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ABSTRACT 
Mobile wireless sensor nodes need to know their locations 
in many applications; otherwise the data from the nodes is 
meaningless. In this paper, we study a special case and 
propose a distributed localization method for mobile 
wireless sensor networks. In the case, a part of nodes are 
randomly selected as mobile nodes and their moving 
directions and ranges are randomly selected. Every node 
knows its original location. The mobile nodes record their 
moving directions and ranges by the equipped sensors to 
calculate their positions. Then every mobile node’s 
localization is refined by the optimization algorithm, 
which is based on the difference between the measured 
distances and estimated distances with its still neighbors. 
Finally, simulation results are provided to evaluate the 
proposed method. 
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1. Introduction 
 
With the recent development in network technology and 
micro-electro-mechanical systems (MEMS), it is possible 
that wireless sensor networks are increasingly applied in 
many fields, such as environmental monitoring, target 
tracking, object search and rescue, medical application, 
and military surveillance, etc. The ability of a sensor node 
to determine its physical location is of fundamental 
importance in wireless sensor networks (WSNs) [1]. The 
global position system (GPS) is the most prevalent 
positioning device. However, it is not feasible to equip 
each node with GPS capability due to costs, node’s 
limited power and constraints in locations that do not 
have the direct line-of-sight to the satellites [2]. In recent 
years, there are a lot of researches on nodes’ localization 
in WSNs. 
 In the stationary WSNs, the nodes are still so it 
doesn’t need to calculate the nodes’ locations iteratively. 
There are mainly two types of methods to localization: 
range-based and range-free. In range-based methods, 
sensor nodes measure the distances or angels through time 
of arrival (TOA) [3], time difference of arrival (TDOA) 
[4], received signal strength indicator (RSSI) [5], or angle 
of arrival (AOA). For example, in [6], DV-distance 

method is proposed to estimate 1-hop average distance, 
which is used to calculate the nodes’ locations. [7] 
provides a novel localization approach based on multi-
dimensional scaling (MDS). In range-free methods, 
sensor nodes don’t need the measurement. For example, 
DV-hop [6] estimates 1-hop average distance by the 
anchors’ distances and hops. APIT [8] method computes 
the centroid of a related polygon as a node’s location. The 
range-based methods are more precise than the range-free 
ones, though they need some kinds of measurement 
techniques. 
 In the mobile WSNs, the nodes are moving and the 
network topology is changing, so a localization method 
should be used to calculate the nodes’ locations quickly 
and iteratively. The Monte Carlo method [9] is a basic 
approach to solve the localization problem in mobile 
WSNs, which contains three steps: initialization, sampling 
and re-sampling. There are several improved approaches 
based on the Monte Carlo method, such as MSL and 
MSL*[10], MCB [11], Dual and Mixture [12] and so on. 
These methods rely on the communication between the 
nodes. Other approaches that are not based on the Monte 
Carlo method are also developed. In [1], the authors 
propose a dynamic MDS-based localization algorithm to 
calculate the mobile nodes’ locations by adding some 
virtual nodes to increase the nodes’ density. In [13], a 
history of anchor information is used to characterize the 
mobility of mobile nodes. The unknown node then 
calculates its location with the archived anchor using a 
regression model.  
 The Monte Carlo methods predict the node’s next 
location using the mobility model, and then refine the 
prediction by the node’s neighbors’ information. Without 
measuring the distances between the nodes, these methods 
are simple and distributed; however, the predication can 
only provide an area of the node’s location, so the 
positioning error is large. 
 Due to the mobility of the nodes, the localization 
method should be simple and distributed. Most methods 
for localization need anchors, which know their positions 
anytime by GPS or human intervention. The accuracy of 
these methods is related to the density and deployment of 
anchors. When a node doesn’t have an anchor neighbor, it 
has to communicate to its n-hop nodes, which is 
consuming and ineffective. In this paper, a distributed 
localization method is developed without anchors for 
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mobile wireless sensor networks. The main idea is to 
refine the mobile nodes’ localizations by the optimization 
algorithm. This paper is organized as follows: in section 
2, we introduce the studied case and the devices used by 
the proposed method. Section 3 presents the detail of the 
distributed localization method. The simulations and 
evaluation are given in section 4. Section 5 concludes the 
paper. 
 
 
2. A Case of Mobile Sensor Networks 
 
In the studied case, all the nodes are randomly distributed 
in a limited area and know their original locations. The 
time is divided into mobile and localization discrete 
period. They are alternate and continuous. In the mobile 
period, a part of nodes are randomly selected as mobile 
ones and they can move in any direction (0-2π) within a 
limited range. There are no anchors in the network and 
every node only needs to communicate with its neighbors. 
 Each node is equipped with accelerometer, ranging 
sensor and compass. The accelerometer and compass are 
used to record the node’s moving range and direction in 
once mobile period. The ranging sensor measures the 
distances between the mobile node and its still neighbors. 
There are mainly three techniques to measure the distance 
between two nodes. RSSI technique measures the 
received strength of signal to estimate the distance. TOA 
technique records the time of the signal arriving and 
calculates the distance between two nodes by multiplying 
the signal’s speed. TDOA technique records the time of 
the signal sending and returning to calculate two nodes’ 
distance. The ranging errors of TOA and TDOA are 
smaller than the RSSI’s, but more complex. Without loss 
of generality, we will compare the localization results in 
different ranging error in the simulations. 
 
 
3. Distributed Localization Method 
 
The time is divided into mobile and localization discrete 
period. We assume that the mobile node’s moving 
direction doesn’t change in one mobile period. When a 
mobile node stops moving, it estimates its location based 
on the data of the compass and accelerometer. 
Meanwhile, the node measures the distances with its still 
neighbors and receives their coordinates to refine the 
estimation of its location. 
 
3.1 Mobile period 
 
In the mobile period, a part of nodes are randomly 
selected as mobile ones and can move within a limited 
range in any direction (0-2π). The maximum of the 
movement distance is the half of the communication 
radius. 
 
 
 

3.2 Localization period 
 
Once a mobile node stops moving, it will locate itself 
based on the previous location and its neighbors’ 
information. The proposed method contains two steps: 
estimation and refinement. The following is the detail of 
the two steps. 
 
3.2.1 Estimation 
 
The mobile node calculates its location based on the 
previous location and the sensors’ data as shown in Fig. 1. 

is the moving radius of the mobile node and d θ  is the 
angle between the moving direction and the x-axis. 

1( , 1)x y  is the previous location of the node. So the current 
coordinate 2 2( , )x y  can be calculated in (1). 
 

 
Figure 1. Localizing a node based on sensors’ data 
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 2 2( , )x y is the estimation of the node’s location. It is 
affected easily by the sensors’ measure errors. The 
estimation error will become larger as the localization 
times increasing. In order to keep the estimation error in a 
small scale, the mobile node’s location must be refined 
through the optimization algorithm. 
 
3.2.2 Refinement 
 
The objective function is defined in (2). i  represents the 
mobile node and  is ’s still neighbor. Letj i if  is  
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Tthe function for the mobile node i ;  denotes the 
number of i ’s still neighbors; d  is the Euclidean 
distance measured by the distance sensor;  denotes the 
estimated distance calculated by the nodes’ coordinates in 
(3). 
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 The objective of the refinement is to minimize if  to 
make the estimated distances conform to the measured 
distances as shown in (4).  The gradient descent method is 
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used to realize the objective in (5). ( , )x yΔ Δ are the 
coefficients of the refinement. They can be fixed or be  
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alterable with the objective function changing. Anyhow, 
the coefficients must make if  be decreasing. If ( , )x yΔ Δ  
are defined as (6), the method in (5) is the most speedy to 
satisfy the formulation (4). After the step of  
 

2 2

2 2( , ) ( , )i i
x y

i i

f f
x y

α
∂ ∂

Δ Δ = − −
∂ ∂

 (6) 

 
refinement, ˆ ˆ( , )i ix y is the mobile node’s estimated 
coordinate. 
 Unlike the previous localization algorithms, the 
proposed method is able to locate the nodes without 
anchors and available in some conditions, such as 
underwater or underground. Each mobile node locates 
itself using the sensors’ data and its still neighbors’ 
information. So the method is distributed and simple. 
 
 
4. Simulations 
 
The performance of the proposed method is analyzed in 
this section. The running simulations are in Matlab 7.0. 
 
4.1 Simulation parameters 
 
The proposed method doesn’t require anchors but all 
nodes’ original locations must be known. In the 
simulations, all of the nodes have the same 
communication radius. There are 100 nodes randomly 
deployed in an area . Each node’s 
communication radius is  and the biggest moving 
radius for each mobile node is the half of . In the 
mobile period, each mobile node randomly selected its 
moving direction from 0 to 2π and the movement distance 
in
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 In order to reduce the computational cost, (4) is 
converted to (9). When if ’s  variation is less thanε ,  the 
 

( ) ( 1)i if k f k ε− + <  (9) 
 
refinement should stop because if ’s variation is so small 
that the refinement is not necessary. In our simulations, ε  
takes the value of 0.01. 
 
4.2 Simulation results 
 
In the simulations, let DE denote the ranging error of the 
ranging sensor; ME denotes the measuring error of the 
compass and accelerometer; RN denotes the ratio of the 
mobile nodes to all the nodes; NM denotes the method 
without optimization and OM stands for the method with 
optimization.  takes the value of 10 in all experiments. r
 Fig.2 shows the comparison of the localization results  
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Figure 2. Absolute error of the localization results 

 
of NM and OM. In the simulation, , DE=5%, 
ME=5%,RN=30% and . It’s clear that adding 
optimization can improve the node’s localization 
precision. The mean positioning errors of OM and NM 
are 1.05 and 2.09 respectively when the localization times 
are 100. As the localization times increasing, the absolute 
positioning errors are enlarging because the current 
coordinate is calculated based on the previous one and the 
error accumulates gradually. 
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r
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 Fig.3 shows the relative error corresponding to the 
absolute error in Fig.2. As the localization times 
increasing, the path length of the mobile node is growing  

c . The absolute positioning error 
is computed in (7). The relative error is 

defined in (8), which is the ratio of  to the length 
of the mobile node’s path. 

E reError

abrorEr but the relative errors of NM and OM are decrease. When 
the localization times are 90, the relative error of NM is 



2% and OM’s is 1%. That means the node moves 100 
meters while the positioning errors are 2 and 1 meters for  
NM and OM. 
 In Fig.4, , ME=10%, RN=30%. DE takes 
the 

1.5cR = r
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Figure 3. Relative error of localization results 
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Figure 4. Comparison of the localization results in 

different DE 
 

value of 5%, 10% and 15%. When becomes larger, the 
node’s movement distance is increasing, so the 
positioning error of NM grows a lot. When DE is 
increasing, the distances between the mobile node and its 
still neighbors, which are used to do the refinement, are 
less precise. As shown in Fig.4, when the localization 
times are 80, the positioning error of NM is 5.12 and the 
OM’s positioning errors are 0.79 (DE = 5%), 1.55 (DE = 
10%) and 1.84 (DE = 15%). As the localization times 
increasing, the gradient of the OM’s curve is less than that 
of the NM’s. 

cR

 When RN is increasing, the positioning error is 
growing. As shown in Fig.5, when the localization times 
are 50, the node’s positioning error of OM is 9.04, which 
will influence the optimization effect. For investigating 
the influence of the connectivity on the positioning error, 
the maximum of the movement distance is fixed to . 
Fig.5 displays the localization errors in different 
connectivity, in which DE=10%, ME=10%, RN=50% and 

takes the value of , and .  The connectivity of 
the network is 2.8, 6.1 and 10.3 respectively. 

0.8r

cR r

1.5

1.5r

r

2r

 The bigger connectivity means the mobile node has 
more still neighbors as references when it refines its 
location, so the positioning precise is higher. As shown in 
Fig.5, when the localization times are 80, the positioning 
error of NM is 10.15 and the OM’s positioning errors are 
4.86 (connectivity=2.8), 3.39 (connectivity = 6.1) and 
2.29 (connectivity = 10.3). 
 Fig.6 compares the localization results in different 
DE, in which cR = , ME=10%, RN=50%. As DE 
increasing, the positioning error of OM is enlarging. 
When localization times are 80, the positioning error of 
NM is 5.89 and the OM’s errors are 2.06 (DE = 5%), 3.06 
(DE = 10%) and 5.09 (DE = 15%). 
 

0 10 20 30 40 6050 70 80 90 100
0

2

4

6

8

10

12

Localization Times
 

 

A
bs

ol
ut

e 
Er

ro
r (

r=
10

)

No Optimization
Optimization:Connectivity=2.8
Optimization:Connectivity=6.1
Optimization:Connectivity=10.3

 
Figure 5. Comparison of the localization results in 

different connectivity 
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Figure 6. Comparison of the localization results in 

different DE 
 

 Fig.7 and Fig.8 show the comparison of the 
localization results when RN is 80%. The number of the 
still nodes is small so the refinement doesn’t performs as 
well as the described above. Fig.7 compares the 
performance of OM in different connectivity, in which 
DE=10%, ME=10%, and the connectivity takes the value 
of 6.1, 9.5 and 15.5. As the connectivity increasing, there 
are  more  neighbors  used  to  do  the  refinement  for  the 
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Figure 7. RN=80%, Comparison of the localization results 

 in different connectivity 
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Figure 8. RN=80%, Comparison of the localization results 

 in different DE 
 

mobile nodes, so the positioning error decreases. When 
the localization times are 80, the positioning error of NM 
is 11.57 and the OM’s positioning errors are 7.72 
(connectivity = 6.1), 7.22 (connectivity =9.5) and 3.64 
(connectivity = 15.5). 
  Fig.8 displays the localization results as DE is 
increasing, in which and ME=10%. When 
DE=15%, the refinement makes the positioning precise 
worse. However, when DE=5% or 10%, the refinement 
can still decrease the positioning error. 

2.5cR = r

 The refinement is affected by the nodes’ location 
estimation calculated in (1) and the measurement 
distances between the mobile node and its still neighbors. 
If the errors of the two variables are large, the refinement 
doesn’t work, as shown DE=15% in Fig.8. 
 
 
5. Conclusion 
 
In this paper, we propose a distributed localization 
method for mobile wireless sensor networks. This method 
contains two steps: estimation and refinement. Firstly, the 
mobile nodes locate themselves based on their previous 
locations and the sensors’ data. Then they will use the still 

neighbors’ information to refine the locations calculated 
above. The simulations show that the refinement can 
improve the positioning precise unless the sensors’ 
measurement errors are large. This method works without 
anchors, which is able to locate the nodes underwater or 
underground. Every node only needs communicate with 
its neighbors. When the localization times are increasing, 
it can keep the positioning error in a small scale. The 
simulation results show the performance of the proposed 
method in different situations. 
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