9), xt+1 must be normalized to fulfill (11).

To further avoid the low distinctiveness encountered in
the traditional spectral method [11] discussed above, in each
update iteration, we also update Ā to make it more distinctive
over the beliefs between assignments. The basic idea is that
if the probability P ((i, a)) of an assignment (i, a) increases
in the t + 1th update given the Āt, then the conditional
probability P ((i, a)|(j, b)), ∀(j, b) should also be increased,
and vice versa. This idea can be realized by

Āt+1 = EĀt, (12)

where E is a diagonal matrix with diagonal items defined by

Eii =
xt+1
i

xt
i

. (13)

Generally, the probabilistic spectral graph matching can be
summarized in Algorithm 1.

Algorithm 1: Probabilistic spectral graph matching
Input: Two graphs G1 and G2

Construct the affinity matrix A by (1)
Compute Ā0 by column stochastic processing (6)
Initialize x0 = 1MN

MN
repeat
xt+1 = Ātxt

Transform xt+1 to be a matrix X
repeat (To make xt+1 fulfill (11))
X = C−1X

M ,
where C ∈ R

M×M is diagonal with Cii =
∑

j Xij

X = XR−1

M ,
where R ∈ R

N×N is diagonal with Rjj =
∑

i Xij

until X converges
Transform X back to be a vector xt+1

Āt+1 = EĀt where E is given by (13)
until x converges

Output: A probabilistic assignment vector x

The proposed method shares some similarities with another
probabilistic graph matching algorithm proposed in [7], such
as the probabilistic interpretation and refinement of the affin-
ity matrix. The difference is that the proposed method focuses
on the associated graph.

V. LUNAR SURFACE CORRESPONDENCE

In this section, the overall scheme for the correspondence
between lunar surface images will be given, together with
postprocessing and some discussions.

There are various ways to extract key points in the lunar
surface images. One most common way is by corner point
extraction algorithms, such as the Harris operator, the Lapla-
cian of Gaussian (LOG) operator. The points can also be
uniformly sampled from the edges extracted from the images
by such as Canny operator. Another way is to manually
label the key points in some special applications. Then the
appearance descriptor around each key point is built, such as
SIFT descriptor, shape context descriptor. Also the pairwise
descriptors like distances and orientations between points are
computed. And the graphs representing point sets and fur-
ther the associated graph are constructed accordingly. Then
following the way described in Section IV, a probabilistic
assignment x is obtained. To get the final correspondence
between the two point sets, postprocessing to discretize x
is necessary. Thanks to the probabilistic interpretation of the
assignments, the best S assignments can be selected by rank-
ing the probabilities following the winner-take-all strategy.
Alternative methods include threshold method, RANSAC, or
solving the linear programming problem

x∗ = argmaxx̄ x̄
Tx (14)[

IN ⊗ 1T
M

1T
N ⊗ IM

]
x̄ ≤ 1N+M ,1T x̄ = S, 0 ≤ x̄i ≤ 1,

by for example interior point method [2].
The overall lunar surface correspondence scheme is sum-

marized in Algorithms 2.

Algorithm 2: Lunar surface correspondence
Input: Two lunar surface images I1 and I2

Extract the point sets G1 and G2 from I1 and I2

Build the appearance descriptor li for each key point
Build the pairwise descriptor wij for each edge
Build two graphs G1 and G2

Get the probabilistic assignment vector x by Algorithm 1
Select S best assignment by ranking the probabilities

Output: An assignment vector x∗ with S ‘1’s

The proposed method incorporates the pairwise structural
cues into the traditional appearance matching. Since the
pairwise relations are invariant to geometric transformations
and illumination changes, the proposed method becomes
more robust compared with traditional methods.

By interpreting the assignment in a probabilistic manner,
the belief of each assignment can be easily figured out by its
probability. Sometimes, a fixed number S of best assignments
are needed to get the best matching accuracy rather than the
largest matching point number. This can be easily achieved
by ranking the probabilities.
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The optimization problem can be efficiently approximately
solved by spectral decomposition, and the proposed method
can be applied to sparse graphs. The computational complex-
ity is O(‖E1‖0‖E2‖0), where ‖E1‖0 and ‖E2‖0 respectively
denote the edge number in G1 and G2. More sparse graph
structure leads to more efficient optimization.

VI. SIMULATIONS

In the section, the proposed method is applied to a real
lunar surface image dataset acquired by Yutu rover. Some
image samples in the dataset are illustrated in Figure 1.
According to point extraction methods, the simulations are
divided into two parts. The first part manually labels all the
points, and compares the proposed method with the state-of-
the-art algorithms to assess its performance. The second part
automatically extracts the points by LOG [14] operator to
evaluate the real performance of the proposed method.

(a)

Manually labeled points Extracted points
(b)

Fig. 1. Dataset acquired by Yutu rover. (a) Some lunar surface image
samples. (b) Labeled points. On the left the points are manually labeled,
and on the right the points are extracted by LOG operator.

In the following simulations, the similarity measure be-
tween the appearance descriptors is defined by

li,a = exp(−‖li − la‖22
σl

). (15)

The pairwise consistency measure is defined based on nor-
malized distances and orientations between points by

w(i,a)(j,b) = exp(−‖dij − dab‖22 + ‖oij − oab‖22
σw

), (16)

where dij and oij respectively denote the normalized length
and orientation of edge ij. The orientation is measured by
the acute angle between ij and a horizontal line, and thus

A defined in (1) is a symmetric matrix. σl and σw are the
kernel width parameters.

The algorithm included for comparison are spectral match-
ing (SM) [11], graduated assignment (GA) [8], probabilistic
graph matching [7]. Shape context is adopted as the appear-
ance descriptor. The correspondence with only appearance
descriptors is transformed into a bipartite graph matching
problem which is solved by Hungarian algorithm (HUN).
The proposed method is denoted by OUR.

All the simulations are carried out in Matlab 2011a on
3.07 GHz CPU (two core) and 2.00 GB RAM. SM, GA, and
PGM are re-implemented by us, and HUN are implemented
by a publicly available mex file.

HUN GA SM PGM OUR
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(a)

(b)
Fig. 2. Results on manually labeled points. (a) Matching accuracy
comparison w.r.t outlier number and parameter α. (b) Matching samples
achieved by OUR. The red line denotes the right assignment

A. On manually labeled points

In this simulation, the proposed method is compared with
the state-of-the-art algorithms on manually labeled points
where ground truth is available. 10 pairs of images are
manually labeled with 30 ground truth points, as illustrated in
Figure 1. The graph is built in a sparse manner by Delaunay
triangulation. The similarity between vertices and edges are
computed by (15) and (16), and we set σl = 0.5 and
σw = 0.15.

We first compare the matching accuracy with respect to
outlier number which is increased from 0 to 10 with a step
size 2. α is set to be 1 which means only the structural
information is utilized. The result is depicted in Figure 2,
from which we can see that, first, the performances of all
the algorithms deteriorate as the outlier number increases;
second, OUR outperforms all the other algorithms; third,
utilizing only the appearance similarity, HUN achieves the
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lowest matching accuracy, compared with the other pairwise
algorithms.

To evaluate the dependency of matching accuracy from
parameter α, we also make a comparison as α is decreased
from 1 to 0 with a step size −0.2. The results is given
in Figure 2. We can observe that the best performance are
usually achieved when α locates in between 0 and 1, where
α = 1 implies that only the pairwise consistency is utilized,
and α = 0 implies that only the appearance similarity is
utilized.

One matching sample achieved by OUR is illustrated in
Figure 2.

B. On extracted points

In the simulation, the proposed method is applied to points
automatically extracted from images by LOG operator to
evaluate its real performance. The graph structure is also
constructed by Delaunay triangulation. One labeled sample
is shown in Figure 1. We also set σl = 0.5 and σw = 0.15.
Since the ground truth is not available, we choose to compare
the optimal objective values achieved by different algorithms.
The results are depicted in Figure 3, which witnesses OUR
achieves the best performance among all the algorithms.

One matching sample achieved by OUR is illustrated in
Figure 3.

GA SM PGM OUR
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(a)
(b)

Fig. 3. Results on extracted points. (a) Matching accuracy comparison w.r.t
problem size M . (b) Matching samples achieved by OUR.

VII. CONCLUSION

In this paper a probabilistic spectral graph matching
method is proposed to deal with the correspondence problem
in lunar surface images. Compared with traditional meth-
ods, the proposed method has three advantages. First, the
incorporation of the structural information makes the match-
ing more robust with respect to geometric transformations
and illumination changes. Second, the assignment between
points is interpreted in a probabilistic manner, and thus
the best assignments can be easily figured out by ranking
the probabilities. Third, the optimization problem can be
efficiently approximately solved by spectral decomposition.
The proposed method is applied to the real lunar surface
images acquired by China’s first lunar rover Yutu, which
witnesses its effectiveness.
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optimization techniques for the weighted graph matching problem in
computer vision. In Lecture Notes in Computer Science, volume 2191,
pages 361–368, 2001.

[20] S. Umeyama. An eigendecomposition approach to weighted graph
matching problems. IEEE Trans. Pattern Analysis and Machine
Intelligence, 10(5):695–703, 1988.

[21] C. Wallraven, B. Caputo, and A. Graf. Recognition with local features:
the kernel recipe. In Proc. IEEE Int’l Conf. Computer Vision, pages
257–264, 2003.

[22] X. Yang, H. Qiao, and Z. Y. Liu. Partial correspondence based on
subgraph matching. Neurocomputing, 122(25):193–197, 2013.

[23] M. Zaslavskiy, F. Bach, and J. P. Vert. A path following algorithm
for the graph matching problem. IEEE Trans. Pattern Analysis and
Machine Intelligence, 31(12):2227–2242, 2009.

[24] R. Zass and A. Shashua. Probabilistic graph and hypergraph matching.
In Proc. IEEE Conf. Computer Vision and Pattern Recognition, pages
1–8, 2008.

[25] F. Zhou and F. De la Torre. Factorized graph matching. In Proc. IEEE
Conf. Computer Vision and Pattern Recognition, pages 127–134, 2012.

390


