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Abstract

To inhibit the spread of rumorous information, fact checking aims at retriev-

ing relevant evidence to verify the veracity of a given claim. Previous work

on fact checking typically uses knowledge graphs (KGs) as external repositories

and develop reasoning methods to retrieve evidence from KGs. Domain knowl-

edge structure, including category hierarchy and attribute relationships, can be

utilized as discriminative information to facilitate KG based learning and ver-

ification. However, in previous fact checking research, category hierarchy and

attribute information was often scattered in a KG and treated as the ordinary

triple facts in the learning process like other types of information, or was uti-

lized in a limited way without the consideration of category hierarchy or the

combination of category hierarchy with the learning process. Thus to better

utilize category hierarchy and attribute relationships, in this paper, we propose

an end-to-end knowledge structure driven prototype learning and verification

method for fact checking. For improving intra-category compactness and inter-

category sparation, we develop a hierarchical prototype learning technique that

jointly learns a prototype for each sub-category to enhance entity embeddings

and optimize embedding representations using high-level category. For further

enhancing embedding learning, we propose a graph attention network to aggre-

gate information from neighboring attribute nodes. We construct a real-world

∗Corresponding author



dataset on food domain, and experimental results on the benchmark datasets

and our domain dataset show the effectiveness of our method compared to both

previous fact checking methods and representative KG reasoning methods.

Keywords: fact checking, knowledge structure, hierarchical prototype

learning, relation enhancement, verification

1. Introduction

Internet and social media enable every individual to be a publisher, com-

municating true or false information instantly and globally. The spread of

knowledge-based rumorous information causes severe consequences to individ-

uals and society. False knowledge affects science progress and societal devel-5

opment, undermining trust in science and the capacity of individuals to make

evidence-informed choices, including on life-or-death issues [1]. Among the false

information on the Web, knowledge-based misinformation accounts for a large

portion, based on the statistics reported by an authority website 1.

To inhibit the spread of knowledge-based rumors, considerable research ef-10

forts have been devoted to fact checking, which aims at retrieving relevant ev-

idence to verify the truthfulness of a given claim. Previous methods on fact

checking typically use KGs as external repositories and develop reasoning meth-

ods to retrieve evidence from KGs. These methods can be classified into two

classes: path-based methods [2–5] and embedding-based methods [6, 7]. Path-15

based methods extract evidence from the paths between head and tail entity

pairs, but they cannot always find effective paths to support verification due to

the incompleteness problem in real-world KGs [8]. To induce the inner connec-

tions in KGs, embedding-based methods map the KG components (i.e. entities

and relations) into a vector space for effective verification based on the semantic20

information, which can alleviate the incompleteness issue. However, due to the

long-tailed distribution in real-world KGs [9], these methods often suffer from

1www.xinhuanet.com
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Figure 1: An illustrative example of domain knowledge structure.

the overfitting problem with insufficient training triples.

In order to reduce overfitting and enhance KG based learning and verifica-

tion for fact checking, knowledge structure plays an important role. Figure 125

illustrates an example of domain knowledge structure, which includes category

hierarchy and attribute relationships. The upper part in Figure 1 shows an ex-

ample of category hierarchy, where grape and apple are entity nodes belonging to

sub-categories berry and pome respectively, which belong to the high-level cate-

gory fruit. This hierarchical structure of categories can be utilized as additional30

information to improve intra-category compactness and inter-category discrim-

ination in KG based learning. In fact, when human fact-checkers examine an

assertion, they would attempt to understand the generalized notion of the asser-

tion by taking advantage of entity category [4]. The lower part in Figure 1 gives

an example of attribute relationships, where entity nodes have attributes such35

as ingredients fiber and folate and effects anti-cancer and cough-relief. Leverag-

ing the neighboring attribute relationships can enrich the semantic information

of entities. The above knowledge structure can provide important semantic and

discriminative information to facilitate KG based learning and verification.

However, in previous fact checking research, this information was often scat-40

tered in KGs and treated as the ordinary triple facts in the learning process, just

the same as other types of information. Although several works on fact check-

ing [4, 5] and KG reasoning [10] has incorporated categories into their methods,

they either only utilized the limited category information (i.e. one level of cat-

egories) without the consideration of category hierarchy [4, 5], or they did not45
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combine hierarchical category information with the learning process [10].

To make better use of category hierarchy, prototype learning (PL) is an ex-

cellent fit for acquiring discriminative category representation. Previously, PL

was typically used to find representatives (i.e. prototypes) in the input space

and then predict the class label based on its distance to the prototypes [11, 12].50

Recent research combines PL with deep learning to develop deep prototype

learning models that learn discriminative class prototypes for robust pattern

classification [13–15]. Different from previous research that uses PL only for

classification, our focus is on using category hierarchy as discriminative infor-

mation for developing prototype based embedding learning. Thus we learn the55

prototypes for each category and take them as representatives to improve the

semantic representation of entity embedding learning.

In this paper, we propose an end-to-end Knowledge Structure driven Proto-

type Learning and Verification method (KS-PLV) for fact checking. To achieve

intra-category compactness and inter-category discrimination in KG based learn-60

ing, we propose a hierarchical prototype learning method, which learns proto-

types for each sub-category and pulls entity embeddings closer to its corre-

sponding prototypes, and by designing the loss function, further pulls closer the

embedding clusters of sub-categories belonging to the same high-level category.

We then propose a graph attention network, which aggregates the neighboring65

attribute nodes to enhance the semantic representations of entities. Finally, we

design multiple loss functions to conduct KG based embedding learning and

verification jointly for fact checking.

The main contributions of our work are as follows:

• We propose an end-to-end knowledge structure driven method for fact70

checking, which can effectively utilize category hierarchy and attribute relation-

ships in KG based learning and verification.

• We develop the first hierarchical prototype learning method to improve

the robustness of learning entity embeddings at both entity level and category

level.75

• We construct a real-world dataset on food domain, and experimental re-
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sults on two benchmark datasets and our domain dataset show the effectiveness

of our method compared to previous fact checking methods and representative

KG reasoning methods.

The rest of the paper is organized as follows. Section 2 introduces the related80

work on KG reasoning and fact checking. Section 3 describes our proposed

method in detail. In Section 4, we conduct intensive empirical studies to evaluate

our work and analyze the experimental results. Section 5 concludes the paper

and raises some future work.

2. Related Work85

Fact checking can be broadly viewed as a reasoning task, typically using KGs

as external repositories. In this section, we first review the related research on

KG reasoning, and then review the related work on fact checking, focusing on

KG based methods.

2.1. KG Reasoning90

The fundamental purpose of KG reasoning task is to automatically deduce

and add the missing knowledge to KGs (i.e. knowledge graph completion). For

instance, given a query (h, r, ?), where h is the head entity and r is the relation,

the goal of knowledge graph completion for the tail entity is to perform an

efficient search over G and collect the set of possible answers T = {t1, ..., tn},95

s.t. (h, r, ti) /∈ G, i ∈ [1, n]. Currently, the main approach for KG reasoning is

link prediction, which aims at predicting the missing link between two entities

on KGs.

Link prediction can be classified as path-based methods and KG embedding

methods. Path-based methods aim at finding new triples through the inference100

over the existing paths in KG [9, 16–25], while KG embedding methods aim

to reason about the plausibility of triples by matching the embeddings of en-

tities and relations in vector spaces. For path-based methods, a conventional

method is to utilize Inductive Logic Programming (ILP) [16–19] for inferring
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over KGs. However, ILP based methods are easily overwhelmed by amount of105

data. To develop a robust method that is scalable to large knowledge graph,

Lao et al. [20, 21] presented a simple model PRA that learned to infer rela-

tions by combining the results of different random walks through KG. To make

complex inferences, Das et al. [22] conducted multi-step inference of symbolic

logical reasoning using recurrent neural networks. Recent work employs deep110

reinforcement learning models, such as DeepPath [23] and MINERVA [24], to

explore predictive paths in KG based on the input query. To further advance

MINERVA, Lin et al. [25] proposed the Multi-hop method, which adopted a pre-

trained embedding model to estimate unobserved facts for improving the quality

of rewards in reinforcement learning. Moreover, to overcome the long-tail issue115

in real-world KGs, Lv et al. [9] proposed Meta-KGR, which adopted meta learn-

ing to learn effective meta parameters from high-frequency relations that could

quickly adapt to few-shot relations. Their model achieved the state-of-the-art

performance among path-based methods.

KG embedding methods can be roughly categorized into translational dis-120

tance models and semantic matching models. Translational distance models

rely on distance-based scoring functions. The main stream work is TransE [26]

(which defines its scoring function as the distance between h + r and t) and

its extensions, including TranH [27], TransR [28], TransD [29], TransM [30],

TransF [31], etc. Additional information can be incorporated to improve KG125

embeddings. Xie et al. [10] proposed the TKRL model that projected embed-

dings to their corresponding category spaces using the type-specific projection

matrices. Although TKRL did not combine hierarchical category information

with the learning process, it achieved relatively good performance among trans-

lational distance based models. Other translational distance models are based130

on Gaussian distribution including KG2E [32] and TransG [33].

Semantic matching models match the latent semantics of entities and re-

lations in vector spaces. Early work relies on similarity-based functions (i.e.,

similarity based models), such as RESCAL [34] and NTN [35]. RESCAL [34]

represented relations as matrices, which modeled pairwise interactions between135
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two entities, and its subsequent work extended RESCAL to efficiently capture

relational semantics [36], improve the capability of complex embeddings [37, 38]

or model the analogical properties of entites and relations [39]. For example,

DistMult [36] utilized matrix multiplication to model the compositional rela-

tions, which performed the best among RESCAL and its other variants. How-140

ever, similarity based models focus on shallow, fast models with less expressive

features. Recent work adopts deep learning models to learn more distinctive fea-

tures automatically. Dettmers et al. [40] proposed a deep neural model ConvE

that used two-dimensional convolution over embeddings with multiple layers.

Schlichtkrull et al. [41] applied GCN to incorporate connectivity structure and145

model the relational data (i.e., R-GCN). As it is beneficial to compose embed-

dings from query-relevant nodes in KG, Bansal et al. [42] proposed the A2N

model, which used a bi-linear attention on the graph neighbors to generate dy-

namic embeddings based on the query. A2N outperformed ConvE and R-GCN,

and achieved the state-of-the-art performance on two benchmark datasets in150

KG reasoning task.

As the main purpose of KG reasoning is for knowledge graph completion, the

focus of these previous methods is on ranking candidate entities and relations

by their scores. Another line of work on KG reasoning is triple classification [6],

the purpose of which is similar to that of fact checking. We shall introduce this155

work together with fact checking methods in the next section.

2.2. Fact Checking

For fact checking methods, there are two means to collect evidence from ex-

ternal sources. One is to search from Web texts such as WikiPedia and then de-

velop reasoning methods to find relevant evidence [43–45]. The other commonly160

used means makes use of knowledge repositories as external sources, typically

using KGs, which contain plentiful high quality facts.

Similar to KG reasoning, fact checking also consists of path-based [2–5] and

embedding-based [6, 7] methods. Path-based fact checking methods mine the

paths between a head entity h and a tail entity t to predict whether there is a165
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relation h
r−→ t in KG. Ciampaglia et al. [2] proposed an original method to

explore node connectivity in KG via finding the single shortest path between

head and tail entities. To utilize richer information, Shiralkar et al. [3] proposed

a method (called Knowledge Stream) to extend the work in [2], which employed

a flow network to find multiple paths in KG. Knowledge Steam computed the170

truth score of a claim triple by considering all the paths between head and tail

entities. To effectively discover discriminative paths, Shi et al. [4] proposed

Predpath, which used head and tail entity categories as anchors and defined

the mined rules for path extraction. Predpath achieved the state-of-the-art

performance on several real-world and synthetic datasets for fact checking. To175

better utilize category and relation information, Fionda et al. [5] built a schema

graph to generate candidate evidence patterns for fact checking via leveraging

domain of predicates and entity categories along with various RDFS inference

rules and optimization techniques for KG loading in memory. However, both

work [4, 5] only utilized the limited category information, that is, they used one180

level of categories without the consideration of category hierarchy.

In real world KGs, connections between entities are usually sparse. Due

to the incompleteness of real world KGs, path-based methods can not always

find valid paths for fact checking. To induce the inner connections in KGs,

embedding-based fact checking methods map entities and relations into contin-185

uous vector spaces to calculate the truthfulness of the claim triple, which can

alleviate the incompleteness issue. The representative embedding based fact

checking methods include TEKE [6] and Dual TransE [7]. As embedding based

methods are brittle in 1-to-N relations, to solve this problem, Dong et al. [6]

proposed a region-based approach TEKE that extended the embeddings into190

regions, in which tail regions of 1-to-N relations were located in the head re-

gion. Although TEKE performs well on the constructed KGs that contain only

several types of relations, it is not salable to larger KGs typically with more

relation types for fact checking. To make better distinction between true facts

and false ones, Pan et al. [7] constructed two KGs based on true and false triples195

separately, and developed Dual TransE to evaluate the claim triple by compar-
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ing the max bias of these two KGs. Dual TransE achieved the best performance

on a large scale real-world dataset in fact checking task.

To develop robust end-to-end method for fact checking task, in this paper,

we take the advantage of knowledge structure, including category hierarchy and200

attribute relationship, to enhance KG based learning and verification. Unlike

previous methods that utilize knowledge structure in a limited way, we focus

on developing a hierarchical prototype learning technique with graph attention

network to effectively incorporate knowledge structure as distinctive information

for fact checking. We also conduct experimental studies to validate our proposed205

method.

3. Proposed Method

Given an unverified claim triple (h, r, t) composed of a head entity h, a

relation r and a tail entity t, the goal of a fact checker f(·) is to compute a truth

value f(h, r, t) for the triple, with the help of a corresponding knowledge graph210

(KG) G that contains a large number of triple facts. To verify the truthfulness of

claim triples, we expect that the fact checking model f(·) can produce a higher

score for a true claim than that for a false one.

Figure 2 gives an overview of our method KS-PLV, which consists of three

modules: (1) a Hierarchical Prototype Learning (HPL) module for improving215

entity representation learning, which learns the prototypes for each entity cat-

egory in KG and pull entity embeddings to their corresponding prototypes in

the vector space at both entity-level and category-level; (2) a Relation Enhance-

ment module for relation-based embedding enhancement, which uses attribute

relationship information to augment entity embeddings with a graph attention220

network (named Attribute-GNN ); (3) a Fact Verification module for scoring the

truth values of triples by semantic matching. We detail our KS-PLV method in

the following sections.
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Figure 2: Overview of our proposed end-to-end knowledge structure driven pro-
totype learning and verification method KS-PLV (Here the sub-categories c1
and c2 belong to the high-level category H1, and c3 belongs to H2. Stars denote
the learned prototypes of corresponding categories).

3.1. Hierarchical Prototype Learning with Category Hierarchy

To make better use of the rich information in knowledge structure, we encode225

the category hierarchy into the entity embedding learning process. An example

category hierarchy of entities is shown in Figure 1. Each high-level category

contains a number of sub-categories, and each entity belongs to a sub-category2.

Based on this hierarchical category structure, we propose a hierarchical pro-

totype learning method for entity embedding learning, which is composed of230

entity-level and category-level prototype learning (PL).

3.1.1. Entity-level Prototype Learning

Entity-level prototype learning leverages entity’s sub-category information

to learn entity embeddings. Intuitively, if two entities belong to the same sub-

category, their embeddings should be close to each other in the vector space.235

Based on this consideration, we build a learnable prototype vector for each

sub-category to perform entity-level PL. We only consider leaf sub-categories

(a leaf sub-category is the lowest-level sub-category of entities that has no sub-

categories under it), and a prototype serves as the representative of the corre-

sponding leaf sub-category. We utilize these prototypes to regularize the entity240

2In a large-scale KG, due to the existence of some general categories, an entity may belong
to more than one sub-category. To effectively incorporate the distinctive category information
for improving entity embedding learning, we choose the smallest sub-category of an entity as
its specific sub-category in our work.
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representation learning process via pulling the entity embeddings closer to their

prototypes in the vector space. The prototype vectors are optimized together

with other learnable parameters in our KS-PLV method.

Specifically, given a KG G, its entity set E and an entity e
(i)
j ∈ E , let Hl

denote the set of leaf sub-category in G, ci ∈ Hl denote the leaf sub-category

e
(i)
j belongs to, and p(i) denote the prototype vector of ci. For entity e

(i)
j , we

pull its embedding e
(i)
j closer to its leaf sub-category’s prototype vector p(i) by

minimizing their 2-norm distance, where the prototype serves as the constraint

of embedding position in the vector space:

d(e
(i)
j , ci) = ‖e(i)

j − p
(i)‖2 (1)

Further, to improve the inter-category discrimination of entity representa-

tions, we incorporate inter-category constraints to avoid the overlapping be-

tween the embeddings of different sub-categories. Given entity embedding e
(i)
j ,

we first find the closest prototype pclosest from other leaf sub-categoriesHl−{ci}:

∀cj ∈ Hl − {ci}, cclosest ∈ Hl − {ci}, we have

‖e(i)
j − pclosest‖2 ≤ ‖e(i)

j − p
(i)‖2 (2)

Thus sub-category cclosest can be regarded as the most competitive to ci for

entity e
(i)
j . We then build the second objective, which maximizes the 2-norm

distance between e
(i)
j and the closest prototype pclosest:

d(e
(i)
j , cclosest) = ‖e(i)

j − pclosest‖2 (3)

By combining the above two objectives, the training objective for entity-level

PL is to minimize the following function:

Lpl−entity =
∑

e
(i)
j ∈E

(
‖e(i)

j − p
(i)‖22 − ‖e

(i)
j − pclosest‖22

)
. (4)
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3.1.2. Category-level Prototype Learning

Category-level prototype learning further leverages high-level category infor-245

mation of sub-categories to improve entity representation learning. Intuitively,

if two sub-categories belong to the same high-level category, their correspond-

ing prototypes should be relatively close to each other in the vector space. To

better represent a sub-category and model the distribution of its entities, we

use multivariate Gaussian distribution (including mean and covariance) as the250

representation of the sub-category (i.e., the representative prototype of this sub-

category).

Specifically, given two sub-categories cU and cV that belong to the same

high-level category, their corresponding Gaussian distributions are denoted as

prototypes pU = N (µU ,ΣU ) and pV = N (µV ,ΣV ). We pull the two distribu-

tions closer to each other by minimizing their 2-Wasserstein distance (Note that

Wasserstein distance can represent the distance when there is no overlapping

between two distributions while KL-divergence fails in this case):

W (pU , pV ) = ‖µU − µV ‖22

+ Tr(ΣU + ΣV − 2(Σ
1
2

UΣV Σ
1
2

U )
1
2 ) (5)

where the Tr is the trace of the matrix, µi and Σi are the unbiased estima-

tion of mean and covariance respectively (let |ci| denote the number of entities

belonging to the sub-category ci):

µi =
1

|ci|
∑

e
(i)
j ∈ci

e
(i)
j , (6)

Σi =
1

|ci| − 1

∑
e
(i)
j ∈ci

(e
(i)
j − µi)(e

(i)
j − µi)

>. (7)

As the covariance is a symmetric matrix, which satisfies ΣUΣV = ΣV ΣU .
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Equation 5 can be simplified as:

W (pU , pV ) = ‖µU − µV ‖22 + ‖Σ
1
2

U − Σ
1
2

V ‖
2
2 (8)

Further, we also minimize the 2-form distance between their prototypes pU

and pV as a constraint. By combining the two objectives, the training objective

for category-level PL is to minimize the following function:

Lpl−category =
∑

cU ,cV ∈Ll

(
‖pU − pV ‖22 +W (pU , pV )

)
. (9)

In the intermediate levels of category hierarchy, each node is both the sub-

category of its upper-level parents and the high-level category of its lower-level

children. Thus the above category-level PL process is recursive and can be255

adapted to multi-level category hierarchy.

Finally, by weighting the sum of entity-level and category-level losses, the

training objective for hierarchical prototype learning is to minimize Lpl:

Lhpl = Lpl−entity + γLpl−category (10)

where γ is the trade-off parameter.

3.2. Relation Enhancement with Attribute-GNN

Relation based enhancement leverages attribute relationship information to

further enhance embedding learning for fact checking. Intuitively, an entity’s260

attributes (structurally embodied in its neighboring entities and its correspond-

ing relations) can enrich the semantic representations of entities and provide

relevant evidence for fact verification. To model this local graph structure, we

encode neighboring attributes into entity embeddings via a relation based graph

attention network Attribute-GNN. We then utilize these enhanced embedding265

representations to help better predict the truth value of the claim triple.

Specifically, given a head entity embedding h and one tail entity embedding

tj with its relation embedding rj (i.e., (h, rj , tj) is a triple fact in G), a GNN layer

13



aggregates the head entity’s neighboring information with attention mechanism

to learn an updated embedding for the head entity:

sj = w>ReLU ([Wh;W(tj � rj)])

αj = softmax(sj)

ĥ = tanh

( ∑
(h,rj ,tj)∈N (h)

αjWtj

)
h←Wh[ĥ;h]

(11)

The first two equations compute the attention score αj for the j-th neighbor

(i.e., the tail entity tj with the relation rj). We integrate the relation information

into the tail entity via element-wise multiplication on their embeddings. Thus

the third equation aggregates all the one-hop neighbors to update the head entity270

representation, where N (h) denotes all the triples in which h is the head entity.

Finally, in the fourth equation, we concatenate the aggregated embedding ĥ

and the original embedding h, and then project the concatenated vector into

the initial dimension with Wh to obtain the ultimate entity representation.

3.3. Fact Verification275

We compute the score of a triple fact (h, r, t) by semantic matching, which

measures the plausibility of the fact via matching the latent semantics of the

two entities with their relation. Our prototype based learning and verification

described above has incorporated rich knowledge structure information on cat-

egory hierarchy and attribute relationship to effectively support this semantic280

matching process for fact verification.

Specifically, we adopt the following score function [36]:

f(h, r, t) = h>diag(r)t (12)

where h, r and t denote the embeddings of the head entity h, relation r and tail

entity t respectively, and diag(r) is a diagonal matrix formed by the elements

in r.
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The objective of fact verification is to minimize the regularized logistic loss,

which encourages f(·) to produce a higher score for a true triple than that for

a false one:

Lfv =
∑

(h,r,t)∈∆

log(1 + exp(−f(h, r, t)))

+
∑

(h′,r′,t′)∈∆′

log(1 + exp(f(h′, r′, t′))) (13)

where ∆ and ∆′ are the set of correct triples and that of incorrect triples,285

respectively.

3.4. Overall Objective Function of KS-PLV

Our KS-PLV method can be optimized in an end-to-end fashion via mini-

mizing the overall loss L defined as follows:

L = Lfv + λLhpl (14)

where λ is the trade-off parameter.

4. Experiments

In this section, we validate our KS-PLV method by comparing it with the290

previous fact checking methods and representative KG reasoning methods in

the related work. We also analyze the experimental results and discuss on the

related issues.

4.1. Experimental Setup

4.1.1. Datasets and Hyperparameters295

Datasets. We conduct our experiments on three datasets. To demonstrate

the advantage of our method, we construct a real-world knowledge graph on

food domain (FOOD). To maintain the completeness of category hierarchy, we
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collect the category information for each entity and sub-category from the Chin-

autri website 3. We first collect the ingredients of food from this website. To300

collect the common effects of food, we extract food names and their effects orig-

inally presented as structured descriptions from another popular food website,

Meishichina4. The extracted food effects have two forms, verb-noun phrase

(e.g., reduce cholesterol) or simple noun phrase (e.g., antiobesity). For each

verb-noun phrase, we take its verb and noun as relation and tail entity respec-305

tively to construct a triple (e.g., (broccoli, reduce, cholesterol)). For each noun

phrase, we treat it as tail entity and add the relation effect to construct a triple.

By this means, we build the KG in food domain with 4192 entities and 86 types

of relations5.

We also use two benchmark KG datasets FB15K [26] and FB15K-237. F-310

B15K is a dense graph extracted from Freebase, with each entity and relation

in it having 100+ associative triples in Freebase. FB15K-237 is constructed by

deleting all the inverse triples in FB15K to increase the data sparsity of the

graph, so that the reasoning task becomes more challenging. Currently FB15K

and FB15K-237 are the most commonly used KG datasets. We utilize the cate-315

gory hierarchy of entities and sub-categories for them collected by [10]. Table 1

gives the statistics of the three KG datasets.

We construct the negative triples as false facts for all the datasets. As the

start point, we adopt the approach typically used by most previous KG based

reasoning methods (e.g. [6–10, 16–42]), which replaces a head or tail entity of a320

positive fact in a KG with another randomly selected entity (i.e., random neg-

ative sampling approach). Moreover, to make the fact verification task harder,

following [10, 35], we only allow entities of the constructed negative triples to

appear in the positions where they have occurred in the KGs. For example,

given a correct triple (pear, moisten, lung), an allowable negative example is325

(chili, moisten, lung) or (pear, moisten, stomach). Besides, to better alleviate

3National Institute for Nutrition and Health of Chinese CDC: www.chinanutri.cn
4The Fine Food in China: www.meishichina.com
5https://github.com/Wangshuaiia/fact checking
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Dataset #entity #relation type #train #valid #test

FOOD 4,192 86 26,767 1,986 1,080

FB15K-237 14,505 237 272,115 20,000 20,000

FB15K 14,951 1,345 483,142 50,000 59,071

Table 1: Statistics of the three KG datasets.

the errors in constructing negative triples, we restrict the random sampling pro-

cess by selecting the newly replaced entity whose category is different from that

of the original entity. Intuitively, the farther the distance between the categories

of two entities in the category hierarchy, the smaller the possibility to construct330

erroneous negative triples by the above random sampling approach.

Hyperparameters. For the benchmark datasets FB15K and FB15K-237, we

set the dimension of embeddings to 100, learning rate to 0.01 and batch size

to 128, the configurations widely used in many previous models (e.g. [26–31,

36, 40]). For our constructed dataset FOOD, we also set the learning rate to335

0.01 and batch size to 128, and the dimension of embeddings is set to 30 so

as to balance between overfitting and the powerfulness of representations. The

trade-off parameters λ and γ are set to 0.1 and 0.01 respectively, based on the

observation that our model performs best on these values of λ and γ. We adopt

the AdaGrad optimizer. We shall provide the detailed analyses of different340

values of λ and γ on model performance in Subsection 4.3.1.

4.1.2. Comparative Methods

We compare our method with the existing KG based fact checking methods.

We also compare our method with the representative KG reasoning methods.

Though KG reasoning methods are designed to rank candidate entities or re-345

lations for knowledge graph completion, but not for the fact checking task, we

adjust them to the verification of unseen triples based on their ranking scores.

The existing fact checking methods we compared with include:

(1) Knowledge Stream [3] regards fact checking as a network-flow problem
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and computes the truth score by summing the net flows of paths between350

head and tail entities.

(2) PredPath [4] uses head and tail entity categories as anchors to effective-

ly find discriminative paths and classifies the selected paths using logistic

regression.

(3) Dual TransE [7] constructs two KGs based on true triples and false triples,355

and evaluates the claim triple by comparing the max bias of these two KGs.

The representative KG reasoning methods we compared with include:

(1) DistMult [36] is a classical semantic matching method that models compo-

sitional relations using matrix multiplication and measures the plausibility

of facts using a bi-linear score function.360

(2) TKRL [10] is a TransE based model that projects entity embeddings to

their corresponding category spaces via the type-specific projection matri-

ces.

(3) MINERVA [24] uses reinforcement learning (RL) to efficiently search the

graph by sequentially extending the inference path based on the input query.365

(4) Multi-Hop [25] improves the performance of RL by adopting a pre-trained

embedding model to ensure the quality of rewards, and designs action

dropout technique to find discriminative paths.

(5) Meta-KGR [9] is a RL based model, which employs meta-learning to solve

the problem of few-shot relations.370

(6) A2N [42] adaptively composes neighbors with bi-linear attention to gener-

ate dynamic embeddings based on the input query.

Among the above fact checking methods, Knowledge Stream and PredPath

are path-based methods, which extract evidence from the paths between head

and tail entity pairs. Compared with Knowledge Stream, PredPath additionally375

utilizes entity type of head and tail entities to find discriminative paths. Dual

TransE is an embedding-based method, which develops a TransE-based model

to predicate the truth score of the input triple.
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Among the above KG reasoning methods, MINERVA, Multi-Hop and Meta-

KGR are path-based methods and use reinforcement learning as the reasoning380

framework. Multi-Hop improves MINERVA by shaping its reward function. On

this basis, Meta-KGR adds meta-learning technique to learn a better represen-

tation for the few-shot relation [9]. DistMult, TKRL and A2N are embedding

based methods. Compared with the classical method DistMult, TKRL uses

additional entity type information and A2N composes neighbors with bi-linear385

attention.

For the implementation of methods Knowledge Stream, PredPath, MINER-

VA, Multi-Hop and Meta-KGR above, we use the codes published in the corre-

sponding papers and tune the hyperparameters based on what are reported in

the papers to get the best results. We reimplement the other compared meth-390

ods and tune the hyperparameters in similar way. As each method produces

a score for the claim triple, to verify its truthfulness, we use an automatically

generated threshold that is derived by maximizing the accuracy of the method

on validation set. We use accuracy and F1 as the evaluation metrics.

4.2. Experimental Results395

To validate our KS-PLV method, we conduct experiments on fact checking

by comparing with the related methods and evaluating each component of our

method. We provide the experimental results and analyses in this section.

4.2.1. Comparison with Related Methods

Table 2 summarizes the experimental results on fact checking by different400

methods. We can see from the table that our KS-PLV method outperforms all

the comparative methods on the three datasets. Reinforcement learning based

methods, including MINERVA, Multi-Hop and Meta-KGR, outperform the con-

ventional path-based methods Knowledge Stream and PredPath. One reason

for this is that RL based methods are generally more efficient in finding the405

discriminative paths. Among embedding based methods, A2N outperforms the

early methods DistMult and TKRL. As A2N and our KS-PLV use neighbor-
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Method
FB15K FB15K-237 FOOD

Acc. F1 Acc. F1 Acc. F1

Knowledge Stream 0.835 0.829 0.801 0.729 0.725 0.734

PredPath 0.813 0.806 0.802 0.806 0.728 0.746

Dual TransE 0.912 0.903 0.874 0.875 0.764 0.726

DistMult 0.895 0.884 0.878 0.879 0.750 0.753

TKRL 0.948 0.936 0.854 0.836 0.768 0.723

MINERVA 0.903 0.883 0.886 0.873 0.754 0.747

Multi-Hop 0.950 0.913 0.902 0.893 0.781 0.776

Meta-KGR 0.933 0.901 0.907 0.899 0.783 0.784

A2N 0.946 0.937 0.912 0.908 0.806 0.807

KS-PLV 0.954 0.941 0.931∗ 0.925∗ 0.846∗ 0.838∗

Table 2: Experimental results on fact checking by different methods (Among
these compared models, Dual TransE and A2N are the SOTA methods for fact
checking and KG reasoning respectively. Here “∗” denotes that our KS-PLV
significantly outperforms the other methods).

ing attribute relations to supply discriminative information, these two methods

achieve obvious performance gains than all the path-based methods as well as

early embedding-based methods. Compared to A2N, KS-PLV takes full ad-410

vantage of category hierarchy of entities to further improve the performance.

Although PredPath and TKRL also utilize the category information, PredPath

only uses one level of categories and ignores the category hierarchy. Compared

with TKRL, which learns a projecting matrix for each category, our KS-PLV

benefits from hierarchical prototype learning to learn the robust entity repre-415

sentations. This indicates that incorporating category hierarchy and attribute

relationships is indeed beneficial for KG-based fact verification.

It can be also seen from the table that for the dense knowledge graph FB15K,

all the methods get fairly good results. This is consistent with the previous study

on the impact of the KG sparsity on the model performance [9]. In a dense420

KG, it is relatively easy to learn generalized embeddings or find effective paths,

while in a sparse KGs, since a large portion of entities have few relations with

other entities, there are not sufficient triples to train the general representations
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Method
FB15K FB15K-237 FOOD

Acc. F1 Acc. F1 Acc. F1

KS-PLV (full model) 0.954 0.941 0.931 0.925 0.846 0.838

−HPL 0.939 0.931 0.914 0.904 0.811 0.803

−Attribute-GNN 0.920 0.907 0.908 0.899 0.765 0.786

−Attribute-GNN −HPL 0.895 0.884 0.878 0.879 0.750 0.753

−Attribute-GNN +A2N 0.942 0.936 0.921 0.910 0.816 0.807

Table 3: Experimental results of the ablation study.

for these entities. Since FB15K-237 is sparser than FB15K, the performances

of all the methods decline on FB15K-237. On FB15K-237, KS-PLV obtains425

1.9% and 1.7% improvement on accuracy and F1 respectively compared to the

second best-performing method (i.e., A2N). The real-world dataset FOOD is

the sparsest among the three datasets and thus makes the fact checking task on

it more challenging. Nonetheless, our KS-PLV method can still get reasonably

good results on FOOD and outperforms the other methods by a large margin.430

This indicates that KS-PLV is a robust end-to-end fact checking method for the

sparse KG. In general, the experimental results verify the effectiveness of our

method.

4.2.2. Ablation Study

We conduct an ablation study to verify the effectiveness of each component435

in our method, by constructing four variations of KS-PLV:

• −HPL: excludes the HPL module (i.e., corresponding loss function Lhpl)

from KS-PLV.

• −Attribute-GNN: excludes the Attribute-GNN module from KS-PLV.

• −Attribute-GNN −HPL: excludes both HPL and Attribute-GNN mod-440

ules from KS-PLV.

• −Attribute-GNN +A2N: replaces Attribute-GNN to A2N [42] in KS-

PLV.

Table 3 gives the experimental results of the ablation study. We can see
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Level
FB15K FB15K-237 FOOD

Acc. F1 Acc. F1 Acc. F1

Raw Embedding (w/o PL) 0.939 0.931 0.914 0.904 0.811 0.803

Entity-Level PL 0.949 0.937 0.923 0.911 0.834 0.822

Category-Level PL 0.953 0.940 0.928 0.920 0.846 0.838

Table 4: Experimental results of entity-level and category-level prototype learn-
ing.

from the table that excluding HPL or Attribute-GNN from KS-PLV will cause445

significant performance drop. By comparing the results of “−Attribute-GNN”

and “−HPL −Attribute-GNN”, we can clearly see the performance gained by

HPL. To further compare the results of “−Attribute-GNN +A2N” with those of

the full model, we can also see that by aggregating the information of neighbors

to improve the performance, our Attribute-GNN is obviously more effective than450

A2N’s bi-linear attention model.

To further evaluate HPL at different levels, we conduct an additional ex-

periment for entity-level and category-level prototype learning. Table 4 shows

the experimental results. For category-level PL, we use the 4-layer category

hierarchy for FB15K and FB15K-237, as the category hierarchy in them (with455

92% of all the entities) is within 4 layers. The category hierarchy in FOOD has

3 layers. From the table, we can see that both entity-level PL and category-

level PL can steadily increase the performances of fact checking. Compared to

the performances gained by entity-level and category-level PL on FB15K and

FB15K-237, the performance gains are much greater on FOOD, whose graph is460

the sparsest among the three datasets. The experimental results on the ablation

study further verify the usefulness of each component in our method.

4.3. Further Analyses

We further analyze the learning and verification effect of our method in this

section. As HPL is the major component in our method, we first analyze its465

learning properties. We then discuss the effect of our method on fact checking
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Figure 3: The learned representations of ten sub-categories of entities in FOOD
(The colors represent different sub-categories, the black stars represent the corre-
sponding prototypes of each sub-category and the dashed circles in (d) represent
the high-level categories. Here λ is the trade-off parameter in Equation 14).

in KGs with long tail.

4.3.1. Effect of Hierarchical Prototype Learning

To analyze the impact of HPL on embedding learning, we choose ten largest

sub-categories of entities in FOOD to visualize their embeddings with t-SNE.470

Figure 3 (a) shows that without HPL, the embeddings of entities in different

categories tend to overlap with each other. In Figure 3 (b) and (c), with the in-

crease of λ in Equation 14, the learned intra-category embeddings become more

and more compact and some overlapping inter-category embeddings are separat-

ed. In Figure 3(d), the distributions of the sub-categories in the same high-level475

category are close (illustrated by the dashed circles). This demonstrates that

the representations learned by KS-PLV have the properties of intra-category
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compactness and inter-category separation.

To further analyze the impact of HPL on fact checking, we first vary the

values of λ from 0 to 2. Figure 4 shows the fact checking results on the three480

datasets. With the growth of λ, the performances gradually go up at first and

then decrease, and KS-PLV reaches the best results when λ is around 0.1. We

also vary the values of γ from 0 to 1. Figure 5 shows the results on the three

datasets. With the growth of γ, the performances also increase first and then

decrease, and our model achieves the best results when γ is around 0.01. The485

results reveals that too large λ or γ would cause the learned intra-category

embeddings too close to maintain their discrimination property.

0 0.01 0.1 0.51 20.92
0.93
0.94
0.95
0.96

AC
C

(a) FB15K

0 0.01 0.1 0.51 20.90
0.91
0.92
0.93
0.94

AC
C

(b) FB15K-237

0 0.01 0.1 0.51 20.80

0.82

0.84

0.86

AC
C

(c) FOOD

Figure 4: Fact checking performances w.r.t the trade-off parameter λ.
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Figure 5: Fact checking performances w.r.t the trade-off parameter γ.

4.3.2. Effect on Verification in KGs with Long Tail

In real-world scenarios, a large portion of relations in KGs has long tail

distributions [9]. To analyze the effect of our method in handling the long tail490

issue, we construct the long tail datasets for our study, following the convention

provided by [10]. We add 6,607 new triples with 510 new relations from [10]

to FB15K-237 and construct a new dataset FB15K-237+ with many sparse
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Long Tail Dataset
#Test

Method

(with relation frequency) TKRL Dual TransE A2N Meta-KGR KS-PLV

FB15K-237+1 (fr ≤ 100) 2,544 0.633 0.601 0.619 0.621 0.675∗

FB15K-237+2 (fr ≤ 1000) 7,702 0.724 0.693 0.725 0.733 0.784∗

FB15K-237+ (total) 23,303 0.864 0.832 0.915 0.922 0.934

Table 5: Experimental results of accuracies on the long tail datasets (Here “∗”
denotes that KS-PLV significantly outperforms other methods).

relations. We then construct two datasets FB15K-237+1 and FB15K-237+2 by

filtering out the triples in FB15K-237+ with the constraints of relation frequency495

fr ≤ 100 and fr ≤ 1000 respectively.

We compare our method with four selected methods, TKRL[10], Dual TransE [7],

Meta-KGR [9] and A2N [42]. Besides the original TKRL model in [10], we choose

the state-of-the-art methods Dual TransE and A2N for fact checking and KG

reasoning respectively. We also choose Meta-KGR, a RL based method partic-500

ularly designed to solve the long tail problem. Table 5 shows the accuracies

of different methods on the three constructed long tail datasets FB15K-237+1,

FB15K-237+2 and FB15K-237+. We can see from the table that KS-PLV

outperforms the other methods on all the datasets, especially on the sparer

datasets FB15K-237+1 (fr ≤ 100) and FB15K-237+2 (fr ≤ 1000). As the sec-505

ond best-performing method Meta-KGR is aimed at handling this problem, this

demonstrates that our prototype learning based method KS-PLV can effectively

alleviate the long tail issue in real-world KGs.

4.4. Illustration of Interpretable Evidence

One merit of using HPL is to process the compactness and semantic similar-510

ity of entity embeddings of the same sub-category, so as to increase the ability

of inducing the knowledge from homogeneous entities as evidence. In addition,

Attribute-GNN is capable of further enhancing entity embeddings using neigh-

boring information with attention mechanism. Table 6 illustrates several true

examples of input claim triples from our realistic experimental data and the515

triples most similar to them as fact evidence, acquired by our method using
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Input claim triple Most similar evidence

(passion fruit, prevent, cold) (passion fruit, strengthen, immunity)

(百香果，预防，感冒) (百香果，增强，免疫力)

(arkshell, lower, blood lipid) (arkshell, reduce, cholesterol)

(赤贝，降，血脂) (赤贝，降低，胆固醇)

(alburnus, effect, diuresis) (alburnus, nourish, kidney)

(刁子鱼，作用，利尿) (刁子鱼，滋补，肾脏)

(pear, relieve, cough) (pear, moisten, lung)

(梨，止，咳) (梨，润，肺)

Table 6: Illustrative true input triples (left column) and their most similar
evidence computed by our KS-PLV (right column).

the highest attention scores. We can see from the table that the acquired fact

evidence is quite similar to the input claim triples, which can effectively support

fact checking.

5. Conclusions and Future Work520

This paper proposes an end-to-end knowledge structure driven method KS-

PLV for fact checking, which aims to utilize category hierarchy and attribute

relationship to facilitate KG based learning and verification. We develop the

first hierarchical prototype learning method to jointly learn a prototype for each

sub-category and improve entity embeddings using high-level category informa-525

tion. We then propose a relation enhanced graph attention network, which

can effectively induce neighboring attribute information to further enrich the

semantic representations of entities. We also construct a new publicly available

dataset on food domain, and conduct experimental studies based on our con-

structed domain dataset and two benchmark datasets. Our method outperforms530

all the comparison methods and achieves the state-of-the-art performances on

the three datasets.

Our knowledge structure driven learning enhancement and verification ap-

proach can be broadly applied to domains such as knowledge-based rumor de-

tection and textual-level fact verification, and can be extended to multi-claim535
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fact checking [46] as well. In the future, we shall refine our work in several

directions. We shall model the interrelation of entities and relations implied in

a claim to develop better semantic matching functions, and consider to utilize

more complex knowledge structures in real-world scenarios for fact checking.
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