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a b s t r a c t

Knowledge graphs have been demonstrated to be an effective tool for numerous intelligent applica-
tions. However, a large amount of valuable knowledge still exists implicitly in the knowledge graphs.
To enrich the existing knowledge graphs, recent years have witnessed that many algorithms for link
prediction and knowledge graphs embedding have been designed to infer new facts. But most of these
studies focus on the static knowledge graphs and ignore the temporal information which reflects
the validity of knowledge. Developing the model for temporal knowledge graphs completion is an
increasingly important task. In this paper, we build a new tensor decomposition model for temporal
knowledge graphs completion inspired by the Tucker decomposition of order-4 tensor. Furthermore,
to further improve the basic model performance, we provide three kinds of methods including cosine
similarity, contrastive learning, and reconstruction-based to incorporate the prior knowledge into the
proposed model. Because the core tensor contains a large number of parameters on the proposed
model, thus we present two embedding regularization schemes to avoid the over-fitting problem.
By combining these two kinds of regularization with the proposed model, our model outperforms
baselines with an explicit margin on three temporal datasets (i.e. ICEWS2014, ICEWS05-15, GDELT).

© 2021 Published by Elsevier B.V.
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1. Introduction

Knowledge graphs (KGs) which are represented as a collec-
ion of triples (subject, predicate, object), are graph-structured
epresentations of knowledge and facts in the real-world and
ave been demonstrated to be available for various downstream
asks, such as recommendation [1], question answering [2], and
nformation retrieval [3]. However, a great deal of knowledge re-
ains hidden in the KGs, namely many links are missing between
ntities in KGs. In recent years, many algorithms for KGs com-
letion are proposed to enrich KGs. As a representative method,
Gs embedding is a current research hotspot and presents its effi-
iency and effectiveness on KGs completion. This type of method
ims to model the nodes and relations in KGs and learn their
ow-dimensional hidden representation on the premise of pre-
erving the graph structure and knowledge, then feeding the
epresentation of each triple to score function for its validity.

As the increase of structured data, many facts involve temporal
roperty, such as (Trump, PresidentOf, America) is true from
017 to 2021, (Einstein, WonPrize, Nobel Prize) only hold in
922, and knowledge presents dynamic and temporal gradually.

∗ Corresponding author at: National Laboratory of Pattern Recognition,
nstitute of Automation, Chinese Academy of Sciences, Beijing, China.
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However, static KGs completion algorithms without taking tem-
poral information cannot achieve considerable link prediction [4]
performance on these temporal facts. Therefore, temporal KGs
completion becomes an increasingly important task. On a tem-
poral KGs with timestamps varying from t0 to tT , temporal KGs
completion has two settings — interpolation and extrapolation.
In the interpolation setting, new facts are inferred out for time t
(t0 ≤ t ≤ tT ) by using historical information and future informa-
ion. Corresponding extrapolation setting only employs historical
nowledge to predict future facts for time t (t > tT ). In this work,
e focus on the interpolation temporal KGs completion. To be
pecific, our task is to answer the queries (subject, predicate, ?,
imestamps) and (?, predicate, object, timestamps) on temporal
Gs with timestamps varying from t0 to tT .
Recently, tensor factorization methods have been success-

ully applied to KGs completion as Table 1. [5,6] apply Canonical
olyadic (CP) decomposition and Tucker decomposition to static
Gs completion, respectively. And they frame KGs completion
roblem as an order-3 tensor completion problem. Inspired by
he CP decomposition of order-4 tensor, TNTComplEx [7] ex-
resses temporal KGs completion problem as an order-4 tensor
ompletion problem and presents an extension of ComplEx for
emporal KGs completion. However, it is an NP-hard problem [8]
o calculate the rank of tensors for CP decomposition, thus TNT-
omplEx has to put great effort into selecting a proper rank

f tensors manually for temporal KGs completion. In addition,
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able 1
ensor decomposition-based KGs completion models.
Models CP decomposition Tucker decomposition

Static KGs DistMult [10],
ComplEx [11],
SimplE [12]

TuckER [6]

Temporal KGs DE-SimplE [13],
TNTComplEx [7],
TIMEPLEX [9]

Ours

TNTComplEx integrates the prior that adjacent timestamps have
close representations into its model, and fails to consider the non-
adjacent timestamps, thus it does not model more complete prior
knowledge. TIMEPLEX [9] performs CP order-3 tensor decompo-
sition on temporal KGs, which constructs a base score by aug-
menting the ComplEx score and employs three time-dependent
terms to replace a single four-way product. Moreover, it designs
three temporal constraints to incorporate the prior into its model,
including relation recurrence, relations order, and the time gaps
between relations. However, these three temporal constraints
fail to help the basic model much in terms of performance.
Therefore, designing a powerful temporal KGs completion model
incorporating prior knowledge remains an important task.

To this end, we develop a new Tucker decomposition model
or temporal KGs completion inspired by the Tucker decomposi-
ion of order-4 tensor, and it is capable of achieving considerable
erformance by virtue of its powerful expressive ability. Based
n this, to further improve the basic model performance, we de-
ign three novel methods including cosine similarity, contrastive
earning, and reconstruction-based to incorporate prior knowl-
dge about timestamps into the proposed model. Note that, the
ore tensor on our model contains a large number of parameters,
hus we present two embedding regularization schemes to avoid
he overfitting problem. Overall, by combining these two kinds
f regularization with the basic model, the proposed model not
nly achieves considerable prediction performance and promis-
ng generalization performance, but also provides a support for
pplying Tucker decomposition to temporal KGs as Table 1. Our
ontributions are as follows:

• Developing a new tensor decomposition model for temporal
KGs completion inspired by the Tucker decomposition of
order-4 tensor.

• Presenting three methods including cosine similarity, con-
trastive learning, and reconstruction-based to incorporate
prior knowledge into the proposed model to help to improve
the basic model.

• Introducing two embedding regularization schemes to avoid
the overfitting problem caused by the core tensor in the
proposed model containing a large number of parameters.

• Experimental studies on three temporal datasets demon-
strate that our algorithm achieves state-of-the-art perfor-
mance.

. Related work

In this section, we introduce the previously proposed methods
or static and temporal KGs completion. Please kindly note that
ost of the related works are based on tensor decomposition.

.1. Static KGs completion

Static KGs completion methods based on embedding can be
roadly classified into three paradigms: Translational distance-
ased models such as TransE [14] and TransD [15], Tensor factor-
zation based methods, and Neural network-based models includ-
ng ConvE [16] and R-GCN [17]. In particular, tensor decomposi-

ion has been favored in KGs completion for its high efficiency

2

and powerful function. RESCAL [18] is the seminal tensor de-
composition method for static KG completion, which imposes a
score function of a bilinear product on the two entity vectors and
predicate matrix. Although the model is fully expressive, it tends
to arise over-fitting problems as the predicate matrix includes
a large number of parameters. Later, DistMult [10] is aware of
the above defects, then simplifying RESCAL by diagonalizing the
predicate matrix. This also poses a problem that the diagonal
predicate matrix only models symmetric relation but asymmetric
relation. To address this problem, ComplEx [11] projects entity
and predicate embeddings into complex space to better model
asymmetric relation. From another perspective, HoLE [19] applies
circular correlation operation to subject and object entity vec-
tors to obtain a compositional vector, which then matches the
predicate vectors to score the fact, thus the model absorbs the
advantages of RESCAL and DistMult. The above methods based
on CP tensor decomposition learn the subject and object entity
representation independently. This is also the main reason for
conducting link prediction poorly. In view of this, SimplE [12]
presents a new CP method that takes advantage of the inverse of
the predicate to address the obstacle. In addition to the methods
based on CP decomposition, TuckER [6] based on Tucker decom-
position also frames KGs completion as a order-3 binary tensor
completion problem and factorizes the binary tensor of known
facts into core tensor and three orthogonal matrixes.

2.2. Temporal KGs completion

Most static completion models fail to take temporal informa-
tion while learning embeddings of the KG elements. The temporal
KGs completion remains a valuable but rarely studied research
issue, and recent years witness that only a handful of temporal
KGs completion models are presented.

t-TransE [20]: To model the transformation between the time-
aware predicate of two adjacent facts, t-TransE imposes temporal
order constraints on the geometric structure of the embedding
space to enforce the embeddings to be temporally consistent and
more accurate. Then t-TransE optimizes the joint model consist-
ing of temporal order constraints and the TransE model to make
the embedding space compatible with the observed triple in the
fact dimension.

HyTE [21]: Inspired by TransH [22], HyTE associates temporal
nformation with entity and predicate by projecting them to the
yperplane modeled by temporal information. Then HyTE accom-
lishes the embedding learning of entity and predicate which
ncorporate temporal information by minimizing translation dis-
ance.

TA-DistMult [23]: To incorporate temporal information, TA-
istMult employs a recurrent neural network to learn the time-
ware representation of predicate which then be utilized in Dist-
ult and TransE.
ConT [24]: To model the cognitive function, the work general-

zed several static KGs approaches including Tucker and RESCAL
o temporal/episodic KGs. Tree and ConT are two novel gen-
ralizations of RESCAL to episodic tensors, and ConT obtains
utstanding performance overall through introducing the latent
epresentation of time for sparse episodic tensors.

DE-SimplE [13]: Motivated by diachronic word embeddings,
E-SimplE, combining the diachronic entity embedding function
ith the static model SimplE, is capable of instructing the model
o learn the temporal features of the entity at any point in time
or temporal KG completion.

TNTComplEx [7]: Inspired by the canonical decomposition of
rder-4 tensor, TNTComplEx introduces an extension of ComplEx
or temporal KG completion. Although TNTComplEx obtains con-
iderable performance, it is hard to determine the rank of the
ensor accurately.
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ATiSE [25]: To capture the evolution process of KG represen-
tations, ATiSE decomposes a time series into three components,
including a trend component, a seasonal component, and a ran-
dom component. Meanwhile, ATiSE also considers the temporal
uncertainty during the evolution of entity/relation representa-
tions over time and projects the representations of temporal KGs
into the space of multi-dimensional Gaussian. distributions.

TIMEPLEX [9]: TIMEPLEX constructs a base score including
three time-dependent terms by augmenting the ComplEx score
and designs three temporal constraints to incorporate the prior
knowledge, including relation recurrence, relations order, and the
time gaps between relations.

TeLM [26]: TeLM performs 4th-order tensor factorization of
a Temporal knowledge graph using a Linear temporal regular-
izer and Multivector embedding. In addition, TeLM develops a
novel linear temporal regularizer by adding a bias component
between the neighboring temporal embeddings to promote that
the difference between embeddings of two adjacent time steps is
smaller than the difference between embeddings of two distant
time steps.

RTFE-TComplEx [27]: RTFE-TComplEx which uses TComplEx
as a baseline model treats the KGs of each timestamp as a Markov
chain and approximates the state transition as the gradient up-
date process. In brief, RTFE tracks the state transition of TKG by
passing updated parameters/features between timestamps recur-
sively.

In this work, we propose a Tucker decomposition of an order-4
tensor for temporal KG completion and introduce three meth-
ods including contrastive learning and reconstruction-based to
incorporate prior knowledge into the proposed model. Experi-
mental results show that our algorithm achieves state-of-the-art
performance.

3. Background

CP decomposition [28] factorizes a tensor X into sum of R
rank-one tensors, which is described as follows,

X =

R∑
r=1

ar ◦ br ◦ cr (1)

Here, R is the rank of the tensor X , ◦ represents the vector outer
product. From the above formula, we can obtain that the first
problem in calculating CP decomposition is how to determine the
rank R of tensor. But [8] proves that it is an NP-hard problem
to calculate the rank of tensors for CP decomposition, thus TNT-
ComplEx [7] faces the problem of selecting an appropriate rank
of tensor.

While Tucker decomposition [29] is a form of high-order PCA,
which factorizes a tensor into a core tensor multiplied by a matrix
along each mode. Specifically, given a tensor X ∈ Rn1×n2×n3 ,
Tucker decomposition can factorize X along three mode into core
tensor G and three matrix A, B, C ,

X ≈ G ×1 A ×2 B ×3 C

=

∑
p

∑
k

∑
q

g (pkq)a(p) ◦ b(k) ◦ c(q) = [[G; A, B, C]] (2)

where the core tensor G ∈ Rr1×r2×r3 can capture the information
of interaction between the different components. The matrix in
each mode A ∈ Rn1×r1 , B ∈ Rn2×r2 , C ∈ Rn3×r3 are orthogonal to
each other. ×n suggests the tensor product along the nth mode.
In addition, if the core tensor is super-diagonal and satisfies
r1 = r2 = r3, the Tucker decomposition is equivalent to CP
decomposition.

Latter, TuckER [6] employs this type of decomposition for KGs

completion, which views matrix A and C as entity embedding E,

3

E = A = C ∈ Rne×de , with ne indicates the number of entities, de
suggests the dimensionality of entity embedding. Regarding B as
predicate embedding R, R = B ∈ Rnr×dr , where nr and dr denote
the number of predicates and the dimensionality of predicate
embedding, respectively. The scoring function is represented as
follows,

φ(es, er , eo) = W ×1 es ×2 er ×3 eo = [[W; es, er , eo]] (3)

here W ∈ Rde×dr×de also is core tensor, and the number of
parameter in W only relies on the embedding dimensionality
of entity and predicate, not on the number of entities or pred-
icates. Meanwhile, TuckER also justifies that ComplEx based on
CP decomposition is a special case of TuckER.

4. The proposed model

The temporal fact (s, r, o, t) gives the triple (s, r, o) a temporal
label t to ensure its accuracy. We argue that the temporal in-
ormation is contained in the entity or predicate of the correct
riple fact implicitly. For example, if the fact (Trump, PresidentOf,
merica) is universally true, then the temporal element [2017,
021] of the 4-tuple is contained implicitly in the subject entity
f Trump, or the predicate of PresidentOf, or the object entity of
merica. We can express the above three cases in the following
orms,

• (Trump & [2017, 2021], PresidentOf, America): Trump of
that period from 2017 to 2021 was President of America.
That is, the entity of Trump in the triple refers to Trump of
that period from 2017 to 2021.

• (Trump, PresidentOf & [2017, 2021], America): Trump was
President of that period from 2017 to 2021 of America.

• (Trump, PresidentOf, America & [2017, 2021]): Trump was
President of America of the period from 2017 to 2021.

lthough the timestamps information emphasizes different ob-
ects to express their temporal nature, respectively, these three
acts accurately express the same meaning. Therefore, we can
xtract the temporal information T from the triples to express
he temporal facts in form of 4-tuple. Meanwhile, the embedding
imensionality of timestamps is the same as the embedding
imensionality of predicate or entity. Thus the Tucker decompo-
ition can naturally be extended to the following general form by
dding temporal information T [30],

(E, R, T ) = [[M; E, R, E, T ]] (4)

where M ∈ Rde×dr×de×dt is core tensor. We call this kind of
decomposition TuckERT, E represents entity matrix, R denotes
predicate matrix, and T indicates temporal matrix. Given the tem-
poral fact (es, er , eo, et ), the TuckERT decomposition is expressed
in following inner product form,

φ(E, R, T )s,r,o,t = ⟨M; es, er , eo, et⟩ (5)

As described in the above example, the time-wise information
can be employed to associate with the subject, predicate or object
to obtain time-dependent embedding equivalently. In addition,
obtaining the time-dependent embedding can be viewed as the
inverse process of TuckERT decomposition,

φ(E, R, T )s,r,o,t = ⟨M; es, er , eo, et⟩ = ⟨W; es ⊙ et , er , eo⟩
= ⟨W; es, er ⊙ et , eo⟩
= ⟨W; es, er , eo ⊙ et⟩

(6)

Here, ⊙ denotes dot product, W ∈ Rde×dr×de is the folding version
of M on dimension 2 and 4 when associating the time-wise
information with predicate. In addition, it is worth noting that

some facts may vary with time-wise dimension, while some facts
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re independent of time. As mentioned above, the fact (Trump,
residentOf, America) hold from 2017 to 2021, (Einstein, Won-
rize, Nobel Prize) is true only at 1922. While the correctness
f the facts (Beijing, CityOf, China) does not change over time.
o model the two kinds of knowledge, temporal facts and non-
emporal facts, following [7,13], we propose a TuckERTNT model
hich is a variant of TuckERT,

(E, R, T ) = [[M; E, R, E, T ]] + [[M; E, R, E, 1]] (7)

Similarly, given the temporal fact (es, er , eo, et ), the specific
form of the TuckERTNT decomposition can be described as fol-
lows,

φ(E, R, T )s,r,o,t =
⟨
W; es, etr , eo, et

⟩
+ ⟨W; es, er , eo, 1⟩

=
⟨
W; es, etr ⊙ et , eo

⟩
+ ⟨W; es, er ⊙ 1, eo⟩

=
⟨
W; es, etr ⊙ et + er , eo

⟩ (8)

where NT (the suffix of TuckERTNT) is an abbreviation of non-
temporal. etr and er are two different representations of same
relation, respectively, that is, temporal relation representation
and static relation representation. Compared with TNTComplEx,
not only does our model not need to select the rank of ten-
sors manually, but it also has a powerful expressive ability. We
associate the temporal information with the predicate to learn
time-dependent embeddings based on the Tucker decomposi-
tion and use the parameters of the core tensor to increase the
level of interaction in each dimension between the entity and
time-dependent predicate, thus obtaining state-of-the-art perfor-
mance. Furthermore, [6] proved that ComplEx is equivalent to
TuckER on the premise of imposing certain constraints on the
core tensor, or ComplEx is a special case of TuckER. We give
a similar result that TComplEx can be viewed as equivalent to
TuckERT on the premise of certain constraints.

4.1. Time regularization

We expect to integrate more prior knowledge into the pro-
posed model to improve model performance. Here, we provide
three kinds of models and the corresponding prior knowledge
about timestamps that they are modeled.

(1) Cosine Similarity : It uses the cosine value of the angle
between two vectors to measure the similarity. Here, we em-
ploy cosine similarity measure to model the prior that adjacent
timestamps have close representations, that is

Ls(T ) = −
eTti+1

· eti
|eti+1 ||eti |

(9)

(2) Contrastive learning : Inspired by first order Markov chain
(Given the state at the current moment, the state at the next
moment is independent of the state at the past moment), thus, in
addition to that the representations between the adjacent times-
tamps are similar, we add a constraint that the representations
between the non-adjacent timestamps are dissimilar. This can be
modeled in contrastive learning fashion as,

Lc(T ) = − log
exp(eTtieti+1 )

exp(eTtieti+1 ) +
∑N

k=i+2 exp(e
T
tietk )

(10)

here N denotes the number of the timestamps.
(3) Reconstruction-based : (1) only considers adjacent times-

tamps. (2) considers adjacent and non-adjacent timestamps si-
multaneously, and it argues that the representations between the
adjacent timestamps are similar and the representations between
the non-adjacent timestamps are dissimilar. This part proposes
a ‘‘soft’’ smooth constraint that the similarity of the representa-
tion of the two timestamps will decrease as the time distance
4

increases. To model this assumption, we first construct a template
by the following function:

Mti,tj = e−
∥ti−tj∥

2

2σ2 (11)

here σ is the kernel width. The element mti,tj of M represents
the inverse of the distance between ti and tj. The similar matrix
can be obtained by cosine similarity measure,

=
eTti · etj
|eti ||etj |

(12)

Thus, to achieve the proposed assumption, we enforce the repre-
sentation similarity of two timestamps to confirm to the inverse
distance relations,

Lr (T ) = ∥S − M∥
2
2 (13)

Please kindly note that the larger the value of σ , the smoother the
results, so it has a powerful impact on learning the representation
of timestamps.

4.2. Embedding regularization

To prevent the model from over-fitting, we impose embedding
regularization constraints on the elements of the proposed model.
Note that, because the core tensor contains a large number of
parameters, we argue that exerting a constraint on the core
tensor is important and may have an appreciable impact on
our model. Therefore, based on the regularization scheme, we
study the impact of imposing constraints on the core tensor and
without constraints, respectively.

Lp(E) =
1
4
(2∥es∥q

p + ∥etr ⊙ et∥q
p + 2∥eo∥q

p + ∥er∥q
p)

Lp(E,W) =
1
5
(2∥es∥q

p + ∥etr ⊙ et∥q
p + 2∥eo∥q

p + ∥er∥q
p + ∥W∥

q
p)

(14)

here ∥ · ∥p is the lp norm of the matrix, and ∥ · ∥
q denotes the q

power of tensor norm.

4.3. Learning

We employ data augmentations to add reciprocal predicates
(object, predicate−1, subject, timestamps) into training sets. The
model parameters are learned utilizing stochastic gradient de-
scent with mini-batches. Then we expect to minimize the instan-
taneous multi-class loss [5] to train our model :

L(θ ) = −φ(θ; s, r, o, t) + log
(∑

o′

exp
(
φ(θ; s, r, o′, t)

))
(15)

Here, (s, r, o, t) is a positive sample, (s, r, o′, t) represents the
negative sample obtained by replacing the true object with a
false. Note that, the loss function can only be used to train the
model to answer the queries of this form (subject, predicate, ?,
timestamps). Due to the existence of inverse samples (object,
predicate−1, subject, timestamps), answering (object, predicate−1,
?, timestamps) is equivalent to answer (?, predicate, object,
timestamps).

Considering instantaneous multi-class loss and the above two
classes of regularization term jointly, we train our model by
minimizing the following loss function:

L = L(θ ) + λ1 ∗ Lr (T ) + λ2 ∗ Lp(E,W) (16)

where λ1 and λ2 are tuning parameters to balance the importance
of L (T ) and L (E,W), respectively.
r p
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umber of parameters of the proposed method and baseline models. d rep-

resents the embedding dimensionality, r denotes the rank of a tensor, and
2r = d.
De-SimplE d((3γ + (1 − γ ))|E| + |R|)
TComplEx 2r(|E| + |T | + 2|R|)
TNTComplEx 2r(|E| + |T | + 4|R|)
TIMEPLEX d(|E| + |T | + 6|R|)
TeLM d(|E| + |T | + 2|R|)

TuckERT d(|E| + |T | + 2|R|) + d3

TuckERTNT d(|E| + |T | + 4|R|) + d3

4.4. Time complexity and parameter growth

Table 2 presents the numbers of parameters for the pro-
osed models TuckERT, TuckERTNT, and tensor decomposition-
ased baseline models De-SimplE, TComplEx, TNTComplEx, TIME-
LEX, and TeLM. The number of parameters in baseline models
ncreases linearly with respect to the number of entities and
redicates or embedding dimensionality d. While the number
f parameters in our model grows three times with embedding
imensionality d as the three-dimension core tensor depends
nly on the embedding dimensionality. Consequently, the time
omplexity for the proposed models TuckERT and TuckERTNT is
(d3). As for De-SimplE, TComplEx, TNTComplEx, TIMEPLEX, and
eLM, they have a time complexity of O(d). It can be viewed that
ur model includes more parameters on the premise of the fixed
umber of entities, predicates, and embedding dimensionality.
owever, it has been argued that a model with many param-
ters tends to arise over-fitting and scalability problems, thus
esulting in poor performance. Table 4 suggests that the proposed
odel can better fit the large-scale discrete temporal data by
sing more controllable parameters compared with the baseline
odels. Accordingly, an important challenge in designing a tensor
ecomposition model for temporal knowledge completion is the
rade-off between model parameters and data, as well as the
rade-off between expressiveness and model complexity.

.5. Expressivity analysis

Full expressiveness is a very important property for the KG
ompletion model, which refers to the ability of a model to cor-
ectly distinguish positive facts from negatives through learning.
he proof of full expressiveness about our model is introduced as
ollows.

heorem 1. TuckERT is fully expressive for temporal knowledge
graph completion.

Proof. Given a 4-tuple (es, er , eo, et ), where es, eo ∈ Rne×de are
one-hot binary vector representations of subject and object, er ∈

Rnr×dr , et ∈ Rnt×dr are one-hot binary vector representations
of predicate and timestamps, respectively. Here, the embedding
dimensionality satisfies de = ne, dr = nr . We set the pth element
of the binary vector es, kth element of er , qth element of eo, rth
element of et to be 1, all other elements to be 0. Moreover, we
set the pkqrth element of the tensor M ∈ Rde×dr×de×dr to 1 if the
emporal fact (es, er , eo, et ) holds and −1 otherwise. According to
uckERT decomposition:

(E, R, T ) = ⟨M; es, er , eo, et⟩

=

∑∑∑∑
M(pkqr)e(p)s ◦ e(k)r ◦ e(q)o ◦ e(r)t

(17)

p k q r

5

the inner product of the entity embeddings, the predicate embed-
ding and time embedding with the core tensor is capable of rep-
resenting the original temporal tensor accurately. And by modu-
lating the parameters in core tensor, the model can completely
distinguish the positive samples from the negative.

From another perspective, we can regard the core tensor M
as a linear classifier in high dimensional space, which possesses
the ability to distinguish the positive and negative samples in low
dimensional space through learning. □

5. Experiment result

5.1. Datasets

We evaluate the proposed model by utilizing the following
three standard benchmarks for temporal KGs completion. The
details of these dataset statistics are presented in Table 3.

• ICEWS2014: The ICEWS (Integrated Crisis Early Warning
System) [31] dataset is the collection of 4-tuple which is
extracted from digital and social news about political events.
Intuitively, ICEWS2014 [23] sub-sampling from ICEWS is
the temporal facts occurring in 2014, and it contains 7128
entities, 230 predicates, and 365 timestamps.

• ICEWS05-15: Similarly to ICEWS2014, ICEWS05-15 [23] is
another subset of ICEWS. This dataset corresponding to the
temporal facts from 2005 to 2015 has 10488 entities, 251
predicates, and 4017 timestamps.

• GDELT: GDELT (Global Database of Events, Language, and
Tone) [32] is a repository that contains human social rela-
tionships. We implement our models and baselines on its
subset dataset [33], which corresponds to the facts from
2015 to 2016 and contains 500 entities, 20 predicates, and
366 timestamps.

5.2. Baselines

To evaluate the performance of our proposed TuckERT and
TuckERTNT, we compare it with 17 state-of-the-art baseline
methods introduced briefly in related work, including static KGs
completion methods TransE [14], DistMult [10], ComplEx [11],
SimplE [12], and temporal methods t-TransE [20], HyTE [21], TA-
DistMult [23], ConT [24], three variants of DE-SimplE [13], TCom-
plEx [7], TNTComplEx [7], ATiSE [25], TIMEPLEX [9], TeLM [26],
RTFE-TComplEx [27]. For consistency and fairness, most of base-
lines are based on tensor decomposition.

5.3. Evaluation protocol

Given the incomplete temporal data, the task of link predic-
tion is to predict the missing entity. More specifically, this task
answers the queries of the form (subject, predicate, ?, times-
tamps) and (?, predicate, object, timestamps). For the above two
queries, we employ mean reciprocal rank (MRR) and Hit@n to
measure the prediction level of our model. MRR is the average
of the reciprocal of the mean rank (MR) assigned to the true
triple overall candidate triples, Hits@n measures the percentage
of test-set rankings where a true triple is ranked within the
top n candidate triples. While MRR is widely used as an eval-
uation indicator of inference in the literature as MRR is more
stable [34] than MR which is highly susceptible to a bad pre-
diction. We denote kf ,s and kf ,o as the ranking for subject s and
object o for the two queries, respectively. MRR and Hit@n are
defined as follows. MRR: 1

2∗|test|

∑
f=(s,r,o,t)∈test (

1
kf ,o

+
1

kf ,s
). Hit@n :

1
2∗|test|

∑
f=(s,r,o,t)∈test (1kf ,o⩽n+1kf ,s⩽n), where 1variable is 1 if variable

olds and 0 otherwise.



P. Shao, D. Zhang, G. Yang et al. Knowledge-Based Systems 238 (2022) 107841

P
t
l
s
b
C
e
c
a
p
s
a
I
d

5

I
r
r
P
o
c
o
o
a
I
t
f
I
m

Table 3
Dataset statistics.
DataSets Entities Predicates Timestamps Training Validation Test

ICEWS2014 7,128 230 365 72,826 8,941 8,963
ICEWS05-15 10,488 251 4,017 386,962 46,275 46,092
GDELT 500 20 366 2,735,685 341,961 341,961
Table 4
The results of Link prediction on ICEWS2014, ICEWS05-15 and GDELT datasets. Best results are in bold.

Method ICEWS2014 ICEWS05-15 GDELT

MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10

TransE 0.326 0.154 0.430 0.644 0.330 0.152 0.440 0.660 0.155 0.060 0.178 0.335
DistMult 0.441 0.325 0.498 0.668 0.457 0.338 0.515 0.691 0.210 0.133 0.224 0.365
ComplEx 0.442 0.400 0.430 0.664 0.464 0.347 0.524 0.696 0.213 0.133 0.225 0.366
SimplE 0.458 0.341 0.516 0.687 0.478 0.359 0.539 0.708 0.206 0.124 0.220 0.366

t-TransE 0.255 0.074 – 0.601 0.271 0.084 – 0.616 0.115 0.0 0.160 0.318
HyTE 0.297 0.108 0.416 0.655 0.316 0.116 0.445 0.681 0.118 0.0 0.165 0.326
TA-DistMult 0.477 0.363 – 0.686 0.474 0.346 – 0.728 0.206 0.124 0.219 0.365
ConT 0.185 0.117 0.205 0.315 0.163 0.105 0.189 0.272 0.144 0.080 0.156 0.265
De-TransE 0.326 0.124 0.467 0.686 0.314 0.108 0.453 0.685 0.126 0.0 0.181 0.350
De-DistMult 0.501 0.392 0.569 0.708 0.484 0.366 0.546 0.718 0.213 0.130 0.228 0.376
De-simplE 0.526 0.418 0.592 0.725 0.513 0.392 0.578 0.748 0.230 0.141 0.248 0.403
ATiSE* 0.545 0.423 0.632 0.757 0.519 0.378 0.606 0.794 – – – –
TComplEx 0.610 0.530 0.660 0.770 0.660 0.590 0.710 0.800 0.217 0.128 0.231 0.372
TNTComplEx 0.620 0.520 0.660 0.760 0.670 0.590 0.710 0.810 0.224 0.144 0.239 0.381
TIMEPLEX* 0.604 0.515 – 0.771 0.639 0.545 – 0.818 – – – –
TeLM* 0.618 0.535 0.667 0.772 0.673 0.592 0.723 0.819 – – – –
RTFE-TComplEx* 0.592 0.503 0.646 0.758 0.645 0.553 0.706 0.811 0.297 0.212 0.319 0.464

TuckERT 0.607 0.528 0.655 0.751 0.647 0.570 0.694 0.789 0.448 0.352 0.492 0.630
TuckERTNT 0.625 0.544 0.673 0.773 0.675 0.593 0.725 0.819 0.425 0.326 0.470 0.622
5.4. Parameters settings

We implement the proposed model and baseline models in
ytorch [35] framework. The two variants of our model are op-
imized by Adgard algorithm [36] with batch size of 1000 and
earning rate of 0.2. To evaluate the impact of embedding dimen-
ionality on the performance of link prediction, we vary the em-
edding dimensionality in the range {32, 64, 100, 200, 300, 400}.
onsidering the efficiency and effectiveness of the model, the
mbedding dimensionality is eventually set to 300. Time weight
oefficient λ1 and embedding weight coefficient λ2 are set as 1
nd 0.002, respectively. The norm p of the tensor is set to 4, the
ower q of the tensor norm is set to 2. The kernel width σ is
et to 5. For generality and fairness, we consistently apply the
bove parameters to perform our models on the three datasets.
n addition, we reproduce the results of TNTComplEx on GDELT
ataset with the tensor rank of 256 for model comparison.

.5. Results and analysis

We evaluate two variants of our model on ICEWS2014,
CEWS05-15, and GDELT datasets, respectively. The evaluation
esults against the baseline models are presented in Table 4where
esults marked (*) are taken from reported results of TIME-
LEX [9], TeLM [26], and RTFE [27]. We have the following
bservations and analyses. First, from the comparative results, we
an obtain that the proposed method TuckERT and TuckERTNT
utperform our baseline models on the three evaluation datasets
verall, which suggests that the proposed model is effective
nd achieves considerable results. Second, on ICEWS2014 and
CEWS05-15 datasets, the performance of our method is close
o that of TCompleX, we argue that the main reasons are as
ollows. Compared with GDELT, the amount of training data on
CEWS2014 and ICEWS05-15 is small so that TComplEx and our

odel can fit them. In addition, both models are designed based

6

on tensor decomposition, thus they have similar performances on
ICEWS2014 and ICEWS05-15. However, it is worth noting that
even though TComplEx and our model have similar performance
on these two datasets, our model has two advantages over TCom-
plEx. On the one hand, our model is convenient and can evade
the problem that selecting rank of tensor manually. On the other
hand, our model has a large number of parameters so that it can
fit more training data than TComplEx and other baselines. Third,
our model obtains a promising result on the GDELT dataset, the
proposed model TuckERT is almost twice of the baseline model
TNTComplEx and is superior to the state-of-the-art method RFTE-
TComplEx 15% on MRR. This also suggests the superiority of the
extension of Tucker decomposition in temporal KGs completion.
In addition, the reasons why the proposed model achieves con-
siderable results on the GDELT dataset are analyzed as follows.
(i) As presented in Table 4, GDELT includes a large number of
news facts in the global world for two years, and the number
of training data of GDELT is nearly 8 times higher than that of
ICESW05-15. Thus we argue that the proposed model containing
a large number of parameters can fit the training data better
than the baseline models. (ii) Taking TNTComplEx as an example,
through the experiment results of TNTComplEx trained on GDELT
dataset presented in the right part of Fig. 2, we can find that the
training of TComplEx and TNTComplEx reach a relatively steady
state quickly. In addition, the test results on the training data
and test data are low during 50 epochs training phase, thus we
argue that TNTComplEx is underfitting on the GDELT. To a certain
degree, these results verify our assumption that the baseline
models including TNTComplEx may fail to fit the training data
very well. On the contrary, the proposed model can be trained
well on GDELT and obtain a promising result. Fourth, we observe
that TuckERT obtains better performance than TuckERTNT on the
GDELT dataset. The reasons of which are analyzed as follows.
As described in the Dataset part and Table 4, GDELT includes a

large number of news facts within two years, this indicates that
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he impact of time regularization and embedding regularization on TuckERTNT
odel trained on ICEWS2014 dataset. Best results are in bold.
TuckERTNT Loss MRR Hit@1 Hit@3 Hit@10

L(θ ) 0.582 0.503 0.626 0.738
L(θ ) + Rp(E) 0.586 0.509 0.631 0.742
L(θ ) + Rp(E,W) 0.587 0.504 0.634 0.752
L(θ ) + Ls(T ) 0.596 0.509 0.651 0.758
L(θ ) + Lc (T ) 0.594 0.514 0.647 0.753
L(θ ) + Lr (T ) 0.613 0.538 0.660 0.763

L(θ ) + Ls(T ) + Rp(E) 0.602 0.521 0.652 0.758
L(θ ) + Ls(T ) + Rp(E,W) 0.605 0.518 0.660 0.767
L(θ ) + Lc (T ) + Rp(E) 0.592 0.506 0.647 0.753
L(θ ) + Lc (T ) + Rp(E,W) 0.600 0.515 0.653 0.764
L(θ ) + Lr (T ) + Rp(E) 0.619 0.541 0.666 0.767
L(θ ) + Lr (T ) + Rp(E,W) 0.625 0.544 0.673 0.773

the facts in GDELT are updated very quickly, thus GDELT has a
stronger temporal property than ICEWS2014 and ICEWS05-15.
Therefore, TuckERT may be more able to model the facts in GDELT
than TuckERTNT.

5.6. Ablation study

To further evaluate the proposed model, we study the impact
f regularization and embedding dimensionality on our model,
espectively. In addition, we also compare the training curve of
ur models with baseline models.
As presented in Table 5, we study the impact of different

ime regularization and embedding regularizations on the Tuck-
RTNT model trained on the ICEWS2014. From the results, we
lso have the following observations and analyses. First, we can
ind the embedding regularization exert a positive impact on
he proposed model, Rp(E) and Rp(E,W) contributes 0.4% and
1.4% to the basic model, respectively. These results verify our
assumption that exerting a constraint on the core tensor has an
appreciable impact on our model. Second, the proposed three
kinds of time regularization improve the basic model explicitly,
especially the reconstruction-based method, it helps the basic
model improve by 2.5%. In addition, we also find that contrastive
learning-based does not perform well as the other two time regu-
larization methods. We argue that the constraint that the repre-
sentations between the non-adjacent timestamps are dissimilar
may be too strong, thus it fails to model the prior knowledge
about timestamps very well. Third, when considering the time
regularization and embedding regularization jointly, combining
reconstruction-based time regularization and the embedding reg-
ularization containing the constraint on the core tensor with the
basic model achieves the best performance.

5.6.1. Impact of regularization
5.6.2. Impact of embedding dimensionality

To evaluate the impact of embedding dimensionality on our
model, we vary the embedding dimensionality of the entity and
predicate from 32 to 400 and report MRR and Hits@n results of
the TuckERTNT model on the GDELT dataset in Table 6. Fig. 1
presents the Hits@10 performance trend with respect to embed-
ding dimensionality. From the results, we can conclude that the
performance increases with embedding dimensionality growth
until reaching a relatively steady state. While the higher embed-
ding dimensionality means that the core tensor contains more
parameters, thus leading to a sharp drop in efficiency while
improving performance. Therefore, considering the efficiency and
effectiveness of the proposed model jointly, the embedding di-

mensionality is eventually set to 300.

7

Table 6
The performance of TuckERTNT model with different embedding dimensionali-
ties trained on the GDELT dataset.
Dimensionality MRR Hit@1 Hit@3 Hit@10

32 0.206 0.132 0.220 0.347
64 0.243 0.163 0.262 0.398

100 0.275 0.190 0.298 0.440
200 0.358 0.261 0.392 0.549
300 0.425 0.326 0.470 0.622
400 0.446 0.349 0.490 0.639

Fig. 1. The Hits@10 performance of TuckERTNT model with different embedding
dimensionalities trained on the GDELT dataset.

5.6.3. Training curve
Fig. 2 shows the curve of the training loss for the proposed

models TuckERT, TuckERTNT, and baseline models TComplEx,
TNTComplEx on the ICEWS2014 and GDELT datasets. According
to the results of the curve comparison, we have the following
two observations: (1) The training loss (empirical loss) of the pro-
posed models is lower than the baseline models TComplEx and
TNTComplEx in the period of stabilization on both ICEWS2014
and GDELT datasets, which suggests that the proposed models
fit the training data than baseline models TComplEx and TNT-
ComplEx. This result can further show that the proposed model is
more expressive. (2) On the GDELT dataset, the training of TCom-
plEx and TNTComplEx reach a relatively steady state quickly, and
the empirical error is relatively large in the steady state. Thus we
argue that TComplEx and TNTComplEx do not fit the training data
well on the GDELT. In addition, from the above training curve and
the experiment results of TComplEx and TNTComplEx, we further
argue that TComplEx and TNTComplEx are underfitting on the
GDELT dataset.

6. Conclusion and outlook

Tensor decomposition has been widely used in knowledge
completion tasks, either on static KGs or temporal. In this work,
we developed a new decomposition model that bridges the gap
between Tucker decomposition and temporal KGs completion
from a generalized perspective. Based on this, to improve the
basic model, we provide three methods including cosine similar-
ity, contrastive learning, and reconstruction-based to incorporate
the prior knowledge about timestamps into the proposed model.
In addition, because the core tensor contains a large number of
parameters on the proposed model, thus we present two em-
bedding regularization schemes to avoid the overfitting problem.
We proved that our method is fully expressive and achieves
outstanding performance on three benchmarks compared with

the existing state-of-the-art works. However, our models still
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Fig. 2. a is the training curve for the proposed models and baseline models on the ICEWS2014. b is the training curve for the proposed models and baseline models
n the GDELT.
nclude more parameters compared with previously presented
odels and have restrictions on efficiency when the embedding
imensionality exceeds the threshold. Future work might design
lightweight but powerful model, further work might consider

hat exploring a new paradigm for temporal KGs completion.
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