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Abstract
This study is devoted to investigating the fixed-time consensus disturbance rejection problem for a class of high-order nonlinear multi-agent systems

(MASs) with input saturation. A distributed fixed-time state observer (FTSO) is first proposed to reconstruct the leader’s states for each follower.

Based on the estimated values, a fixed-time consensus protocol is designed via backstepping, where a fixed-time disturbance observer (FTDO) is used

to provide the robustness against the external disturbances. The violation of the input saturation is prevented by introducing an auxiliary variable and

the problem of ‘‘explosion of terms’’ suffered by the conventional backstepping design is also successfully avoided by a fixed-time differentiator. Detailed

convergence results are presented by leveraging Lyapunov stability theory. Finally, the effectiveness of the proposed approach is numerically validated

through simulation results.
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Introduction

In recent years, distributed coordination of multi-agent sys-

tems (MASs) has attracted considerable attention due to its

widely practical applications, such as sensor networks (Wang

et al., 2017b), mobile robotic teams (ElAshry et al., 2019),

formation control of unmanned aerial vehicles (Ai and Yu,

2019b; Jia et al., 2019), and salvo attack of multiple missiles

(Ai et al., 2019). Being one of the fundamental issues about

this topic, the multi-agent consensus problem, focusing on

designing distributed protocols based on local information to

steer all agents to reach an agreement on a common value of

interest, has been extensively investigated during the past few

decades (Ai, 2018, 2020; Ai et al., 2017; Ai and Wang, 2021;

Mao et al., 2019; Zou et al., 2019, 2020b, 2021a, 2021b).
As a factor of limiting the system performance, input

saturation appears in most engineering systems. Therefore,

the multi-agent consensus problem with input saturation is

both theoretically and practically concerned (Fu et al., 2020;

Lv et al., 2020, 2021). Along with this fact, Meng et al. (2013)

investigated the saturated consensus-tracking problem for

neutrally stable systems over fixed and switching graphs. The

extension of the results in Meng et al. (2013) to output consen-

sus problems of generic linear systems over jointly connected

networks and directed switching proximity topologies were

presented in Su et al. (2014) and Fan et al. (2015), respectively.

In Wang et al. (2017a), a dynamic scheduling approach was

employed to design low-gain algorithms to solve the robust

global consensus problem for linear systems, where the

considered agents are subject to input saturation and input-

additive uncertainties. The event-triggered semi-global con-

sensus problem was solved by Wang et al. (2017c) for satu-

rated linear systems in the presence of updating delays. Ding

et al. (2018) concerned with the practical set consensus prob-

lem for MASs subject to input saturation while considering

network-induced delays, data quantization, and aperiodic

sampling. Thereafter, an impulsive algorithm was proposed

by Liu et al. (2019) to solve the dynamic consensus problem

for time-delay nonlinear systems with input saturation. A

common characteristic of these works is that the presented

consensus protocols are of asymptotic convergence, leading to

an unpredictable and slow settling time.
In practice, the convergence rate performs as an important

and significant index for evaluating the system performance

and a prompt convergence also contributes to achieving bet-

ter disturbance rejection properties and robustness against

uncertainties (Ai and Yu, 2019a; Zou et al., 2020a, 2020c).

This triggers intensive research on achieving finite-time con-

sensus for MASs subject to input saturation while obtaining

bounded settling times. In Lu et al. (2013), the finite-time

consensus-tracking problem was investigated for double-
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integrator systems with bounded input over fixed and switch-

ing jointly digraphs. Lyu et al. (2016) further proposed an

output feedback-based protocol to solve the consensus prob-

lem of double-integrator systems while guaranteeing both the

finite-time agreement and the input saturation requirement.

The extension of the results in Lyu et al. (2016) to the output

consensus problem of uncertain second-order MASs over

general directed communication graphs could be found in Cai

and Xiang (2017). Thereafter, adaptive finite-time protocols

were designed by Fu et al. (2019) to solve the consensus prob-

lem over switching topologies, where the considered agents

were of second-order dynamics subject to uncertainties and

input saturation. Although the aforementioned results are

effective to follow, the settling time of the above finite-time

consensus protocols is determined by the initial conditions.

However, the initial conditions are usually unprocurable in

practical applications, and thereby the settling time cannot be

predetermined under this situation.
Actually, many practical tasks are desired to be accom-

plished within a predetermined time regardless of the initial

conditions. Fortunately, fixed-time stability theory, proposed

by Polyakov (2012), contributes to achieving consensus for

MASs with a guaranteed settling time regardless of the initial

conditions, under which situation fast convergence can be still

achieved without prior known initial conditions. Along with

this fact, Zhang and Duan (2018) proposed an output

feedback-based fixed-time protocol to solve the leader–

following consensus problem for second-order systems sub-

ject to input saturation. Compared with second-order sys-

tems, it is known that high-order systems are more attractive

as many real agents can be described as or transformed into

high-order systems (Tian et al., 2018; Zuo et al., 2018a).

However, existing works on the fixed-time consensus of

MASs with high-order dynamics are relatively few. Tian et al.

(2017) and Zuo et al. (2018b) were devoted to the fixed-time

consensus of high-order integrators over undirected graphs.

The extension of these results to the multi-agent consensus

problem over directed graphs was given by Zuo et al. (2019).

Thereafter, robust fixed-time protocols were proposed by Shi

et al. (2018, 2021) to solve the consensus-tracking problem

for high-order systems subject to parametric uncertainties.

Nevertheless, these researches do not take the input satura-

tion into consideration, leading to a relatively large energy

cost.
Inspired by the aforementioned observations, this study

makes a further effort to investigate the fixed-time consensus

disturbance rejection problem for high-order nonlinear MASs

with input saturation. To achieve this goal, a fixed-time state

observer (FTSO) is developed to reconstruct the leader’s

states, based on which a fixed-time disturbance observer

(FTDO)-based protocol is proposed via backstepping to

achieve the leader–follower consensus for the considered

MAS. With the aid of Lyapunov stability theory, it is theore-

tically proven that the fixed-time leader–follower consensus

can be achieved in the presence of input saturation. The main

contributions of this study are threefold:

1. This paper investigates the fixed-time consensus prob-
lem for high-order nonlinear systems with input

saturation, and thereby the considered problem can
cover the existing work (Zhang and Duan, 2018), con-
cerning with second-order MASs subject to input
saturation, as special cases. Moreover, the focused
agents are subject to input saturation, which renders

the existing fixed-time consensus protocols (Shi et al.,
2018, 2021; Tian et al., 2017; Zuo et al., 2018b, 2019)
designed for high-order MASs not applicable to the
our problem.

2. Compared with the finite-time consensus protocols
with input saturation (Cai and Xiang, 2017; Fu et al.,
2019; Lu et al., 2013; Lyu et al., 2016), the settling
time of the closed-loop system can be predetermined
in this study regardless of the initial conditions. This
contributes to achieving a fast convergence under the
situation that the initial conditions of agents are not
available in advance.

3. The proposed fixed-time consensus protocol is deter-
mined without the information exchange on neighbors’
inputs, and thereby it requires less communication cost
and can exclude the communication loop problem
encountered by the existing algorithms (Shi et al., 2021;
Tian et al., 2017).

The remainder of this study is summarized as follows.
Some preliminaries and problem formulation are first pre-
sented. Then, the proposed consensus protocol together with
the corresponding stability analyses are given in detail.
Finally, some numerical examples and conclusion remarks

are drawn in this paper.

Preliminaries and problem formulation

Notations

In this paper, Rn 3 m, Rn, and R
+ denote a set of n 3 m-dimen-

sional real matrices, a set of n-dimensional real column vec-
tors, and a set of positive real numbers, respectively. For a
symmetric matrix X 2 R

n 3 n, lmax(X ) and lmin(X ) represent
its maximum and minimum eigenvalues, respectively. Let
diagfa1, . . . , aNg be a diagonal matrix with ai on its diagonal.
For any non-negative real number a and any real number x,
the function siga(x) is defined as siga(x)= xj jasign(x), where
sign(�) denotes the signum function. For any given vector
x=½x1, . . . , xn�T 2 R

n, one has siga(x)=½siga(x1), . . . , siga(xn)�T ,
sign(x)= ½sign(x1) . . . , sig(xn)�T , and xj ja = ½ x1j ja, . . . , xnj ja�T .

Useful lemmas and definitions

Definition 1 (Polyakov, 2012). Consider the following
system

_x= f xð Þ, x 0ð Þ= x0 ð1Þ

where x 2 R
n and f (�) : Rn ! R

n is a smooth function.
Suppose that the origin is an equilibrium point of (1). The
origin is said to be globally finite-time stable if it is globally
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asymptotically stable and any solution x(x0, t) reaches the ori-

gin within a given settling time T (x0) with T (�) : Rn ! R
+,

that is, x(x0, t)= 0,8t ø T (x0):

Definition 2 (Polyakov, 2012). The origin of the system (1)
is said to be globally fixed-time stable if it is globally finite-
time stable and any solution x(x0, t) reaches the origin
within a bounded settling time T 2 R

+ regardless of the
initial conditions x0.
Lemma 1 (Polyakov, 2012). Consider the system (1), if
there exists a positive definite function V xð Þ such that

_V xð Þł � aV p xð Þ � bV q xð Þ ð2Þ

holds, where a . 0, b . 0, p . 1, and 0\q\1, then the origin
of (1) is globally fixed-timely stable within the settling time
bounded by

T ł
1

a p� 1ð Þ +
1

b 1� qð Þ ð3Þ

Lemma 2 (Zuo et al., 2018b). For any non-negative real
constants xi, i= 1, :::, n, there exists a constant p 2 R

+

such that

Pn
i= 1

x
p
i ø

Pn
i= 1

xi

� �p

0\p ł 1

Pn
i= 1

x
p
i ø n1�p

Pn
i= 1

xi

� �p

p . 1

8>><
>>: ð4Þ

Problem formulation

The MAS considered in this study consists of one leader
indexed by 0 and N followers indexed by 1, :::,N , respectively.

The dynamics of the leader are given as follows

_x0, 1 = x0, 2

..

.

_x0, n�1 = x0, n

_x0, n = f x0, nð Þ+ u0

8>>><
>>>:

ð5Þ

and the dynamics of follower i(i= 1, . . . ,N ) are described by

_xi, 1 = xi, 2

..

.

_xi, n�1 = xi, n

_xi, n = f xi, nð Þ+sat uið Þ+ di

8>><
>>: ð6Þ

where xi = ½xi, 1, . . . , xi, n�T 2 R
n and ui 2 R denote the state

vector and control input, respectively; di 2 R represents the
external disturbance; f (�) : R! R is a smooth nonlinear func-

tion, and sat(�) stands for the saturation nonlinearity given by

sat uið Þ=
ui uij j\ui

max

ui
maxsign uið Þ uij jø ui

max

�
ð7Þ

with ui
max 2 R

+ being the known upper bound.

Assumption 1. The nonlinear function f (�) is Lipschitz
continuous, and thereby there exists a constant m 2 R

+

such that

f að Þ � f bð Þj jł m a� bj j, 8a, b 2 R ð8Þ

Assumption 2. The leader’s input u0 is not accessible to
any followers but bounded by a known constant
u0
max 2 R

+, that is, u0j jł u0
max.

Assumption 3. The disturbance di is first-order differenti-
able, and there exists a constant D 2 R

+ such that _di

�� ��łD
holds.
Remark 1. The considered MAS is governed by high-order
nonlinear dynamics with input saturation, which can be
viewed as extensions of the existing works (Tian et al.,
2017; Zuo et al., 2018b, 2019) by adding input saturation
and nonlinear terms and also cover the results given by
Zhang and Duan (2018) concerning with second-order sys-
tems. This raises the challenging difficulty of this study.
Remark 2. As indicated in Ding (2015), many practical
disturbances can be approximated by sinusoidal functions
with various amplitudes, frequencies, and phases, and
thereby assumption 3 is moderate and has been commonly
used for disturbance observer design (Ai and Yu, 2019a;
Zhang et al., 2018).

The communication connections among followers can be

described by a graph G=(V, E), in which V= f1, :::,Ng and
E � V3V denote the node set and the edge set, respectively.

An edge ei, j 2 E means that agent i can receive information

from agent j. Self-loops are not allowed in this paper, that is,

ei, i 62 E,8i 2 V. Let A 2 R
N 3 N be an adjacency matrix, with

entries ai, j = 1 if ei, j 2 E and ai, j = 0 otherwise. The

Laplacian matrix L= ½Li, j�N 3 N can be defined as follows

Li, j =

�ai, j i 6¼ jPN
k = 1, k 6¼i

ai, k i= j

8<
: ð9Þ

The information interconnection between the leader and

the followers is given by H=diagfh1, . . . , hNg, where hi = 1

if the ith follower can access the leader, otherwise hi = 0:

Assumption 4. The graph G among followers is undirected
and connected. The leader cannot receive information
from any followers and at least one follower can access
the leader.
Lemma 3 (Zuo et al., 2018b). The matrix
L= ½li, j�N 3 N =L+H is positive definite if assumption 4
holds.

The following definition is introduced to describe the

fixed-time leader–follower consensus problem, which also

represents the control objective of this study:

Definition 3. The fixed-time leader–follower consensus is
achieved by a distributed protocol ui if there exists a

Ai 2445



settling time Ts 2 R
+ independent of the initial conditions

such that

lim
t!Ts

xi tð Þ � x0 tð Þk k= 0

xi tð Þ= x0 tð Þ, 8t . Ts

(
ð10Þ

holds for all i 2 V.

Main results

FTSO design

If the leader’s states cannot be accessed by all followers, an

FTSO is designed in a distributed manner to reconstruct the

leader’s states for each follower.

Let x̂0
i, k 2 R be the estimated value of the leader’s state

x0, k , k = 1, :::, n, made by each follower i 2 V. The distributed
FTSO is given as follows

_̂x0
i, k =� a1, ksig

p1
q1 ê0

i, k

� �
� a2, ksig

q1
p1 ê0

i, k

� �
+ x̂0

i, k + 1 k = 1, :::, n� 1ð Þ
_̂x0

i, n =� a1, nsig
p1
q1 ê0

i, n

� �
� a2, nsig

q1
p1 ê0

i, n

� �
�a3ê0

i, n � a4sign ê0
i, n

� �
+ f x̂0

i, n

� �

8>>>>><
>>>>>:

ð11Þ

where a1, j,a2, j,a3,a4 2 R
+, j= 1, . . . , n, denote the design

parameters, p1 and q1 are positive odd integers satisfying

p1\q1, and ê0
i, k =

PN
j= 1 ai, j(x̂

0
i, k � x̂0

j, k)+ hi(x̂
0
i, k � x0, k).

Definite the error signal ~x0
i, k = x̂0

i, k � x0, k , k = 1, . . . , n,
whose dynamics can be obtained based on equation (11) as

follows

_~x0
i, k =� a1, ksig

p1
q1 ~e0

i, k

� �
� a2, ksig

q1
p1 ~e0

i, k

� �
+~x0

i, k + 1 k = 1, :::, n� 1ð Þ
_~x0

i, n =� a1, nsig
p1
q1 ~e0

i, n

� �
� a2, nsig

q1
p1 ~e0

i, n

� �
�a3~e

0
i, n � a4sign ~e0

i, n

� �
+ f x̂0

i, n

� �
�f x0, nð Þ � u0

8>>>>>>><
>>>>>>>:

ð12Þ

where ~e0
i, k =

PN
j= 1 ai, j(~x

0
i, k � ~x0

j, k)+ hi~x
0
i, k :

Let ~x0
k = ½~x0

1, k , . . . ,~x0
N , k �

T 2 R
N be a compact vector, and

thereby equation (12) can be rewritten as

_~x0
k =� a1, ksig

p1
q1 L~x0

k

� 	
� a2, ksig

q1
p1 L~x0

k

� 	
+~x0

k + 1 k = 1, :::, n� 1ð Þ
_~x0

n =� a1, nsig
p1
q1 L~x0

n

� 	
� a2, nsig

q1
p1 L~x0

n

� 	
�a3L~x0

n � a4sign L~x0
n

� 	
+ f̂

0 � f 0

�U0

8>>>>><
>>>>>:

ð13Þ

where U0 = 1N � u0, f̂ 0 = ½f (x̂0
1, n), . . . , f (x̂0

N , n)�
T , and

f 0 = 1N � f (x0, n). The following theorem shows the fixed-

time convergence of the error signals ~x0
k , k = 1, . . . , n:

Theorem 1. Suppose that assumptions 1, 2, and 4 hold. If
the observer parameters are chosen appropriately such
that

a1, k ø s1

2lmin Lð Þð Þ
p1 + q1

2q1

a2, k ø s2

N

p1�q1
2p1 2lmin Lð Þð Þ

p1 + q1
2p1

a3 ø
m2 +l2

min Lð Þ
2l2

min
Lð Þ a4 ø u0

max

ð14Þ

for all k = 1, . . . , n, where s1,s2 2 R
+, then the error signals

~x0
k , k = 1, . . . , n can be stabilized at the origin within a
bounded settling time regardless of the initial conditions.

Proof. Consider the following Lyapunov candidate
function

V1 =
1

2

Xn

k = 1

~x0
k

� 	T
L~x0

k ð15Þ

Differentiating equation (15) along with the trajectory

equation (13) yields that

_V 1 =�
Xn

k = 1

a1, k ~x0
k

� 	T
Lsig

p1
q1 L~x0

k

� 	
� a3 ~x0

n

� 	T
L2~x0

n

�
Xn

k = 1

a2, k ~x0
k

� 	T
Lsig

q1
p1 L~x0

k

� 	
+
Xn�1

k = 1

~x0
k

� 	T
L~x0

k + 1

� a4 ~x0
n

� 	T
Lsign L~x0

n

� 	
+ ~x0

n

� 	T
L f̂

0 � f 0 � U0

� �

ł �
Xn

k = 1

a1, k

XN

i= 1

XN

j= 1

li, j~x
0
j, k

�����
�����

p1 + q1
q1

+
f̂

0 � f 0
� �T

f̂
0 � f 0

� �
2

�
Xn

k = 1

a2, k

XN

i= 1

XN

j= 1

li, j~x
0
j, k

�����
�����

p1 + q1
p1

� 2a3 � 1

2
~x0

n

� 	T
L2~x0

n

� a4 � u0
max

� 	XN

i= 1

XN

j= 1

li, j~x
0
j, n

�����
�����+

Xn�1

k = 1

~x0
k

� 	T
L~x0

k + 1

ł � 2a3 � 1

2
~x0

n

� 	T
L2~x0

n +
m2

2
~x0

n

� 	T
~x0

n +
Xn

k = 1

~x0
k

� 	T
L~x0

k + 1

ł 2V1 �
2l2

min Lð Þa3 � l2
min Lð Þ � m2

2l2
min

~x0
n

� 	T
L2~x0

n

ł 2V1

ð16Þ

where a3 ø m2 +l2
min(L)=2l2

min(L), a4 ø u0
max, l2

min(L)
2IN ł L2,

and the Lipschitz condition in assumption 1 are used to
obtain the above formula.

As indicated in equation (16), V1 is bounded during all

time, meaning that the error signal ~x0
k , k = 1, . . . , n, will not

escape to infinity in any finite-time interval 0, t½ �. To show

the fixed-time convergence of the error signals, consider the
following Lyapunov candidate function

V2 =
1

2
~x0

n

� 	T
L~x0

n ð17Þ
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By leveraging lemma 2, the time derivative of V2 can be

calculated by

_V 2 =� a1, n ~x0
n

� 	T
Lsig

p1
q1 L~x0

n

� 	
� a3 ~x0

n

� 	T
L2~x0

n

� a2, n ~x0
n

� 	T
Lsig

q1
p1 L~x0

n

� 	
� a4 ~x0

n

� 	T
Lsign L~x0

n

� 	
+ ~x0

n

� 	T
L f̂

0 � f 0 � U0

� �

ł � a1, n

XN

i= 1

XN

j= 1

li, j~x
0
j, n

�����
�����

p1 + q1
q1

� a2, n

XN

i= 1

XN

j= 1

li, j~x
0
j, n

�����
�����

p1 + q1
p1

� a3 �
m2 +l2

min Lð Þ
2l2

min Lð Þ

� �
~x0

n

� 	T
L2~x0

n

� a4 � u0
max

� 	XN

i= 1

XN

j= 1

li, j~x
0
j, n

�����
�����

ł � a1, n

XN

i= 1

XN

j= 1

li, j~x
0
j, n

�����
�����
2

0
@

1
A

p1 + q1
2q1

� a2, nN
p1�q1

2p1

XN

i= 1

XN

j= 1

li, j~x
0
j, n

�����
�����
2

0
@

1
A

p1 + q1
2p1

=� a1, n ~x0
n

� 	T
L2~x0

n

� �p1 + q1
2q1

� a2, nN
p1�q1

2p1 ~x0
n

� 	T
L2~x0

n

� �p1 + q1
2p1

ł � a1, n 2lmin Lð Þð Þ
p1 + q1

2q1 1

2
~x0

n

� 	T
L~x0

n

� �p1 + q1
2q1

� a2, nN
p1�q1

2p1 2lmin Lð Þð Þ
p1 + q1

2p1 1

2
~x0

n

� 	T
L~x0

n

� �p1 + q1
2p1

ł � s1V

p1 + q1
2q1

2 � s2V

p1 + q1
2p1

2

ð18Þ

According to lemma 1, the error signal ~x0
n can be stabilized

at the origin within a fixed settling time bounded by

Ts, 1 =
2q1

s1 q1 � p1ð Þ +
2p1

s2 q1 � p1ð Þ ð19Þ

Following the convergence of the error signal ~x0
n, that is,

t ø Ts, 1, the dynamics of ~x0
n�1 reduce to

_~x0
n�1 =� a1, n�1sig

p1
q1 L~x0

n�1

� 	
� a2, n�1sig

q1
p1 L~x0

n�1

� 	
ð20Þ

Similarly, consider the following Lyapunov function

V3 =
1

2
~x0

n�1

� 	T
L~x0

n�1 ð21Þ

whose time derivative can be directly calculated by

_V 3 =� a1, n�1

PN
i= 1

PN
j= 1

li, j~x
0
j, n�1

�����
�����

p1 + q1
q1

�a2, n�1

PN
i= 1

PN
j= 1

li, j~x
0
j, n�1

�����
�����

p1 + q1
p1

ł � a1, n�1

PN
i= 1

PN
j= 1

li, j~x
0
j, n�1

�����
�����

 !p1 + q1
q1

�a2, n�1N
p1�q1

2p1

PN
i= 1

PN
j= 1

li, j~x
0
j, n�1

�����
�����

 !p1 + q1
p1

=� a1, n�1 ~x0
n�1

� 	T
LL~x0

n�1

� �p1 + q1
q1

�a2, n�1N
p1�q1

2p1 ~x0
n�1

� 	T
LL~x0

n�1

� �p1 + q1
p1

ł � a1, n�1 2lmin Lð Þð Þ
p1 + q1

2q1 V

p1 + q1
2q1

3

�a2, n�1N
p1�q1

2p1 2lmin Lð Þð Þ
p1 + q1

2p1 V

p1 + q1
2p1

3

ł � s1V

p1 + q1
2q1

3 � s2V

p1 + q1
2p1

3

ð22Þ

Notably, the error signal ~x0
n�1 can be stabilized at the ori-

gin within a fixed settling time bounded by 2Ts, 1. Recursively,

it is easy to verify that the error signal ~x0
1 will converge to zero

within a fixed settling time bounded by nTs, 1: This concludes
the proof of theorem 1:

Remark 3. The proof of theorem 1 indicates that the obser-
ver error ~x0

k is bounded during all time and x̂0
k = 1N � x0, k

holds for all t ø nTs, 1: Therefore, the leader’s state x0, k can
be successfully reconstructed by x̂0

i, k for each follower
within a bounded settling time regardless of the initial con-

ditions, which makes the design of the consensus protocol
feasible and effective.

FTDO design

To accommodate the external disturbances suffered by the

followers, an FTDO is introduced for each follower based on

the results given by Basin et al. (2017) as follows

_̂xi, 1 =� g1sig
a1 x̂i, 1 � xi, 1ð Þ+ x̂i, 2

�g1sig
b1 x̂i, 1 � xi, 1ð Þ

..

.

_̂xi, n�1 =� gn�1sig
an�1 x̂i, 1 � xi, 1ð Þ+ x̂i, n

�gn�1sig
bn�1 x̂i, 1 � xi, 1ð Þ

_̂xi, n =� gnsig
an x̂i, 1 � xi, 1ð Þ+sat uið Þ+ f xi, nð Þ+ d̂i

�gnsig
bn x̂i, 1 � xi, 1ð Þ

_̂
di =� gn+ 1sig

an+ 1 x̂i, 1 � xi, 1ð Þ
�gn+ 1sig

bn+ 1 x̂i, 1 � xi, 1ð Þ

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð23Þ
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where x̂i, k and d̂i represent the estimated values of

xi, k , k = 1, :::, n and di, i= 1, :::,N , respectively, and the

observer parameters satisfy that a1 2 (1� i, 1), b1 2 (1, 1+ i),

al = la1 � (l � 1), and bl = lb1 � (l � 1), l = 2, :::, n+ 1, with

i 2 R
+ being a small constant. Furthermore, the observer

gains gl, l= 1, :::, n+ 1, are selected such that the following

matrix

A=

�g1 1 0 � � � 0

�g2 0 1 � � � 0

..

. ..
. ..

. . .
. ..

.

�gn 0 0 � � � 1

�gn+ 1 0 0 � � � 0

2
666664

3
777775 ð24Þ

is Hurwitz. The following theorem shows the fixed-time con-

vergence of the error signal d̂i � di

�� ��, i 2 V:
Theorem 2. With assumption 3, if there exist positive defi-

nite matrices P 2 R
n+ 1ð Þ3 n+ 1ð Þ and Q 2 R

n+ 1ð Þ3 n+ 1ð Þ

such that the following equation

PA+AT P=� Q ð25Þ

holds, and then the error signal d̂i � di

�� ��, i= 1, :::,N , can be

stabilized at the origin within a fixed settling time bounded by

Ts, 2 =
l2�a1
max Pð Þ

1� a1ð Þlmin Qð Þ +
lmin Pð Þ

b1 � 1ð Þrb1�1lmax Qð Þ ð26Þ

where r ł lmin(P) denotes a positive constant.
Proof. The proof of theorem 2 is similar to that of equa-

tion 37, theorem 2, and therefore is omitted here:

Remark 4. As indicated in Basin et al. (2017), the error sig-
nal d̂i � di

�� �� is bounded during all time, and d̂i = di holds
for all t ø Ts, 2 regardless of the initial conditions. Along
with this fact, d̂i can be used to provide the capacity of dis-
turbance rejection for the followers.

Fixed-time consensus protocol design

As the system (6) is in the strict-feedback form, the backstep-

ping technique is used to proceed with the consensus protocol

design based on the FTSO (11) and the FTDO (23) for each

follower i 2 V, step by step in the subsequent text:

Step 1: Let di, 1 = xi, 1 � x̂0
i, 1. Differentiating di, 1 with

respect to time gives that

_di, 1 = xi, 2 � x̂0
i, 2 +a1, 1sig

p1
q1 ~e0

i, 1

� �
+a2, 1sig

q1
p1 ~e0

i, 1

� �
ð27Þ

Select the intermediate control law x�i, 2 2 R for the system

(27) as follows

x�i, 2 =� b1, 1sig
p2
q2 di, 1ð Þ � b2, 1sig

q2
p2 di, 1ð Þ+ x̂0

i, 2 ð28Þ

where b1, 1,b2, 1 2 R
+ denote the design parameters, p2 and q2

are positive odd integers satisfying p2\q2:
Step k(k = 2, . . . , n� 2): Define the error signal

di, k = xi, k � x�i, k , whose dynamics can be determined by

_di, k = xi, k + 1 � _x�i, k ð29Þ

Choose the intermediate control law x�i, k + 1 2 R for the

system (29) as follows

x�i, k + 1 =� b1, ksig
p2
q2 di, kð Þ � b2, ksig

q2
p2 di, kð Þ

+ _x�i, k � di, k�1

ð30Þ

where b1, k ,b2, k 2 R
+ denote the design parameters

Step n� 1: Let di, n�1 = xi, n�1 � x�i, n�1. The time derivative

of di, n�1 can be obtained by

_di, n�1 = xi, n � _x�i, n�1 ð31Þ

Select the intermediate control law x�i, n 2 R for the system

(31) as follows

x�i, n =� b1, n�1sig
p2
q2 di, n�1ð Þ � b2, n�1sig

q2
p2 di, n�1ð Þ

�di, n�2 � vi + _x�i, n�1

ð32Þ

where b1, n�1,b2, n�1 2 R
+ denote the design parameters, and

vi 2 R stands for an auxiliary variable to accommodate the

input saturation and is updated by

_vi =� v

p3
q3

i � v

q3
p3

i � ui +sat uið Þ ð33Þ

where p3 and q3 are positive odd integers satisfying p3\q3:
Step n: Define the error signal di, n = xi, n � x�i, n � vi, whose

dynamics can be determined by

_di, n = f xi, nð Þ+ ui + di +v

p3
q3

i +v

q3
p3

i � _x�i, n ð34Þ

The final control input ui can be chosen as follows

ui =� b1, nsig
p2
q2 di, nð Þ � b2, nsig

q2
p2 di, nð Þ � di, n�1

�f xi, nð Þ � d̂i � v

p3
q3

i � v

q3
p3

i + _x�i, n

ð35Þ

where b1, n,b2, n 2 R
+ denote the design parameters:

Remark 5. As shown in (34), the violation of the input

saturation is prevented by introducing the first-order filter
(33), which makes the design of the consensus protocol
feasible and effective.

As indicated in (30), (32), and (35), the time derivative
_x�i, k , k = 2, . . . , n, is required in the intermediate control laws
and the final control input. It is worth noting that _x�i, k is diffi-

cult to be determined analytically with the increasing of the

system order, leading to the problem of ‘‘explosion of terms’’

(Swaroop et al., 2000). To accommodate this problem, a

fixed-time differentiator is constructed based on the FTDO to
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estimate the time derivatives of the intermediate control laws

as follows

_xd
i, k =� g1sig

a1 xd
i, k � x�i, k

� �
+ vd

i, k

�g1sig
b1 xd

i, k � x�i, k

� �
_vd

i, k =� g2sig
a2 xd

i, k � x�i, k

� �
�g2sig

b2 xd
i, k � x�i, k

� �

8>>>>>><
>>>>>>:

ð36Þ

where xd
i, k 2 R and vd

i, k 2 R denote the estimates on x�i, k and

_x�i, k , k = 2, . . . , n. As indicated in theorem 2, _x�i, k can be recon-

structed by vd
i, k within a fixed settling time bounded by Ts, 2:

Remark 6. It is known that the dynamic surface control
(DSC) approach has been proven to be effective to accom-
modate the problem of ‘‘explosion of terms’’ (Swaroop
et al., 2000). However, only asymptotic boundedness of
the error signal _x�i, k � vd

i, k is guaranteed by the DSC tech-
nique. Different from the DSC, the fixed-time differentia-
tor (36) is used in this paper to avoid the problem of
‘‘explosion of terms,’’ which contributes to stabilizing the
error signal _x�i, k � vd

i, k at the origin within a bounded set-
tling time.

Owing to the fixed-time differentiator (36), the intermedi-

ate control laws and the final control input can be rewritten

by

x�i, 2 = �b1, 1sig
p2
q2 di, 1ð Þ � b2, 1sig

q2
p2 di, 1ð Þ+ x̂0

i, 2

x�i, k + 1 = �b1, ksig
p2
q2 di, kð Þ � b2, ksig

q2
p2 di, kð Þ � di, k�1

+ vd
i, k k = 2, . . . , n� 2ð Þ

x�i, n = �b1, n�1sig
p2
q2 di, n�1ð Þ � b2, n�1sig

q2
p2 di, n�1ð Þ

�di, n�2 � vi + vd
i, n�1

ui = �b1, nsig
p2
q2 di, nð Þ � b2, nsig

q2
p2 di, nð Þ � di, n�1

�f xi, nð Þ � d̂i � v

p3
q3

i � v

q3
p3

i + vd
i, n

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð37Þ

Substituting (37) into (27), (29), (31), and (34) yields that

_di, 1 =� b1, 1sig
p2
q2 di, 1ð Þ � b2, 1sig

q2
p2 di, 1ð Þ+ di, 2

+a1, 1sig
p1
q1 ~e0

i, 1

� �
+a2, 1sig

q1
p1 ~e0

i, 1

� �
_di, k =� b1, ksig

p2
q2 di, kð Þ � b2, ksig

q2
p2 di, kð Þ � di, k�1

+ di, k + 1 + vd
i, k � _x�i, k k = 2, . . . , n� 1ð Þ

_di, n =� b1, nsig
p2
q2 di, nð Þ � b2, nsig

q2
p2 di, nð Þ � di, n�1

+ di � d̂i + vd
i, n � _x�i, n

8>>>>>>>>><
>>>>>>>>>:

ð38Þ

The following theorem shows the leader–follower consen-

sus can be achieved by the protocol (35) for the MAS within a

bounded settling time:
Theorem 3. Suppose that assumptions 1–4 hold. If the

controller parameters are chosen appropriately such that

b1, k ø
s3

2
p2 + q2

2q2

b2, k ø
s4

N
p2�q2

2p2 2
p2 + q2

2p2

ð39Þ

for all k = 1, . . . , n, where s3,s4 2 R
+, then the fixed-time

consensus of the considered MAS can be realized by the con-

sensus protocol (35) associated with the FTSO (11) and the

FTDO (23) regardless of the initial conditions.
Proof. Consider the following Lyapunov candidate function

V4 =
1

2

Xn

k = 1

d2
i, k ð40Þ

whose time derivative along the trajectory (38) can be calcu-

lated by

_V 4 =�
Pn

k = 1

b1, kdi, ksig
p2
q2 di, kð Þ �

Pn
k = 1

b2, kdi, ksig
q2
p2 di, kð Þ

+ di, 1 a1, 1sig
p1
q1 ~e0

i, 1

� �
+a2, 1sig

q1
p1 ~e0

i, 1

� �� �
+

Pn
k = 2

di, k vd
i, k � _x�i, k

� �
+ di, n di � d̂i

� �
ł �

Pn
k = 1

b1, k di, kj j
p2 + q2

q2 � b2

Pn
k = 1

b2, k di, kj j
p2 + q2

p2

+ 1
2

a1, 1sig
p1
q1 ~e0

i, 1

� �
+a2, 1sig

q1
p1 ~e0

i, 1

� �� �2

+ 1
2

Pn
k = 2

vd
i, k � _x�i, k

� �2

+ 1
2

di � d̂i

� �2

+ 1
2

Pn
k = 1

d2
i, k + d2

i, n

� �
ł 2V4 +C

ð41Þ

where C=1=2(a1, 1sig
p1=q1 (~e0

i, 1)+a2, 1sig
q1=p1 (~e0

i, 1))
2+ 1

2
(di�d̂i)

2

+ 1=2
Pn

k = 2 (v
d
i, k � _x�i, k)

2 is bounded by recalling theorems 1

and 2. Solving equation (41) during the time interval

t 2 ½0, nTs, 1 +Ts, 2� gives that

V4 tð Þł V4 0ð Þ+ C

2

� �
e2 nTs, 1 +Ts, 2ð Þ � C

2
ð42Þ

which explicitly indicates that V4 tð Þ is bounded during the

convergent phase of the FTSO and the FTDO.
Following the convergence of the FTSO and the FTDO,

the error dynamics (38) can be rewritten as follows

_di, 1 =� b1, 1sig
p2
q2 di, 1ð Þ � b2, 1sig

q2
p2 di, 1ð Þ+ di, 2

_di, k =� b1, ksig
p2
q2 di, kð Þ � b1, ksig

q2
p2 di, kð Þ � di, k�1

+ di, k + 1 k = 2, . . . , n� 1ð Þ
_di, n =� b1, nsig

p2
q2 di, nð Þ � b2, nsig

q2
p2 di, nð Þ � di, n�1

8>>><
>>>:

ð43Þ

The time derivative of V4 tð Þ, t . nTs, 1 +Ts, 2, can be

directly given based on (41) by

_V 4 =�
Pn

k = 1

b1, kdi, ksig
p2
q2 di, kð Þ �

Pn
k = 1

b2, kdi, ksig
q2
p2 di, kð Þ

=�
Pn

k = 1

b1, k di, kj j
p2 + q2

q2 �
Pn

k = 1

b2, k di, kj j
p2 + q2

p2

ł � s3

2

p2 + q2
2q2

Pn
k = 1

di, kj j2
� �p2 + q2

2q2

� s4

N

p2�q2
2p2 2

p2 + q2
2p2

Pn
k = 1

di, kj j2
� �p2 + q2

2p2

=� s3V

p2 + q2
2q2

4 � s4V

p2 + q2
2p2

4

ð44Þ
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According to lemma 1, the error signal

di, k , k = 1, . . . , n, i= 1, . . . ,N , can be stabilized at the origin

within a fixed settling time bounded by nTs, 1 +Ts, 2 +Ts, 3

with

Ts, 3 =
2q2

s3 q2 � p2ð Þ +
2p2

s4 q2 � p2ð Þ ð45Þ

which explicitly demonstrates that the fixed-time leader–

follower consensus is achieved by the considered MAS. This

completes the proof of theorem 3:

Remark 7. It is worth noting that the settling time derived
in theorem 3 can be predetermined independent of the ini-
tial conditions. To be specific, the convergence rate of the
closed-loop system can be theoretically guaranteed even if
the initial conditions are prior unknown. Therefore, the
proposed consensus protocol is significantly different from

the existing finite-time algorithms (Cai and Xiang, 2017;
Fu et al., 2019; Lu et al., 2013; Lyu et al., 2016).

Simulation results

This section provides simulation examples to demonstrate the

effectiveness of the proposed consensus protocol. Consider an

MAS with one leader and five followers (N = 5), among

which the communication topology is described in Figure 1.

It is easy to verify that assumption 4 holds.
The dynamics of the leader and the followers are given by

_x0, 1 = x0, 2

_x0, 2 = f x0, 2ð Þ+ u0

�
ð46Þ

and

_xi, 1 = xi, 2

_xi, 2 = f xi, 2ð Þ+sat uið Þ+ di

�
ð47Þ

respectively, where f (xi, 3)= 0:1 sin (xi, 3), i= 0, 1, :::, 5,

dj = cos (( j� 1)t=3+(j� 1)p=5), j= 1, :::, 5 and u0 =� sin

(0:5t). Therefore, it is easy to verify that m= 0:1 and

u0
max = 1. Moreover, the upper bound of the control input is

given by ui
max = 10, i= 1 . . . , 5.

The initial values of the agents are fixed as

x0(0)= ½5, � 3�T , x1(0)= ½10, 0�T , x2(0)= ½�3, 4�T , x3(0)=

½16, � 6�T , x4(0)= ½�10, 10�T , and x5(0)= ½�18, � 5�T .
The initial conditions of the FTSO and the FTDO are chosen

as x̂0
i, k(0)= xi, k(0), k = 1, 2, and d̂i(0)= 0, i= 1, :::, 5,

respectively.
The design parameters of the FTSO are selected as p1 = 3,

q1 = 5, a1, 1 =a1, 2 = 0:8, a2, 1 =a2, 2 = 1:2, a3 = 5, and

a4 = 1. The design parameters of the FTDO are determined

based on Basin et al. (2017) as g1 = 24, g2 = 216, g4 = 1296,

a1 = 0:9, a2 = 0:8, a3 = 0:7, b1 = 1:1, b2 = 1:2, and b3 = 1:3.
Moreover, the controller parameters are chosen as p2 = 5,

q2 = 7, b1, 1 =b2, 1 = 0:1 and b1, 2 =b2, 2 = 0:3,.

Figure 1. Communication topology.

Figure 2. Time histories of the consensus errors

xi, 1 � x0, 1, i= 1, 2, 3, 4, 5.

Figure 3. Time histories of the consensus errors

xi, 2 � x0, 1, i= 1, 2, 3, 4, 5.
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The simulation results are shown through Figures 2 to 7.

Figures 2 and 3 present the time histories of the consensus

errors, which explicitly show that the consensus can be

achieved by the MASs governed by the proposed fixed-time

protocol. The simulation results of the FTSO and the FTDO

are respectively given in Figures 4 and 5, which demonstrates

the effectiveness of the FTSO and the FTDO. Figures 6 and 7

give the time histories of the saturated control inputs sat(ui)

and the actual inputs ui, respectively. It should be noted that

due to the persistent external disturbances, the control inputs

cannot be regulated to zeros with the consensus being

achieved. Consequently, with the aid of the proposed fixed-

time algorithm, the leader–follower consensus can be achieved

successfully by the MAS with bounded control inputs.
To further provide better insights on the effect of the input

saturation on the proposed approach, simulation studies with

respect to various input bounds (ui
max = 10, 20, 30, 40, 50) are

illustrated in Figures 8 and 9, showing the time histories of

the total consensus errors E =
P5

i= 1

P2
j= 1 xi, j � x0, j

�� �� and

the total control costs
P5

i= 1 sat(ui)j j. Notably, the simulation

results explicitly indicate that the proposed consensus proto-

col can be used to tackle different input saturation.

Figure 4. Time histories of the FTSO.

Figure 5. Time histories of the errors of the FTDO.

Figure 6. Time histories of the saturated inputs sat uið Þ, i= 1, 2, 3, 4, 5.

Figure 7. Time histories of the actual inputs ui, i= 1, 2, 3, 4, 5.

Figure 8. The total consensus errors with various input bounds.
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Finally, to show the superior advantage of the proposed

fixed-time consensus protocol compared with the existing

finite-time algorithms, simulation results with respect to vari-

ous initial conditions are presented in Figure 10, showing the

settling times with respect to logarithm of the initial total con-

sensus errors lnE(0). It should be noted that the settling time

is obtained when the total consensus error reaches a threshold

10�2. Evidently, fast convergence can be always achieved by

the proposed fixed-time consensus algorithm while the set-

tling time gained by the finite-time algorithm grows unbound-

edly with the increase of the initial consensus error.

Conclusion

In this study, the fixed-time consensus disturbance rejection

problem for high-order nonlinear MASs was investigated

considering input saturation. To achieve this goal, an FTSO

and an FTDO were designed to estimate the leader’s states

and compensate for the external disturbances, respectively,

for each follower. Based on the estimated values, backstep-

ping was used to construct a distributed consensus protocol,

where the problem of ‘‘explosion of terms’’ was avoided by a

fixed-time differentiator. Rigorous stability analysis explicitly

demonstrated that the leader–follower consensus could be

achieved within a fixed-time settling time regardless of the ini-

tial conditions. Finally, the effectiveness of the proposed

approach was verified through simulation results.
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